New URL for NEMO forge!   http://forge.nemo-ocean.eu

Since March 2022 along with NEMO 4.2 release, the code development moved to a self-hosted GitLab.
This present forge is now archived and remained online for history.
chap_TRA.tex in NEMO/trunk/doc/latex/NEMO/subfiles – NEMO

source: NEMO/trunk/doc/latex/NEMO/subfiles/chap_TRA.tex @ 10146

Last change on this file since 10146 was 10146, checked in by nicolasmartin, 6 years ago

Reorganisation for future addition of .rst files from users wiki extraction

  • Create root directories latex and rst for tidy up
  • Move namelists folder to the root with the aim to gather later all namelist groups here (OCE, ICE & TOP) Also building scripts have been modified so that figures is now expected to be present at the root
  • Create bin directory with namelist utilities (check and update)
  • Under rst, add 4 dummy files that would gather the whole documentation existing currently in users wiki
    • model_interfacing.rst
    • reference_configurations.rst
    • setup_configuration.rst
    • test_cases.rst
File size: 87.5 KB
Line 
1\documentclass[../tex_main/NEMO_manual]{subfiles}
2\begin{document}
3% ================================================================
4% Chapter 1 ——— Ocean Tracers (TRA)
5% ================================================================
6\chapter{Ocean Tracers (TRA)}
7\label{chap:TRA}
8\minitoc
9
10% missing/update
11% traqsr: need to coordinate with SBC module
12
13%STEVEN :  is the use of the word "positive" to describe a scheme enough, or should it be "positive definite"? I added a comment to this effect on some instances of this below
14
15%\newpage
16\vspace{2.cm}
17%$\ $\newline    % force a new ligne
18
19Using the representation described in \autoref{chap:DOM}, several semi-discrete
20space forms of the tracer equations are available depending on the vertical
21coordinate used and on the physics used. In all the equations presented
22here, the masking has been omitted for simplicity. One must be aware that
23all the quantities are masked fields and that each time a mean or difference
24operator is used, the resulting field is multiplied by a mask.
25
26The two active tracers are potential temperature and salinity. Their prognostic
27equations can be summarized as follows:
28\begin{equation*}
29\text{NXT} = \text{ADV}+\text{LDF}+\text{ZDF}+\text{SBC}
30                   \ (+\text{QSR})\ (+\text{BBC})\ (+\text{BBL})\ (+\text{DMP})
31\end{equation*}
32
33NXT stands for next, referring to the time-stepping. From left to right, the terms
34on the rhs of the tracer equations are the advection (ADV), the lateral diffusion
35(LDF), the vertical diffusion (ZDF), the contributions from the external forcings
36(SBC: Surface Boundary Condition, QSR: penetrative Solar Radiation, and BBC:
37Bottom Boundary Condition), the contribution from the bottom boundary Layer
38(BBL) parametrisation, and an internal damping (DMP) term. The terms QSR,
39BBC, BBL and DMP are optional. The external forcings and parameterisations
40require complex inputs and complex calculations ($e.g.$ bulk formulae, estimation
41of mixing coefficients) that are carried out in the SBC, LDF and ZDF modules and
42described in \autoref{chap:SBC}, \autoref{chap:LDF} and \autoref{chap:ZDF}, respectively.
43Note that \mdl{tranpc}, the non-penetrative convection module, although
44located in the NEMO/OPA/TRA directory as it directly modifies the tracer fields,
45is described with the model vertical physics (ZDF) together with other available
46parameterization of convection.
47
48In the present chapter we also describe the diagnostic equations used to compute
49the sea-water properties (density, Brunt-V\"{a}is\"{a}l\"{a} frequency, specific heat and
50freezing point with associated modules \mdl{eosbn2} and \mdl{phycst}).
51
52The different options available to the user are managed by namelist logicals or CPP keys.
53For each equation term  \textit{TTT}, the namelist logicals are \textit{ln\_traTTT\_xxx},
54where \textit{xxx} is a 3 or 4 letter acronym corresponding to each optional scheme.
55The CPP key (when it exists) is \key{traTTT}. The equivalent code can be
56found in the \textit{traTTT} or \textit{traTTT\_xxx} module, in the NEMO/OPA/TRA directory.
57
58The user has the option of extracting each tendency term on the RHS of the tracer
59equation for output (\np{ln\_tra\_trd} or \np{ln\_tra\_mxl}\forcode{ = .true.}), as described in \autoref{chap:DIA}.
60
61$\ $\newline    % force a new ligne
62% ================================================================
63% Tracer Advection
64% ================================================================
65\section{Tracer advection (\protect\mdl{traadv})}
66\label{sec:TRA_adv}
67%------------------------------------------namtra_adv-----------------------------------------------------
68
69\nlst{namtra_adv}
70%-------------------------------------------------------------------------------------------------------------
71
72When considered ($i.e.$ when \np{ln\_traadv\_NONE} is not set to \forcode{.true.}),
73the advection tendency of a tracer is expressed in flux form,
74$i.e.$ as the divergence of the advective fluxes. Its discrete expression is given by :
75\begin{equation} \label{eq:tra_adv}
76ADV_\tau =-\frac{1}{b_t} \left(
77\;\delta _i \left[ e_{2u}\,e_{3u} \;  u\; \tau _u  \right]
78+\delta _j \left[ e_{1v}\,e_{3v}  \;  v\; \tau _v  \right] \; \right)
79-\frac{1}{e_{3t}} \;\delta _k \left[ w\; \tau _w \right]
80\end{equation}
81where $\tau$ is either T or S, and $b_t= e_{1t}\,e_{2t}\,e_{3t}$ is the volume of $T$-cells.
82The flux form in \autoref{eq:tra_adv} 
83implicitly requires the use of the continuity equation. Indeed, it is obtained
84by using the following equality : $\nabla \cdot \left( \vect{U}\,T \right)=\vect{U} \cdot \nabla T$ 
85which results from the use of the continuity equation,  $\partial _t e_3 + e_3\;\nabla \cdot \vect{U}=0$ 
86(which reduces to $\nabla \cdot \vect{U}=0$ in linear free surface, $i.e.$ \np{ln\_linssh}\forcode{ = .true.}).
87Therefore it is of paramount importance to design the discrete analogue of the
88advection tendency so that it is consistent with the continuity equation in order to
89enforce the conservation properties of the continuous equations. In other words,
90by setting $\tau = 1$ in (\autoref{eq:tra_adv}) we recover the discrete form of
91the continuity equation which is used to calculate the vertical velocity.
92%>>>>>>>>>>>>>>>>>>>>>>>>>>>>
93\begin{figure}[!t]    \begin{center}
94\includegraphics[width=0.9\textwidth]{Fig_adv_scheme}
95\caption{   \protect\label{fig:adv_scheme} 
96Schematic representation of some ways used to evaluate the tracer value
97at $u$-point and the amount of tracer exchanged between two neighbouring grid
98points. Upsteam biased scheme (ups): the upstream value is used and the black
99area is exchanged. Piecewise parabolic method (ppm): a parabolic interpolation
100is used and the black and dark grey areas are exchanged. Monotonic upstream
101scheme for conservative laws (muscl):  a parabolic interpolation is used and black,
102dark grey and grey areas are exchanged. Second order scheme (cen2): the mean
103value is used and black, dark grey, grey and light grey areas are exchanged. Note
104that this illustration does not include the flux limiter used in ppm and muscl schemes.}
105\end{center}   \end{figure}
106%>>>>>>>>>>>>>>>>>>>>>>>>>>>>
107
108The key difference between the advection schemes available in \NEMO is the choice
109made in space and time interpolation to define the value of the tracer at the
110velocity points (\autoref{fig:adv_scheme}).
111
112Along solid lateral and bottom boundaries a zero tracer flux is automatically
113specified, since the normal velocity is zero there. At the sea surface the
114boundary condition depends on the type of sea surface chosen:
115\begin{description}
116\item [linear free surface:] (\np{ln\_linssh}\forcode{ = .true.}) the first level thickness is constant in time:
117the vertical boundary condition is applied at the fixed surface $z=0$ 
118rather than on the moving surface $z=\eta$. There is a non-zero advective
119flux which is set for all advection schemes as
120$\left. {\tau _w } \right|_{k=1/2} =T_{k=1} $, $i.e.$ 
121the product of surface velocity (at $z=0$) by the first level tracer value.
122\item [non-linear free surface:] (\np{ln\_linssh}\forcode{ = .false.})
123convergence/divergence in the first ocean level moves the free surface
124up/down. There is no tracer advection through it so that the advective
125fluxes through the surface are also zero
126\end{description}
127In all cases, this boundary condition retains local conservation of tracer.
128Global conservation is obtained in non-linear free surface case,
129but \textit{not} in the linear free surface case. Nevertheless, in the latter case,
130it is achieved to a good approximation since the non-conservative
131term is the product of the time derivative of the tracer and the free surface
132height, two quantities that are not correlated \citep{Roullet_Madec_JGR00,Griffies_al_MWR01,Campin2004}.
133
134The velocity field that appears in (\autoref{eq:tra_adv}) and (\autoref{eq:tra_adv_zco})
135is the centred (\textit{now}) \textit{effective} ocean velocity, $i.e.$ the \textit{eulerian} velocity
136(see \autoref{chap:DYN}) plus the eddy induced velocity (\textit{eiv})
137and/or the mixed layer eddy induced velocity (\textit{eiv})
138when those parameterisations are used (see \autoref{chap:LDF}).
139
140Several tracer advection scheme are proposed, namely
141a $2^{nd}$ or $4^{th}$ order centred schemes (CEN),
142a $2^{nd}$ or $4^{th}$ order Flux Corrected Transport scheme (FCT),
143a Monotone Upstream Scheme for Conservative Laws scheme (MUSCL),
144a $3^{rd}$ Upstream Biased Scheme (UBS, also often called UP3), and
145a Quadratic Upstream Interpolation for Convective Kinematics with
146Estimated Streaming Terms scheme (QUICKEST).
147The choice is made in the \textit{\ngn{namtra\_adv}} namelist, by
148setting to \forcode{.true.} one of the logicals \textit{ln\_traadv\_xxx}.
149The corresponding code can be found in the \mdl{traadv\_xxx} module,
150where \textit{xxx} is a 3 or 4 letter acronym corresponding to each scheme.
151By default ($i.e.$ in the reference namelist, \ngn{namelist\_ref}), all the logicals
152are set to \forcode{.false.}. If the user does not select an advection scheme
153in the configuration namelist (\ngn{namelist\_cfg}), the tracers will \textit{not} be advected !
154
155Details of the advection schemes are given below. The choosing an advection scheme
156is a complex matter which depends on the model physics, model resolution,
157type of tracer, as well as the issue of numerical cost. In particular, we note that
158(1) CEN and FCT schemes require an explicit diffusion operator
159while the other schemes are diffusive enough so that they do not necessarily need additional diffusion ;
160(2) CEN and UBS are not \textit{positive} schemes
161\footnote{negative values can appear in an initially strictly positive tracer field
162which is advected}
163, implying that false extrema are permitted. Their use is not recommended on passive tracers ;
164(3) It is recommended that the same advection-diffusion scheme is
165used on both active and passive tracers. Indeed, if a source or sink of a
166passive tracer depends on an active one, the difference of treatment of
167active and passive tracers can create very nice-looking frontal structures
168that are pure numerical artefacts. Nevertheless, most of our users set a different
169treatment on passive and active tracers, that's the reason why this possibility
170is offered. We strongly suggest them to perform a sensitivity experiment
171using a same treatment to assess the robustness of their results.
172
173% -------------------------------------------------------------------------------------------------------------
174%        2nd and 4th order centred schemes
175% -------------------------------------------------------------------------------------------------------------
176\subsection{CEN: Centred scheme (\protect\np{ln\_traadv\_cen}\forcode{ = .true.})}
177\label{subsec:TRA_adv_cen}
178
179%        2nd order centred scheme 
180
181The centred advection scheme (CEN) is used when \np{ln\_traadv\_cen}\forcode{ = .true.}.
182Its order ($2^{nd}$ or $4^{th}$) can be chosen independently on horizontal (iso-level)
183and vertical direction by setting \np{nn\_cen\_h} and \np{nn\_cen\_v} to $2$ or $4$.
184CEN implementation can be found in the \mdl{traadv\_cen} module.
185
186In the $2^{nd}$ order centred formulation (CEN2), the tracer at velocity points
187is evaluated as the mean of the two neighbouring $T$-point values.
188For example, in the $i$-direction :
189\begin{equation} \label{eq:tra_adv_cen2}
190\tau _u^{cen2} =\overline T ^{i+1/2}
191\end{equation}
192
193CEN2 is non diffusive ($i.e.$ it conserves the tracer variance, $\tau^2)$ 
194but dispersive ($i.e.$ it may create false extrema). It is therefore notoriously
195noisy and must be used in conjunction with an explicit diffusion operator to
196produce a sensible solution. The associated time-stepping is performed using
197a leapfrog scheme in conjunction with an Asselin time-filter, so $T$ in
198(\autoref{eq:tra_adv_cen2}) is the \textit{now} tracer value.
199
200Note that using the CEN2, the overall tracer advection is of second
201order accuracy since both (\autoref{eq:tra_adv}) and (\autoref{eq:tra_adv_cen2})
202have this order of accuracy.
203
204%        4nd order centred scheme 
205
206In the $4^{th}$ order formulation (CEN4), tracer values are evaluated at u- and v-points as
207a $4^{th}$ order interpolation, and thus depend on the four neighbouring $T$-points.
208For example, in the $i$-direction:
209\begin{equation} \label{eq:tra_adv_cen4}
210\tau _u^{cen4} 
211=\overline{   T - \frac{1}{6}\,\delta _i \left[ \delta_{i+1/2}[T] \,\right]   }^{\,i+1/2}
212\end{equation}
213In the vertical direction (\np{nn\_cen\_v}\forcode{ = 4}), a $4^{th}$ COMPACT interpolation
214has been prefered \citep{Demange_PhD2014}.
215In the COMPACT scheme, both the field and its derivative are interpolated,
216which leads, after a matrix inversion, spectral characteristics
217similar to schemes of higher order \citep{Lele_JCP1992}.
218 
219
220Strictly speaking, the CEN4 scheme is not a $4^{th}$ order advection scheme
221but a $4^{th}$ order evaluation of advective fluxes, since the divergence of
222advective fluxes \autoref{eq:tra_adv} is kept at $2^{nd}$ order.
223The expression \textit{$4^{th}$ order scheme} used in oceanographic literature
224is usually associated with the scheme presented here.
225Introducing a \forcode{.true.} $4^{th}$ order advection scheme is feasible but,
226for consistency reasons, it requires changes in the discretisation of the tracer
227advection together with changes in the continuity equation,
228and the momentum advection and pressure terms. 
229
230A direct consequence of the pseudo-fourth order nature of the scheme is that
231it is not non-diffusive, $i.e.$ the global variance of a tracer is not preserved using CEN4.
232Furthermore, it must be used in conjunction with an explicit diffusion operator
233to produce a sensible solution.
234As in CEN2 case, the time-stepping is performed using a leapfrog scheme in conjunction
235with an Asselin time-filter, so $T$ in (\autoref{eq:tra_adv_cen4}) is the \textit{now} tracer.
236
237At a $T$-grid cell adjacent to a boundary (coastline, bottom and surface),
238an additional hypothesis must be made to evaluate $\tau _u^{cen4}$.
239This hypothesis usually reduces the order of the scheme.
240Here we choose to set the gradient of $T$ across the boundary to zero.
241Alternative conditions can be specified, such as a reduction to a second order scheme
242for these near boundary grid points.
243
244% -------------------------------------------------------------------------------------------------------------
245%        FCT scheme 
246% -------------------------------------------------------------------------------------------------------------
247\subsection{FCT: Flux Corrected Transport scheme (\protect\np{ln\_traadv\_fct}\forcode{ = .true.})}
248\label{subsec:TRA_adv_tvd}
249
250The Flux Corrected Transport schemes (FCT) is used when \np{ln\_traadv\_fct}\forcode{ = .true.}.
251Its order ($2^{nd}$ or $4^{th}$) can be chosen independently on horizontal (iso-level)
252and vertical direction by setting \np{nn\_fct\_h} and \np{nn\_fct\_v} to $2$ or $4$.
253FCT implementation can be found in the \mdl{traadv\_fct} module.
254
255In FCT formulation, the tracer at velocity points is evaluated using a combination of
256an upstream and a centred scheme. For example, in the $i$-direction :
257\begin{equation} \label{eq:tra_adv_fct}
258\begin{split}
259\tau _u^{ups}&= \begin{cases}
260               T_{i+1}  & \text{if $\ u_{i+1/2} <     0$} \hfill \\
261               T_i         & \text{if $\ u_{i+1/2} \geq 0$} \hfill \\
262              \end{cases}     \\
263\\
264\tau _u^{fct}&=\tau _u^{ups} +c_u \;\left( {\tau _u^{cen} -\tau _u^{ups} } \right)
265\end{split}
266\end{equation}
267where $c_u$ is a flux limiter function taking values between 0 and 1.
268The FCT order is the one of the centred scheme used ($i.e.$ it depends on the setting of
269\np{nn\_fct\_h} and \np{nn\_fct\_v}.
270There exist many ways to define $c_u$, each corresponding to a different
271FCT scheme. The one chosen in \NEMO is described in \citet{Zalesak_JCP79}.
272$c_u$ only departs from $1$ when the advective term produces a local extremum in the tracer field.
273The resulting scheme is quite expensive but \emph{positive}.
274It can be used on both active and passive tracers.
275A comparison of FCT-2 with MUSCL and a MPDATA scheme can be found in \citet{Levy_al_GRL01}.
276
277An additional option has been added controlled by \np{nn\_fct\_zts}. By setting this integer to
278a value larger than zero, a $2^{nd}$ order FCT scheme is used on both horizontal and vertical direction,
279but on the latter, a split-explicit time stepping is used, with a number of sub-timestep equals
280to \np{nn\_fct\_zts}. This option can be useful when the size of the timestep is limited
281by vertical advection \citep{Lemarie_OM2015}. Note that in this case, a similar split-explicit
282time stepping should be used on vertical advection of momentum to insure a better stability
283(see \autoref{subsec:DYN_zad}).
284
285For stability reasons (see \autoref{chap:STP}), $\tau _u^{cen}$ is evaluated in (\autoref{eq:tra_adv_fct})
286using the \textit{now} tracer while $\tau _u^{ups}$ is evaluated using the \textit{before} tracer. In other words,
287the advective part of the scheme is time stepped with a leap-frog scheme
288while a forward scheme is used for the diffusive part.
289
290% -------------------------------------------------------------------------------------------------------------
291%        MUSCL scheme 
292% -------------------------------------------------------------------------------------------------------------
293\subsection{MUSCL: Monotone Upstream Scheme for Conservative Laws (\protect\np{ln\_traadv\_mus}\forcode{ = .true.})}
294\label{subsec:TRA_adv_mus}
295
296The Monotone Upstream Scheme for Conservative Laws (MUSCL) is used when \np{ln\_traadv\_mus}\forcode{ = .true.}.
297MUSCL implementation can be found in the \mdl{traadv\_mus} module.
298
299MUSCL has been first implemented in \NEMO by \citet{Levy_al_GRL01}. In its formulation, the tracer at velocity points
300is evaluated assuming a linear tracer variation between two $T$-points
301(\autoref{fig:adv_scheme}). For example, in the $i$-direction :
302\begin{equation} \label{eq:tra_adv_mus}
303   \tau _u^{mus} = \left\{      \begin{aligned}
304         &\tau _&+ \frac{1}{2} \;\left( 1-\frac{u_{i+1/2} \;\rdt}{e_{1u}} \right)
305         &\ \widetilde{\partial _i \tau}  & \quad \text{if }\;u_{i+1/2} \geqslant 0      \\
306         &\tau _{i+1/2} &+\frac{1}{2}\;\left( 1+\frac{u_{i+1/2} \;\rdt}{e_{1u} } \right)
307         &\ \widetilde{\partial_{i+1/2} \tau } & \text{if }\;u_{i+1/2} <0
308   \end{aligned}    \right.
309\end{equation}
310where $\widetilde{\partial _i \tau}$ is the slope of the tracer on which a limitation
311is imposed to ensure the \textit{positive} character of the scheme.
312
313The time stepping is performed using a forward scheme, that is the \textit{before} 
314tracer field is used to evaluate $\tau _u^{mus}$.
315
316For an ocean grid point adjacent to land and where the ocean velocity is
317directed toward land, an upstream flux is used. This choice ensure
318the \textit{positive} character of the scheme.
319In addition, fluxes round a grid-point where a runoff is applied can optionally be
320computed using upstream fluxes (\np{ln\_mus\_ups}\forcode{ = .true.}).
321
322% -------------------------------------------------------------------------------------------------------------
323%        UBS scheme 
324% -------------------------------------------------------------------------------------------------------------
325\subsection{UBS a.k.a. UP3: Upstream-Biased Scheme (\protect\np{ln\_traadv\_ubs}\forcode{ = .true.})}
326\label{subsec:TRA_adv_ubs}
327
328The Upstream-Biased Scheme (UBS) is used when \np{ln\_traadv\_ubs}\forcode{ = .true.}.
329UBS implementation can be found in the \mdl{traadv\_mus} module.
330
331The UBS scheme, often called UP3, is also known as the Cell Averaged QUICK scheme
332(Quadratic Upstream Interpolation for Convective Kinematics). It is an upstream-biased
333third order scheme based on an upstream-biased parabolic interpolation. 
334For example, in the $i$-direction :
335\begin{equation} \label{eq:tra_adv_ubs}
336   \tau _u^{ubs} =\overline T ^{i+1/2}-\;\frac{1}{6} \left\{     
337   \begin{aligned}
338         &\tau"_i          & \quad \text{if }\ u_{i+1/2} \geqslant 0      \\
339         &\tau"_{i+1}   & \quad \text{if }\ u_{i+1/2}       <       0
340   \end{aligned}    \right.
341\end{equation}
342where $\tau "_i =\delta _i \left[ {\delta _{i+1/2} \left[ \tau \right]} \right]$.
343
344This results in a dissipatively dominant (i.e. hyper-diffusive) truncation
345error \citep{Shchepetkin_McWilliams_OM05}. The overall performance of
346 the advection scheme is similar to that reported in \cite{Farrow1995}.
347It is a relatively good compromise between accuracy and smoothness.
348Nevertheless the scheme is not \emph{positive}, meaning that false extrema are permitted,
349but the amplitude of such are significantly reduced over the centred second
350or fourth order method. therefore it is not recommended that it should be
351applied to a passive tracer that requires positivity.
352
353The intrinsic diffusion of UBS makes its use risky in the vertical direction
354where the control of artificial diapycnal fluxes is of paramount importance \citep{Shchepetkin_McWilliams_OM05, Demange_PhD2014}.
355Therefore the vertical flux is evaluated using either a $2^nd$ order FCT scheme
356or a $4^th$ order COMPACT scheme (\np{nn\_cen\_v}\forcode{ = 2 or 4}).
357
358For stability reasons  (see \autoref{chap:STP}),
359the first term  in \autoref{eq:tra_adv_ubs} (which corresponds to a second order
360centred scheme) is evaluated using the \textit{now} tracer (centred in time)
361while the second term (which is the diffusive part of the scheme), is
362evaluated using the \textit{before} tracer (forward in time).
363This choice is discussed by \citet{Webb_al_JAOT98} in the context of the
364QUICK advection scheme. UBS and QUICK schemes only differ
365by one coefficient. Replacing 1/6 with 1/8 in \autoref{eq:tra_adv_ubs} 
366leads to the QUICK advection scheme \citep{Webb_al_JAOT98}.
367This option is not available through a namelist parameter, since the
3681/6 coefficient is hard coded. Nevertheless it is quite easy to make the
369substitution in the \mdl{traadv\_ubs} module and obtain a QUICK scheme.
370
371Note that it is straightforward to rewrite \autoref{eq:tra_adv_ubs} as follows:
372\begin{equation} \label{eq:traadv_ubs2}
373\tau _u^{ubs} = \tau _u^{cen4} + \frac{1}{12} \left\{ 
374   \begin{aligned}
375   & + \tau"_i       & \quad \text{if }\ u_{i+1/2} \geqslant 0 \\
376   &  - \tau"_{i+1}     & \quad \text{if }\ u_{i+1/2}       <       0
377   \end{aligned}    \right.
378\end{equation}
379or equivalently
380\begin{equation} \label{eq:traadv_ubs2b}
381u_{i+1/2} \ \tau _u^{ubs} 
382=u_{i+1/2} \ \overline{ T - \frac{1}{6}\,\delta _i\left[ \delta_{i+1/2}[T] \,\right] }^{\,i+1/2}
383- \frac{1}{2} |u|_{i+1/2} \;\frac{1}{6} \;\delta_{i+1/2}[\tau"_i]
384\end{equation}
385
386\autoref{eq:traadv_ubs2} has several advantages. Firstly, it clearly reveals
387that the UBS scheme is based on the fourth order scheme to which an
388upstream-biased diffusion term is added. Secondly, this emphasises that the
389$4^{th}$ order part (as well as the $2^{nd}$ order part as stated above) has
390to be evaluated at the \emph{now} time step using \autoref{eq:tra_adv_ubs}.
391Thirdly, the diffusion term is in fact a biharmonic operator with an eddy
392coefficient which is simply proportional to the velocity:
393 $A_u^{lm}= \frac{1}{12}\,{e_{1u}}^3\,|u|$. Note the current version of NEMO uses
394the computationally more efficient formulation \autoref{eq:tra_adv_ubs}.
395
396% -------------------------------------------------------------------------------------------------------------
397%        QCK scheme 
398% -------------------------------------------------------------------------------------------------------------
399\subsection{QCK: QuiCKest scheme (\protect\np{ln\_traadv\_qck}\forcode{ = .true.})}
400\label{subsec:TRA_adv_qck}
401
402The Quadratic Upstream Interpolation for Convective Kinematics with
403Estimated Streaming Terms (QUICKEST) scheme proposed by \citet{Leonard1979} 
404is used when \np{ln\_traadv\_qck}\forcode{ = .true.}.
405QUICKEST implementation can be found in the \mdl{traadv\_qck} module.
406
407QUICKEST is the third order Godunov scheme which is associated with the ULTIMATE QUICKEST
408limiter \citep{Leonard1991}. It has been implemented in NEMO by G. Reffray
409(MERCATOR-ocean) and can be found in the \mdl{traadv\_qck} module.
410The resulting scheme is quite expensive but \emph{positive}.
411It can be used on both active and passive tracers.
412However, the intrinsic diffusion of QCK makes its use risky in the vertical
413direction where the control of artificial diapycnal fluxes is of paramount importance.
414Therefore the vertical flux is evaluated using the CEN2 scheme.
415This no longer guarantees the positivity of the scheme.
416The use of FCT in the vertical direction (as for the UBS case) should be implemented
417to restore this property.
418
419%%%gmcomment   :  Cross term are missing in the current implementation....
420
421
422% ================================================================
423% Tracer Lateral Diffusion
424% ================================================================
425\section{Tracer lateral diffusion (\protect\mdl{traldf})}
426\label{sec:TRA_ldf}
427%-----------------------------------------nam_traldf------------------------------------------------------
428
429\nlst{namtra_ldf}
430%-------------------------------------------------------------------------------------------------------------
431 
432Options are defined through the \ngn{namtra\_ldf} namelist variables.
433They are regrouped in four items, allowing to specify
434$(i)$   the type of operator used (none, laplacian, bilaplacian),
435$(ii)$  the direction along which the operator acts (iso-level, horizontal, iso-neutral),
436$(iii)$ some specific options related to the rotated operators ($i.e.$ non-iso-level operator), and
437$(iv)$  the specification of eddy diffusivity coefficient (either constant or variable in space and time).
438Item $(iv)$ will be described in \autoref{chap:LDF} .
439The direction along which the operators act is defined through the slope between this direction and the iso-level surfaces.
440The slope is computed in the \mdl{ldfslp} module and will also be described in \autoref{chap:LDF}.
441
442The lateral diffusion of tracers is evaluated using a forward scheme,
443$i.e.$ the tracers appearing in its expression are the \textit{before} tracers in time,
444except for the pure vertical component that appears when a rotation tensor is used.
445This latter component is solved implicitly together with the vertical diffusion term (see \autoref{chap:STP}).
446When \np{ln\_traldf\_msc}\forcode{ = .true.}, a Method of Stabilizing Correction is used in which
447the pure vertical component is split into an explicit and an implicit part \citep{Lemarie_OM2012}.
448
449% -------------------------------------------------------------------------------------------------------------
450%        Type of operator
451% -------------------------------------------------------------------------------------------------------------
452\subsection[Type of operator (\protect\np{ln\_traldf}\{\_NONE,\_lap,\_blp\}\})]
453              {Type of operator (\protect\np{ln\_traldf\_NONE}, \protect\np{ln\_traldf\_lap}, or \protect\np{ln\_traldf\_blp}) } 
454\label{subsec:TRA_ldf_op}
455
456Three operator options are proposed and, one and only one of them must be selected:
457\begin{description}
458\item [\np{ln\_traldf\_NONE}\forcode{ = .true.}]: no operator selected, the lateral diffusive tendency will not be
459applied to the tracer equation. This option can be used when the selected advection scheme
460is diffusive enough (MUSCL scheme for example).
461\item [\np{ln\_traldf\_lap}\forcode{ = .true.}]: a laplacian operator is selected. This harmonic operator
462takes the following expression:  $\mathpzc{L}(T)=\nabla \cdot A_{ht}\;\nabla T $,
463where the gradient operates along the selected direction (see \autoref{subsec:TRA_ldf_dir}),
464and $A_{ht}$ is the eddy diffusivity coefficient expressed in $m^2/s$ (see \autoref{chap:LDF}).
465\item [\np{ln\_traldf\_blp}\forcode{ = .true.}]: a bilaplacian operator is selected. This biharmonic operator
466takes the following expression: 
467$\mathpzc{B}=- \mathpzc{L}\left(\mathpzc{L}(T) \right) = -\nabla \cdot b\nabla \left( {\nabla \cdot b\nabla T} \right)$ 
468where the gradient operats along the selected direction,
469and $b^2=B_{ht}$ is the eddy diffusivity coefficient expressed in $m^4/s$  (see \autoref{chap:LDF}).
470In the code, the bilaplacian operator is obtained by calling the laplacian twice.
471\end{description}
472
473Both laplacian and bilaplacian operators ensure the total tracer variance decrease.
474Their primary role is to provide strong dissipation at the smallest scale supported
475by the grid while minimizing the impact on the larger scale features.
476The main difference between the two operators is the scale selectiveness.
477The bilaplacian damping time ($i.e.$ its spin down time) scales like $\lambda^{-4}$ 
478for disturbances of wavelength $\lambda$ (so that short waves damped more rapidelly than long ones),
479whereas the laplacian damping time scales only like $\lambda^{-2}$.
480
481
482% -------------------------------------------------------------------------------------------------------------
483%        Direction of action
484% -------------------------------------------------------------------------------------------------------------
485\subsection[Action direction (\protect\np{ln\_traldf}\{\_lev,\_hor,\_iso,\_triad\})]
486              {Direction of action (\protect\np{ln\_traldf\_lev}, \protect\np{ln\_traldf\_hor}, \protect\np{ln\_traldf\_iso}, or \protect\np{ln\_traldf\_triad}) } 
487\label{subsec:TRA_ldf_dir}
488
489The choice of a direction of action determines the form of operator used.
490The operator is a simple (re-entrant) laplacian acting in the (\textbf{i},\textbf{j}) plane
491when iso-level option is used (\np{ln\_traldf\_lev}\forcode{ = .true.})
492or when a horizontal ($i.e.$ geopotential) operator is demanded in \textit{z}-coordinate
493(\np{ln\_traldf\_hor} and \np{ln\_zco} equal \forcode{.true.}).
494The associated code can be found in the \mdl{traldf\_lap\_blp} module.
495The operator is a rotated (re-entrant) laplacian when the direction along which it acts
496does not coincide with the iso-level surfaces,
497that is when standard or triad iso-neutral option is used (\np{ln\_traldf\_iso} or
498 \np{ln\_traldf\_triad} equals \forcode{.true.}, see \mdl{traldf\_iso} or \mdl{traldf\_triad} module, resp.),
499or when a horizontal ($i.e.$ geopotential) operator is demanded in \textit{s}-coordinate
500(\np{ln\_traldf\_hor} and \np{ln\_sco} equal \forcode{.true.})
501\footnote{In this case, the standard iso-neutral operator will be automatically selected}.
502In that case, a rotation is applied to the gradient(s) that appears in the operator
503so that diffusive fluxes acts on the three spatial direction.
504
505The resulting discret form of the three operators (one iso-level and two rotated one)
506is given in the next two sub-sections.
507
508
509% -------------------------------------------------------------------------------------------------------------
510%       iso-level operator
511% -------------------------------------------------------------------------------------------------------------
512\subsection{Iso-level (bi-)laplacian operator ( \protect\np{ln\_traldf\_iso}) }
513\label{subsec:TRA_ldf_lev}
514
515The laplacian diffusion operator acting along the model (\textit{i,j})-surfaces is given by:
516\begin{equation} \label{eq:tra_ldf_lap}
517D_t^{lT} =\frac{1}{b_t} \left( \;
518   \delta _{i}\left[ A_u^{lT} \; \frac{e_{2u}\,e_{3u}}{e_{1u}} \;\delta _{i+1/2} [T] \right]
519+ \delta _{j}\left[ A_v^{lT} \;  \frac{e_{1v}\,e_{3v}}{e_{2v}} \;\delta _{j+1/2} [T] \right\;\right)
520\end{equation}
521where  $b_t$=$e_{1t}\,e_{2t}\,e_{3t}$  is the volume of $T$-cells
522and where zero diffusive fluxes is assumed across solid boundaries,
523first (and third in bilaplacian case) horizontal tracer derivative are masked.
524It is implemented in the \rou{traldf\_lap} subroutine found in the \mdl{traldf\_lap} module.
525The module also contains \rou{traldf\_blp}, the subroutine calling twice \rou{traldf\_lap} 
526in order to compute the iso-level bilaplacian operator.
527
528It is a \emph{horizontal} operator ($i.e.$ acting along geopotential surfaces) in the $z$-coordinate
529with or without partial steps, but is simply an iso-level operator in the $s$-coordinate.
530It is thus used when, in addition to \np{ln\_traldf\_lap} or \np{ln\_traldf\_blp}\forcode{ = .true.},
531we have \np{ln\_traldf\_lev}\forcode{ = .true.} or \np{ln\_traldf\_hor}~=~\np{ln\_zco}\forcode{ = .true.}.
532In both cases, it significantly contributes to diapycnal mixing.
533It is therefore never recommended, even when using it in the bilaplacian case.
534
535Note that in the partial step $z$-coordinate (\np{ln\_zps}\forcode{ = .true.}), tracers in horizontally
536adjacent cells are located at different depths in the vicinity of the bottom.
537In this case, horizontal derivatives in (\autoref{eq:tra_ldf_lap}) at the bottom level
538require a specific treatment. They are calculated in the \mdl{zpshde} module,
539described in \autoref{sec:TRA_zpshde}.
540
541
542% -------------------------------------------------------------------------------------------------------------
543%         Rotated laplacian operator
544% -------------------------------------------------------------------------------------------------------------
545\subsection{Standard and triad (bi-)laplacian operator}
546\label{subsec:TRA_ldf_iso_triad}
547
548%&&    Standard rotated (bi-)laplacian operator
549%&& ----------------------------------------------
550\subsubsection{Standard rotated (bi-)laplacian operator (\protect\mdl{traldf\_iso})}
551\label{subsec:TRA_ldf_iso}
552The general form of the second order lateral tracer subgrid scale physics
553(\autoref{eq:PE_zdf}) takes the following semi-discrete space form in $z$- and $s$-coordinates:
554\begin{equation} \label{eq:tra_ldf_iso}
555\begin{split}
556 D_T^{lT} = \frac{1}{b_t}   & \left\{   \,\;\delta_i \left[   A_u^{lT}  \left(
557     \frac{e_{2u}\,e_{3u}}{e_{1u}} \,\delta_{i+1/2}[T]
558   - e_{2u}\;r_{1u} \,\overline{\overline{ \delta_{k+1/2}[T] }}^{\,i+1/2,k}
559                                                     \right)   \right]   \right.    \\ 
560&             +\delta_j \left[ A_v^{lT} \left(
561          \frac{e_{1v}\,e_{3v}}{e_{2v}}  \,\delta_{j+1/2} [T]
562        - e_{1v}\,r_{2v} \,\overline{\overline{ \delta_{k+1/2} [T] }}^{\,j+1/2,k} 
563                                                    \right)   \right]                 \\ 
564& +\delta_k \left[ A_w^{lT} \left(
565       -\;e_{2w}\,r_{1w} \,\overline{\overline{ \delta_{i+1/2} [T] }}^{\,i,k+1/2}
566                                                    \right.   \right.                 \\ 
567& \qquad \qquad \quad 
568        - e_{1w}\,r_{2w} \,\overline{\overline{ \delta_{j+1/2} [T] }}^{\,j,k+1/2}     \\
569& \left. {\left. {   \qquad \qquad \ \ \ \left. {
570        +\;\frac{e_{1w}\,e_{2w}}{e_{3w}} \,\left( r_{1w}^2 + r_{2w}^2 \right)
571           \,\delta_{k+1/2} [T] } \right) } \right] \quad } \right\} 
572 \end{split}
573 \end{equation}
574where $b_t$=$e_{1t}\,e_{2t}\,e_{3t}$  is the volume of $T$-cells,
575$r_1$ and $r_2$ are the slopes between the surface of computation
576($z$- or $s$-surfaces) and the surface along which the diffusion operator
577acts ($i.e.$ horizontal or iso-neutral surfaces).  It is thus used when,
578in addition to \np{ln\_traldf\_lap}\forcode{ = .true.}, we have \np{ln\_traldf\_iso}\forcode{ = .true.},
579or both \np{ln\_traldf\_hor}\forcode{ = .true.} and \np{ln\_zco}\forcode{ = .true.}. The way these
580slopes are evaluated is given in \autoref{sec:LDF_slp}. At the surface, bottom
581and lateral boundaries, the turbulent fluxes of heat and salt are set to zero
582using the mask technique (see \autoref{sec:LBC_coast}).
583
584The operator in \autoref{eq:tra_ldf_iso} involves both lateral and vertical
585derivatives. For numerical stability, the vertical second derivative must
586be solved using the same implicit time scheme as that used in the vertical
587physics (see \autoref{sec:TRA_zdf}). For computer efficiency reasons, this term
588is not computed in the \mdl{traldf\_iso} module, but in the \mdl{trazdf} module
589where, if iso-neutral mixing is used, the vertical mixing coefficient is simply
590increased by $\frac{e_{1w}\,e_{2w} }{e_{3w} }\ \left( {r_{1w} ^2+r_{2w} ^2} \right)$.
591
592This formulation conserves the tracer but does not ensure the decrease
593of the tracer variance. Nevertheless the treatment performed on the slopes
594(see \autoref{chap:LDF}) allows the model to run safely without any additional
595background horizontal diffusion \citep{Guilyardi_al_CD01}.
596
597Note that in the partial step $z$-coordinate (\np{ln\_zps}\forcode{ = .true.}), the horizontal derivatives
598at the bottom level in \autoref{eq:tra_ldf_iso} require a specific treatment.
599They are calculated in module zpshde, described in \autoref{sec:TRA_zpshde}.
600
601%&&     Triad rotated (bi-)laplacian operator
602%&&  -------------------------------------------
603\subsubsection{Triad rotated (bi-)laplacian operator (\protect\np{ln\_traldf\_triad})}
604\label{subsec:TRA_ldf_triad}
605
606If the Griffies triad scheme is employed (\np{ln\_traldf\_triad}\forcode{ = .true.} ; see \autoref{apdx:triad})
607
608An alternative scheme developed by \cite{Griffies_al_JPO98} which ensures tracer variance decreases
609is also available in \NEMO (\np{ln\_traldf\_grif}\forcode{ = .true.}). A complete description of
610the algorithm is given in \autoref{apdx:triad}.
611
612The lateral fourth order bilaplacian operator on tracers is obtained by
613applying (\autoref{eq:tra_ldf_lap}) twice. The operator requires an additional assumption
614on boundary conditions: both first and third derivative terms normal to the
615coast are set to zero.
616
617The lateral fourth order operator formulation on tracers is obtained by
618applying (\autoref{eq:tra_ldf_iso}) twice. It requires an additional assumption
619on boundary conditions: first and third derivative terms normal to the
620coast, normal to the bottom and normal to the surface are set to zero.
621
622%&&    Option for the rotated operators
623%&& ----------------------------------------------
624\subsubsection{Option for the rotated operators}
625\label{subsec:TRA_ldf_options}
626
627\np{ln\_traldf\_msc} = Method of Stabilizing Correction (both operators)
628
629\np{rn\_slpmax} = slope limit (both operators)
630
631\np{ln\_triad\_iso} = pure horizontal mixing in ML (triad only)
632
633\np{rn\_sw\_triad} =1 switching triad ; =0 all 4 triads used (triad only)
634
635\np{ln\_botmix\_triad} = lateral mixing on bottom (triad only)
636
637% ================================================================
638% Tracer Vertical Diffusion
639% ================================================================
640\section{Tracer vertical diffusion (\protect\mdl{trazdf})}
641\label{sec:TRA_zdf}
642%--------------------------------------------namzdf---------------------------------------------------------
643
644\nlst{namzdf}
645%--------------------------------------------------------------------------------------------------------------
646
647Options are defined through the \ngn{namzdf} namelist variables.
648The formulation of the vertical subgrid scale tracer physics is the same
649for all the vertical coordinates, and is based on a laplacian operator.
650The vertical diffusion operator given by (\autoref{eq:PE_zdf}) takes the
651following semi-discrete space form:
652\begin{equation} \label{eq:tra_zdf}
653\begin{split}
654D^{vT}_T &= \frac{1}{e_{3t}} \; \delta_k \left[ \;\frac{A^{vT}_w}{e_{3w}}  \delta_{k+1/2}[T] \;\right]
655\\
656D^{vS}_T &= \frac{1}{e_{3t}} \; \delta_k \left[ \;\frac{A^{vS}_w}{e_{3w}}  \delta_{k+1/2}[S] \;\right]
657\end{split}
658\end{equation}
659where $A_w^{vT}$ and $A_w^{vS}$ are the vertical eddy diffusivity
660coefficients on temperature and salinity, respectively. Generally,
661$A_w^{vT}=A_w^{vS}$ except when double diffusive mixing is
662parameterised ($i.e.$ \key{zdfddm} is defined). The way these coefficients
663are evaluated is given in \autoref{chap:ZDF} (ZDF). Furthermore, when
664iso-neutral mixing is used, both mixing coefficients are increased
665by $\frac{e_{1w}\,e_{2w} }{e_{3w} }\ \left( {r_{1w} ^2+r_{2w} ^2} \right)$ 
666to account for the vertical second derivative of \autoref{eq:tra_ldf_iso}.
667
668At the surface and bottom boundaries, the turbulent fluxes of
669heat and salt must be specified. At the surface they are prescribed
670from the surface forcing and added in a dedicated routine (see \autoref{subsec:TRA_sbc}),
671whilst at the bottom they are set to zero for heat and salt unless
672a geothermal flux forcing is prescribed as a bottom boundary
673condition (see \autoref{subsec:TRA_bbc}).
674
675The large eddy coefficient found in the mixed layer together with high
676vertical resolution implies that in the case of explicit time stepping
677(\np{ln\_zdfexp}\forcode{ = .true.}) there would be too restrictive a constraint on
678the time step. Therefore, the default implicit time stepping is preferred
679for the vertical diffusion since it overcomes the stability constraint.
680A forward time differencing scheme (\np{ln\_zdfexp}\forcode{ = .true.}) using a time
681splitting technique (\np{nn\_zdfexp} $> 1$) is provided as an alternative.
682Namelist variables \np{ln\_zdfexp} and \np{nn\_zdfexp} apply to both
683tracers and dynamics.
684
685% ================================================================
686% External Forcing
687% ================================================================
688\section{External forcing}
689\label{sec:TRA_sbc_qsr_bbc}
690
691% -------------------------------------------------------------------------------------------------------------
692%        surface boundary condition
693% -------------------------------------------------------------------------------------------------------------
694\subsection{Surface boundary condition (\protect\mdl{trasbc})}
695\label{subsec:TRA_sbc}
696
697The surface boundary condition for tracers is implemented in a separate
698module (\mdl{trasbc}) instead of entering as a boundary condition on the vertical
699diffusion operator (as in the case of momentum). This has been found to
700enhance readability of the code. The two formulations are completely
701equivalent; the forcing terms in trasbc are the surface fluxes divided by
702the thickness of the top model layer.
703
704Due to interactions and mass exchange of water ($F_{mass}$) with other Earth system components
705($i.e.$ atmosphere, sea-ice, land), the change in the heat and salt content of the surface layer
706of the ocean is due both to the heat and salt fluxes crossing the sea surface (not linked with $F_{mass}$)
707and to the heat and salt content of the mass exchange. They are both included directly in $Q_{ns}$,
708the surface heat flux, and $F_{salt}$, the surface salt flux (see \autoref{chap:SBC} for further details).
709By doing this, the forcing formulation is the same for any tracer (including temperature and salinity).
710
711The surface module (\mdl{sbcmod}, see \autoref{chap:SBC}) provides the following
712forcing fields (used on tracers):
713
714$\bullet$ $Q_{ns}$, the non-solar part of the net surface heat flux that crosses the sea surface
715(i.e. the difference between the total surface heat flux and the fraction of the short wave flux that
716penetrates into the water column, see \autoref{subsec:TRA_qsr}) plus the heat content associated with
717of the mass exchange with the atmosphere and lands.
718
719$\bullet$ $\textit{sfx}$, the salt flux resulting from ice-ocean mass exchange (freezing, melting, ridging...)
720
721$\bullet$ \textit{emp}, the mass flux exchanged with the atmosphere (evaporation minus precipitation)
722 and possibly with the sea-ice and ice-shelves.
723
724$\bullet$ \textit{rnf}, the mass flux associated with runoff
725(see \autoref{sec:SBC_rnf} for further detail of how it acts on temperature and salinity tendencies)
726
727$\bullet$ \textit{fwfisf}, the mass flux associated with ice shelf melt,
728(see \autoref{sec:SBC_isf} for further details on how the ice shelf melt is computed and applied).
729
730The surface boundary condition on temperature and salinity is applied as follows:
731\begin{equation} \label{eq:tra_sbc}
732\begin{aligned}
733 &F^T = \frac{ 1 }{\rho _o \;C_p \,\left. e_{3t} \right|_{k=1} }  &\overline{ Q_{ns}       }^& \\ 
734& F^S =\frac{ 1 }{\rho _\,      \left. e_{3t} \right|_{k=1} }  &\overline{ \textit{sfx} }^t   & \\   
735 \end{aligned}
736\end{equation} 
737where $\overline{x }^t$ means that $x$ is averaged over two consecutive time steps
738($t-\rdt/2$ and $t+\rdt/2$). Such time averaging prevents the
739divergence of odd and even time step (see \autoref{chap:STP}).
740
741In the linear free surface case (\np{ln\_linssh}\forcode{ = .true.}),
742an additional term has to be added on both temperature and salinity.
743On temperature, this term remove the heat content associated with mass exchange
744that has been added to $Q_{ns}$. On salinity, this term mimics the concentration/dilution effect that
745would have resulted from a change in the volume of the first level.
746The resulting surface boundary condition is applied as follows:
747\begin{equation} \label{eq:tra_sbc_lin}
748\begin{aligned}
749 &F^T = \frac{ 1 }{\rho _o \;C_p \,\left. e_{3t} \right|_{k=1} }   
750           &\overline{ \left( Q_{ns} - \textit{emp}\;C_p\,\left. T \right|_{k=1} \right) }^& \\ 
751%
752& F^S =\frac{ 1 }{\rho _o \,\left. e_{3t} \right|_{k=1} } 
753           &\overline{ \left( \;\textit{sfx} - \textit{emp} \;\left. S \right|_{k=1}  \right) }^t   & \\   
754 \end{aligned}
755\end{equation} 
756Note that an exact conservation of heat and salt content is only achieved with non-linear free surface.
757In the linear free surface case, there is a small imbalance. The imbalance is larger
758than the imbalance associated with the Asselin time filter \citep{Leclair_Madec_OM09}.
759This is the reason why the modified filter is not applied in the linear free surface case (see \autoref{chap:STP}).
760
761% -------------------------------------------------------------------------------------------------------------
762%        Solar Radiation Penetration
763% -------------------------------------------------------------------------------------------------------------
764\subsection{Solar radiation penetration (\protect\mdl{traqsr})}
765\label{subsec:TRA_qsr}
766%--------------------------------------------namqsr--------------------------------------------------------
767
768\nlst{namtra_qsr}
769%--------------------------------------------------------------------------------------------------------------
770
771Options are defined through the \ngn{namtra\_qsr} namelist variables.
772When the penetrative solar radiation option is used (\np{ln\_flxqsr}\forcode{ = .true.}),
773the solar radiation penetrates the top few tens of meters of the ocean. If it is not used
774(\np{ln\_flxqsr}\forcode{ = .false.}) all the heat flux is absorbed in the first ocean level.
775Thus, in the former case a term is added to the time evolution equation of
776temperature \autoref{eq:PE_tra_T} and the surface boundary condition is
777modified to take into account only the non-penetrative part of the surface
778heat flux:
779\begin{equation} \label{eq:PE_qsr}
780\begin{split}
781\frac{\partial T}{\partial t} &= {\ldots} + \frac{1}{\rho_o\, C_p \,e_3} \; \frac{\partial I}{\partial k}   \\
782Q_{ns} &= Q_\text{Total} - Q_{sr}
783\end{split}
784\end{equation}
785where $Q_{sr}$ is the penetrative part of the surface heat flux ($i.e.$ the shortwave radiation)
786and $I$ is the downward irradiance ($\left. I \right|_{z=\eta}=Q_{sr}$).
787The additional term in \autoref{eq:PE_qsr} is discretized as follows:
788\begin{equation} \label{eq:tra_qsr}
789\frac{1}{\rho_o\, C_p \,e_3} \; \frac{\partial I}{\partial k} \equiv \frac{1}{\rho_o\, C_p\, e_{3t}} \delta_k \left[ I_w \right]
790\end{equation}
791
792The shortwave radiation, $Q_{sr}$, consists of energy distributed across a wide spectral range.
793The ocean is strongly absorbing for wavelengths longer than 700~nm and these
794wavelengths contribute to heating the upper few tens of centimetres. The fraction of $Q_{sr}$ 
795that resides in these almost non-penetrative wavebands, $R$, is $\sim 58\%$ (specified
796through namelist parameter \np{rn\_abs}). It is assumed to penetrate the ocean
797with a decreasing exponential profile, with an e-folding depth scale, $\xi_0$,
798of a few tens of centimetres (typically $\xi_0=0.35~m$ set as \np{rn\_si0} in the \ngn{namtra\_qsr} namelist).
799For shorter wavelengths (400-700~nm), the ocean is more transparent, and solar energy
800propagates to larger depths where it contributes to
801local heating.
802The way this second part of the solar energy penetrates into the ocean depends on
803which formulation is chosen. In the simple 2-waveband light penetration scheme (\np{ln\_qsr\_2bd}\forcode{ = .true.})
804a chlorophyll-independent monochromatic formulation is chosen for the shorter wavelengths,
805leading to the following expression \citep{Paulson1977}:
806\begin{equation} \label{eq:traqsr_iradiance}
807I(z) = Q_{sr} \left[Re^{-z / \xi_0} + \left( 1-R\right) e^{-z / \xi_1} \right]
808\end{equation}
809where $\xi_1$ is the second extinction length scale associated with the shorter wavelengths. 
810It is usually chosen to be 23~m by setting the \np{rn\_si0} namelist parameter.
811The set of default values ($\xi_0$, $\xi_1$, $R$) corresponds to a Type I water in
812Jerlov's (1968) classification (oligotrophic waters).
813
814Such assumptions have been shown to provide a very crude and simplistic
815representation of observed light penetration profiles (\cite{Morel_JGR88}, see also
816\autoref{fig:traqsr_irradiance}). Light absorption in the ocean depends on
817particle concentration and is spectrally selective. \cite{Morel_JGR88} has shown
818that an accurate representation of light penetration can be provided by a 61 waveband
819formulation. Unfortunately, such a model is very computationally expensive.
820Thus, \cite{Lengaigne_al_CD07} have constructed a simplified version of this
821formulation in which visible light is split into three wavebands: blue (400-500 nm),
822green (500-600 nm) and red (600-700nm). For each wave-band, the chlorophyll-dependent
823attenuation coefficient is fitted to the coefficients computed from the full spectral model
824of \cite{Morel_JGR88} (as modified by \cite{Morel_Maritorena_JGR01}), assuming
825the same power-law relationship. As shown in \autoref{fig:traqsr_irradiance},
826this formulation, called RGB (Red-Green-Blue), reproduces quite closely
827the light penetration profiles predicted by the full spectal model, but with much greater
828computational efficiency. The 2-bands formulation does not reproduce the full model very well.
829
830The RGB formulation is used when \np{ln\_qsr\_rgb}\forcode{ = .true.}. The RGB attenuation coefficients
831($i.e.$ the inverses of the extinction length scales) are tabulated over 61 nonuniform
832chlorophyll classes ranging from 0.01 to 10 g.Chl/L (see the routine \rou{trc\_oce\_rgb} 
833in \mdl{trc\_oce} module). Four types of chlorophyll can be chosen in the RGB formulation:
834\begin{description} 
835\item[\np{nn\_chdta}\forcode{ = 0}] 
836a constant 0.05 g.Chl/L value everywhere ;
837\item[\np{nn\_chdta}\forcode{ = 1}] 
838an observed time varying chlorophyll deduced from satellite surface ocean color measurement
839spread uniformly in the vertical direction ;
840\item[\np{nn\_chdta}\forcode{ = 2}] 
841same as previous case except that a vertical profile of chlorophyl is used.
842Following \cite{Morel_Berthon_LO89}, the profile is computed from the local surface chlorophyll value ;
843\item[\np{ln\_qsr\_bio}\forcode{ = .true.}] 
844simulated time varying chlorophyll by TOP biogeochemical model.
845In this case, the RGB formulation is used to calculate both the phytoplankton
846light limitation in PISCES or LOBSTER and the oceanic heating rate.
847\end{description} 
848The trend in \autoref{eq:tra_qsr} associated with the penetration of the solar radiation
849is added to the temperature trend, and the surface heat flux is modified in routine \mdl{traqsr}.
850
851When the $z$-coordinate is preferred to the $s$-coordinate, the depth of $w-$levels does
852not significantly vary with location. The level at which the light has been totally
853absorbed ($i.e.$ it is less than the computer precision) is computed once,
854and the trend associated with the penetration of the solar radiation is only added down to that level.
855Finally, note that when the ocean is shallow ($<$ 200~m), part of the
856solar radiation can reach the ocean floor. In this case, we have
857chosen that all remaining radiation is absorbed in the last ocean
858level ($i.e.$ $I$ is masked).
859
860%>>>>>>>>>>>>>>>>>>>>>>>>>>>>
861\begin{figure}[!t]     \begin{center}
862\includegraphics[width=1.0\textwidth]{Fig_TRA_Irradiance}
863\caption{    \protect\label{fig:traqsr_irradiance}
864Penetration profile of the downward solar irradiance calculated by four models.
865Two waveband chlorophyll-independent formulation (blue), a chlorophyll-dependent
866monochromatic formulation (green), 4 waveband RGB formulation (red),
86761 waveband Morel (1988) formulation (black) for a chlorophyll concentration of
868(a) Chl=0.05 mg/m$^3$ and (b) Chl=0.5 mg/m$^3$. From \citet{Lengaigne_al_CD07}.}
869\end{center}   \end{figure}
870%>>>>>>>>>>>>>>>>>>>>>>>>>>>>
871
872% -------------------------------------------------------------------------------------------------------------
873%        Bottom Boundary Condition
874% -------------------------------------------------------------------------------------------------------------
875\subsection{Bottom boundary condition (\protect\mdl{trabbc})}
876\label{subsec:TRA_bbc}
877%--------------------------------------------nambbc--------------------------------------------------------
878
879\nlst{nambbc}
880%--------------------------------------------------------------------------------------------------------------
881%>>>>>>>>>>>>>>>>>>>>>>>>>>>>
882\begin{figure}[!t]     \begin{center}
883\includegraphics[width=1.0\textwidth]{Fig_TRA_geoth}
884\caption{   \protect\label{fig:geothermal}
885Geothermal Heat flux (in $mW.m^{-2}$) used by \cite{Emile-Geay_Madec_OS09}.
886It is inferred from the age of the sea floor and the formulae of \citet{Stein_Stein_Nat92}.}
887\end{center}   \end{figure}
888%>>>>>>>>>>>>>>>>>>>>>>>>>>>>
889
890Usually it is assumed that there is no exchange of heat or salt through
891the ocean bottom, $i.e.$ a no flux boundary condition is applied on active
892tracers at the bottom. This is the default option in \NEMO, and it is
893implemented using the masking technique. However, there is a
894non-zero heat flux across the seafloor that is associated with solid
895earth cooling. This flux is weak compared to surface fluxes (a mean
896global value of $\sim0.1\;W/m^2$ \citep{Stein_Stein_Nat92}), but it warms
897systematically the ocean and acts on the densest water masses.
898Taking this flux into account in a global ocean model increases
899the deepest overturning cell ($i.e.$ the one associated with the Antarctic
900Bottom Water) by a few Sverdrups  \citep{Emile-Geay_Madec_OS09}.
901
902Options are defined through the  \ngn{namtra\_bbc} namelist variables.
903The presence of geothermal heating is controlled by setting the namelist
904parameter  \np{ln\_trabbc} to true. Then, when \np{nn\_geoflx} is set to 1,
905a constant geothermal heating is introduced whose value is given by the
906\np{nn\_geoflx\_cst}, which is also a namelist parameter.
907When  \np{nn\_geoflx} is set to 2, a spatially varying geothermal heat flux is
908introduced which is provided in the \ifile{geothermal\_heating} NetCDF file
909(\autoref{fig:geothermal}) \citep{Emile-Geay_Madec_OS09}.
910
911% ================================================================
912% Bottom Boundary Layer
913% ================================================================
914\section{Bottom boundary layer (\protect\mdl{trabbl} - \protect\key{trabbl})}
915\label{sec:TRA_bbl}
916%--------------------------------------------nambbl---------------------------------------------------------
917
918\nlst{nambbl}
919%--------------------------------------------------------------------------------------------------------------
920
921Options are defined through the  \ngn{nambbl} namelist variables.
922In a $z$-coordinate configuration, the bottom topography is represented by a
923series of discrete steps. This is not adequate to represent gravity driven
924downslope flows. Such flows arise either downstream of sills such as the Strait of
925Gibraltar or Denmark Strait, where dense water formed in marginal seas flows
926into a basin filled with less dense water, or along the continental slope when dense
927water masses are formed on a continental shelf. The amount of entrainment
928that occurs in these gravity plumes is critical in determining the density
929and volume flux of the densest waters of the ocean, such as Antarctic Bottom Water,
930or North Atlantic Deep Water. $z$-coordinate models tend to overestimate the
931entrainment, because the gravity flow is mixed vertically by convection
932as it goes ''downstairs'' following the step topography, sometimes over a thickness
933much larger than the thickness of the observed gravity plume. A similar problem
934occurs in the $s$-coordinate when the thickness of the bottom level varies rapidly
935downstream of a sill \citep{Willebrand_al_PO01}, and the thickness
936of the plume is not resolved.
937
938The idea of the bottom boundary layer (BBL) parameterisation, first introduced by
939\citet{Beckmann_Doscher1997}, is to allow a direct communication between
940two adjacent bottom cells at different levels, whenever the densest water is
941located above the less dense water. The communication can be by a diffusive flux
942(diffusive BBL), an advective flux (advective BBL), or both. In the current
943implementation of the BBL, only the tracers are modified, not the velocities.
944Furthermore, it only connects ocean bottom cells, and therefore does not include
945all the improvements introduced by \citet{Campin_Goosse_Tel99}.
946
947% -------------------------------------------------------------------------------------------------------------
948%        Diffusive BBL
949% -------------------------------------------------------------------------------------------------------------
950\subsection{Diffusive bottom boundary layer (\protect\np{nn\_bbl\_ldf}\forcode{ = 1})}
951\label{subsec:TRA_bbl_diff}
952
953When applying sigma-diffusion (\key{trabbl} defined and \np{nn\_bbl\_ldf} set to 1),
954the diffusive flux between two adjacent cells at the ocean floor is given by
955\begin{equation} \label{eq:tra_bbl_diff}
956{\rm {\bf F}}_\sigma=A_l^\sigma \; \nabla_\sigma T
957\end{equation} 
958with $\nabla_\sigma$ the lateral gradient operator taken between bottom cells,
959and  $A_l^\sigma$ the lateral diffusivity in the BBL. Following \citet{Beckmann_Doscher1997},
960the latter is prescribed with a spatial dependence, $i.e.$ in the conditional form
961\begin{equation} \label{eq:tra_bbl_coef}
962A_l^\sigma (i,j,t)=\left\{ {\begin{array}{l}
963 A_{bbl}  \quad \quad   \mbox{if}  \quad   \nabla_\sigma \rho  \cdot  \nabla H<0 \\ 
964 \\
965 0\quad \quad \;\,\mbox{otherwise} \\ 
966 \end{array}} \right.
967\end{equation} 
968where $A_{bbl}$ is the BBL diffusivity coefficient, given by the namelist
969parameter \np{rn\_ahtbbl} and usually set to a value much larger
970than the one used for lateral mixing in the open ocean. The constraint in \autoref{eq:tra_bbl_coef} 
971implies that sigma-like diffusion only occurs when the density above the sea floor, at the top of
972the slope, is larger than in the deeper ocean (see green arrow in \autoref{fig:bbl}).
973In practice, this constraint is applied separately in the two horizontal directions,
974and the density gradient in \autoref{eq:tra_bbl_coef} is evaluated with the log gradient formulation:
975\begin{equation} \label{eq:tra_bbl_Drho}
976   \nabla_\sigma \rho / \rho = \alpha \,\nabla_\sigma T + \beta   \,\nabla_\sigma S
977\end{equation} 
978where $\rho$, $\alpha$ and $\beta$ are functions of $\overline{T}^\sigma$,
979$\overline{S}^\sigma$ and $\overline{H}^\sigma$, the along bottom mean temperature,
980salinity and depth, respectively.
981
982% -------------------------------------------------------------------------------------------------------------
983%        Advective BBL
984% -------------------------------------------------------------------------------------------------------------
985\subsection{Advective bottom boundary layer  (\protect\np{nn\_bbl\_adv}\forcode{ = 1..2})}
986\label{subsec:TRA_bbl_adv}
987
988\sgacomment{"downsloping flow" has been replaced by "downslope flow" in the following
989if this is not what is meant then "downwards sloping flow" is also a possibility"}
990
991%>>>>>>>>>>>>>>>>>>>>>>>>>>>>
992\begin{figure}[!t]   \begin{center}
993\includegraphics[width=0.7\textwidth]{Fig_BBL_adv}
994\caption{   \protect\label{fig:bbl} 
995Advective/diffusive Bottom Boundary Layer. The BBL parameterisation is
996activated when $\rho^i_{kup}$ is larger than $\rho^{i+1}_{kdnw}$.
997Red arrows indicate the additional overturning circulation due to the advective BBL.
998The transport of the downslope flow is defined either as the transport of the bottom
999ocean cell (black arrow), or as a function of the along slope density gradient.
1000The green arrow indicates the diffusive BBL flux directly connecting $kup$ and $kdwn$
1001ocean bottom cells.
1002connection}
1003\end{center}   \end{figure}
1004%>>>>>>>>>>>>>>>>>>>>>>>>>>>>
1005
1006
1007%!!      nn_bbl_adv = 1   use of the ocean velocity as bbl velocity
1008%!!      nn_bbl_adv = 2   follow Campin and Goosse (1999) implentation
1009%!!        i.e. transport proportional to the along-slope density gradient
1010
1011%%%gmcomment   :  this section has to be really written
1012
1013When applying an advective BBL (\np{nn\_bbl\_adv}\forcode{ = 1..2}), an overturning
1014circulation is added which connects two adjacent bottom grid-points only if dense
1015water overlies less dense water on the slope. The density difference causes dense
1016water to move down the slope.
1017
1018\np{nn\_bbl\_adv}\forcode{ = 1} : the downslope velocity is chosen to be the Eulerian
1019ocean velocity just above the topographic step (see black arrow in \autoref{fig:bbl})
1020\citep{Beckmann_Doscher1997}. It is a \textit{conditional advection}, that is, advection
1021is allowed only if dense water overlies less dense water on the slope ($i.e.$ 
1022$\nabla_\sigma \rho  \cdot  \nabla H<0$) and if the velocity is directed towards
1023greater depth ($i.e.$ $\vect{U}  \cdot  \nabla H>0$).
1024
1025\np{nn\_bbl\_adv}\forcode{ = 2} : the downslope velocity is chosen to be proportional to $\Delta \rho$,
1026the density difference between the higher cell and lower cell densities \citep{Campin_Goosse_Tel99}.
1027The advection is allowed only  if dense water overlies less dense water on the slope ($i.e.$ 
1028$\nabla_\sigma \rho  \cdot  \nabla H<0$). For example, the resulting transport of the
1029downslope flow, here in the $i$-direction (\autoref{fig:bbl}), is simply given by the
1030following expression:
1031\begin{equation} \label{eq:bbl_Utr}
1032 u^{tr}_{bbl} = \gamma \, g \frac{\Delta \rho}{\rho_o}  e_{1u} \; min \left( {e_{3u}}_{kup},{e_{3u}}_{kdwn} \right)
1033\end{equation}
1034where $\gamma$, expressed in seconds, is the coefficient of proportionality
1035provided as \np{rn\_gambbl}, a namelist parameter, and \textit{kup} and \textit{kdwn} 
1036are the vertical index of the higher and lower cells, respectively.
1037The parameter $\gamma$ should take a different value for each bathymetric
1038step, but for simplicity, and because no direct estimation of this parameter is
1039available, a uniform value has been assumed. The possible values for $\gamma$ 
1040range between 1 and $10~s$ \citep{Campin_Goosse_Tel99}
1041
1042Scalar properties are advected by this additional transport $( u^{tr}_{bbl}, v^{tr}_{bbl} )$ 
1043using the upwind scheme. Such a diffusive advective scheme has been chosen
1044to mimic the entrainment between the downslope plume and the surrounding
1045water at intermediate depths. The entrainment is replaced by the vertical mixing
1046implicit in the advection scheme. Let us consider as an example the
1047case displayed in \autoref{fig:bbl} where the density at level $(i,kup)$ is
1048larger than the one at level $(i,kdwn)$. The advective BBL scheme
1049modifies the tracer time tendency of the ocean cells near the
1050topographic step by the downslope flow \autoref{eq:bbl_dw},
1051the horizontal \autoref{eq:bbl_hor} and the upward \autoref{eq:bbl_up} 
1052return flows as follows:
1053\begin{align} 
1054\partial_t T^{do}_{kdw} &\equiv \partial_t T^{do}_{kdw}
1055                                     +  \frac{u^{tr}_{bbl}}{{b_t}^{do}_{kdw}}  \left( T^{sh}_{kup} - T^{do}_{kdw} \right\label{eq:bbl_dw} \\
1056%
1057\partial_t T^{sh}_{kup} &\equiv \partial_t T^{sh}_{kup} 
1058               + \frac{u^{tr}_{bbl}}{{b_t}^{sh}_{kup}}   \left( T^{do}_{kup} - T^{sh}_{kup} \right)   \label{eq:bbl_hor} \\
1059%
1060\intertext{and for $k =kdw-1,\;..., \; kup$ :} 
1061%
1062\partial_t T^{do}_{k} &\equiv \partial_t S^{do}_{k}
1063               + \frac{u^{tr}_{bbl}}{{b_t}^{do}_{k}}   \left( T^{do}_{k+1} - T^{sh}_{k} \right)   \label{eq:bbl_up}
1064\end{align}
1065where $b_t$ is the $T$-cell volume.
1066
1067Note that the BBL transport, $( u^{tr}_{bbl}, v^{tr}_{bbl} )$, is available in
1068the model outputs. It has to be used to compute the effective velocity
1069as well as the effective overturning circulation.
1070
1071% ================================================================
1072% Tracer damping
1073% ================================================================
1074\section{Tracer damping (\protect\mdl{tradmp})}
1075\label{sec:TRA_dmp}
1076%--------------------------------------------namtra_dmp-------------------------------------------------
1077
1078\nlst{namtra_dmp}
1079%--------------------------------------------------------------------------------------------------------------
1080
1081In some applications it can be useful to add a Newtonian damping term
1082into the temperature and salinity equations:
1083\begin{equation} \label{eq:tra_dmp}
1084\begin{split}
1085 \frac{\partial T}{\partial t}=\;\cdots \;-\gamma \,\left( {T-T_o } \right\\
1086 \frac{\partial S}{\partial t}=\;\cdots \;-\gamma \,\left( {S-S_o } \right)
1087 \end{split}
1088 \end{equation} 
1089where $\gamma$ is the inverse of a time scale, and $T_o$ and $S_o$ 
1090are given temperature and salinity fields (usually a climatology).
1091Options are defined through the  \ngn{namtra\_dmp} namelist variables.
1092The restoring term is added when the namelist parameter \np{ln\_tradmp} is set to true.
1093It also requires that both \np{ln\_tsd\_init} and \np{ln\_tsd\_tradmp} are set to true
1094in \textit{namtsd} namelist as well as \np{sn\_tem} and \np{sn\_sal} structures are
1095correctly set  ($i.e.$ that $T_o$ and $S_o$ are provided in input files and read
1096using \mdl{fldread}, see \autoref{subsec:SBC_fldread}).
1097The restoring coefficient $\gamma$ is a three-dimensional array read in during the \rou{tra\_dmp\_init} routine. The file name is specified by the namelist variable \np{cn\_resto}. The DMP\_TOOLS tool is provided to allow users to generate the netcdf file.
1098
1099The two main cases in which \autoref{eq:tra_dmp} is used are \textit{(a)} 
1100the specification of the boundary conditions along artificial walls of a
1101limited domain basin and \textit{(b)} the computation of the velocity
1102field associated with a given $T$-$S$ field (for example to build the
1103initial state of a prognostic simulation, or to use the resulting velocity
1104field for a passive tracer study). The first case applies to regional
1105models that have artificial walls instead of open boundaries.
1106In the vicinity of these walls, $\gamma$ takes large values (equivalent to
1107a time scale of a few days) whereas it is zero in the interior of the
1108model domain. The second case corresponds to the use of the robust
1109diagnostic method \citep{Sarmiento1982}. It allows us to find the velocity
1110field consistent with the model dynamics whilst having a $T$, $S$ field
1111close to a given climatological field ($T_o$, $S_o$).
1112
1113The robust diagnostic method is very efficient in preventing temperature
1114drift in intermediate waters but it produces artificial sources of heat and salt
1115within the ocean. It also has undesirable effects on the ocean convection.
1116It tends to prevent deep convection and subsequent deep-water formation,
1117by stabilising the water column too much.
1118
1119The namelist parameter \np{nn\_zdmp} sets whether the damping should be applied in the whole water column or only below the mixed layer (defined either on a density or $S_o$ criterion). It is common to set the damping to zero in the mixed layer as the adjustment time scale is short here \citep{Madec_al_JPO96}.
1120
1121\subsection{Generating \ifile{resto} using DMP\_TOOLS}
1122
1123DMP\_TOOLS can be used to generate a netcdf file containing the restoration coefficient $\gamma$.
1124Note that in order to maintain bit comparison with previous NEMO versions DMP\_TOOLS must be compiled
1125and run on the same machine as the NEMO model. A \ifile{mesh\_mask} file for the model configuration is required as an input.
1126This can be generated by carrying out a short model run with the namelist parameter \np{nn\_msh} set to 1.
1127The namelist parameter \np{ln\_tradmp} will also need to be set to .false. for this to work.
1128The \nl{nam\_dmp\_create} namelist in the DMP\_TOOLS directory is used to specify options for the restoration coefficient.
1129
1130%--------------------------------------------nam_dmp_create-------------------------------------------------
1131%\namtools{namelist_dmp}
1132%-------------------------------------------------------------------------------------------------------
1133
1134\np{cp\_cfg}, \np{cp\_cpz}, \np{jp\_cfg} and \np{jperio} specify the model configuration being used and should be the same as specified in \nl{namcfg}. The variable \nl{lzoom} is used to specify that the damping is being used as in case \textit{a} above to provide boundary conditions to a zoom configuration. In the case of the arctic or antarctic zoom configurations this includes some specific treatment. Otherwise damping is applied to the 6 grid points along the ocean boundaries. The open boundaries are specified by the variables \np{lzoom\_n}, \np{lzoom\_e}, \np{lzoom\_s}, \np{lzoom\_w} in the \nl{nam\_zoom\_dmp} name list.
1135
1136The remaining switch namelist variables determine the spatial variation of the restoration coefficient in non-zoom configurations.
1137\np{ln\_full\_field} specifies that newtonian damping should be applied to the whole model domain.
1138\np{ln\_med\_red\_seas} specifies grid specific restoration coefficients in the Mediterranean Sea
1139for the ORCA4, ORCA2 and ORCA05 configurations.
1140If \np{ln\_old\_31\_lev\_code} is set then the depth variation of the coeffients will be specified as
1141a function of the model number. This option is included to allow backwards compatability of the ORCA2 reference
1142configurations with previous model versions.
1143\np{ln\_coast} specifies that the restoration coefficient should be reduced near to coastlines.
1144This option only has an effect if \np{ln\_full\_field} is true.
1145\np{ln\_zero\_top\_layer} specifies that the restoration coefficient should be zero in the surface layer.
1146Finally \np{ln\_custom} specifies that the custom module will be called.
1147This module is contained in the file \mdl{custom} and can be edited by users. For example damping could be applied in a specific region.
1148
1149The restoration coefficient can be set to zero in equatorial regions by specifying a positive value of \np{nn\_hdmp}.
1150Equatorward of this latitude the restoration coefficient will be zero with a smooth transition to
1151the full values of a 10\deg latitud band.
1152This is often used because of the short adjustment time scale in the equatorial region
1153\citep{Reverdin1991, Fujio1991, Marti_PhD92}. The time scale associated with the damping depends on the depth as a
1154hyperbolic tangent, with \np{rn\_surf} as surface value, \np{rn\_bot} as bottom value and a transition depth of \np{rn\_dep}
1155
1156% ================================================================
1157% Tracer time evolution
1158% ================================================================
1159\section{Tracer time evolution (\protect\mdl{tranxt})}
1160\label{sec:TRA_nxt}
1161%--------------------------------------------namdom-----------------------------------------------------
1162
1163\nlst{namdom}
1164%--------------------------------------------------------------------------------------------------------------
1165
1166Options are defined through the  \ngn{namdom} namelist variables.
1167The general framework for tracer time stepping is a modified leap-frog scheme
1168\citep{Leclair_Madec_OM09}, $i.e.$ a three level centred time scheme associated
1169with a Asselin time filter (cf. \autoref{sec:STP_mLF}):
1170\begin{equation} \label{eq:tra_nxt}
1171\begin{aligned}
1172(e_{3t}T)^{t+\rdt} &= (e_{3t}T)_f^{t-\rdt} &+ 2 \, \rdt  \,e_{3t}^t\ \text{RHS}^t & \\
1173\\
1174(e_{3t}T)_f^\;\ \quad &= (e_{3t}T)^t \;\quad 
1175                                    &+\gamma \,\left[ {(e_{3t}T)_f^{t-\rdt} -2(e_{3t}T)^t+(e_{3t}T)^{t+\rdt}} \right] &  \\
1176                                 & &- \gamma\,\rdt \, \left[ Q^{t+\rdt/2} -  Q^{t-\rdt/2} \right]  &                     
1177\end{aligned}
1178\end{equation} 
1179where RHS is the right hand side of the temperature equation,
1180the subscript $f$ denotes filtered values, $\gamma$ is the Asselin coefficient,
1181and $S$ is the total forcing applied on $T$ ($i.e.$ fluxes plus content in mass exchanges).
1182$\gamma$ is initialized as \np{rn\_atfp} (\textbf{namelist} parameter).
1183Its default value is \np{rn\_atfp}\forcode{ = 10.e-3}. Note that the forcing correction term in the filter
1184is not applied in linear free surface (\jp{lk\_vvl}\forcode{ = .false.}) (see \autoref{subsec:TRA_sbc}.
1185Not also that in constant volume case, the time stepping is performed on $T$,
1186not on its content, $e_{3t}T$.
1187
1188When the vertical mixing is solved implicitly, the update of the \textit{next} tracer
1189fields is done in module \mdl{trazdf}. In this case only the swapping of arrays
1190and the Asselin filtering is done in the \mdl{tranxt} module.
1191
1192In order to prepare for the computation of the \textit{next} time step,
1193a swap of tracer arrays is performed: $T^{t-\rdt} = T^t$ and $T^t = T_f$.
1194
1195% ================================================================
1196% Equation of State (eosbn2)
1197% ================================================================
1198\section{Equation of state (\protect\mdl{eosbn2}) }
1199\label{sec:TRA_eosbn2}
1200%--------------------------------------------nameos-----------------------------------------------------
1201
1202\nlst{nameos}
1203%--------------------------------------------------------------------------------------------------------------
1204
1205% -------------------------------------------------------------------------------------------------------------
1206%        Equation of State
1207% -------------------------------------------------------------------------------------------------------------
1208\subsection{Equation of seawater (\protect\np{nn\_eos}\forcode{ = -1..1})}
1209\label{subsec:TRA_eos}
1210
1211The Equation Of Seawater (EOS) is an empirical nonlinear thermodynamic relationship
1212linking seawater density, $\rho$, to a number of state variables,
1213most typically temperature, salinity and pressure.
1214Because density gradients control the pressure gradient force through the hydrostatic balance,
1215the equation of state provides a fundamental bridge between the distribution of active tracers
1216and the fluid dynamics. Nonlinearities of the EOS are of major importance, in particular
1217influencing the circulation through determination of the static stability below the mixed layer,
1218thus controlling rates of exchange between the atmosphere  and the ocean interior \citep{Roquet_JPO2015}.
1219Therefore an accurate EOS based on either the 1980 equation of state (EOS-80, \cite{UNESCO1983})
1220or TEOS-10 \citep{TEOS10} standards should be used anytime a simulation of the real
1221ocean circulation is attempted \citep{Roquet_JPO2015}.
1222The use of TEOS-10 is highly recommended because
1223\textit{(i)} it is the new official EOS,
1224\textit{(ii)} it is more accurate, being based on an updated database of laboratory measurements, and
1225\textit{(iii)} it uses Conservative Temperature and Absolute Salinity (instead of potential temperature
1226and practical salinity for EOS-980, both variables being more suitable for use as model variables
1227\citep{TEOS10, Graham_McDougall_JPO13}.
1228EOS-80 is an obsolescent feature of the NEMO system, kept only for backward compatibility.
1229For process studies, it is often convenient to use an approximation of the EOS. To that purposed,
1230a simplified EOS (S-EOS) inspired by \citet{Vallis06} is also available.
1231
1232In the computer code, a density anomaly, $d_a= \rho / \rho_o - 1$,
1233is computed, with $\rho_o$ a reference density. Called \textit{rau0} 
1234in the code, $\rho_o$ is set in \mdl{phycst} to a value of $1,026~Kg/m^3$.
1235This is a sensible choice for the reference density used in a Boussinesq ocean
1236climate model, as, with the exception of only a small percentage of the ocean,
1237density in the World Ocean varies by no more than 2$\%$ from that value \citep{Gill1982}.
1238
1239Options are defined through the  \ngn{nameos} namelist variables, and in particular \np{nn\_eos} 
1240which controls the EOS used (\forcode{= -1} for TEOS10 ; \forcode{= 0} for EOS-80 ; \forcode{= 1} for S-EOS).
1241\begin{description}
1242
1243\item[\np{nn\_eos}\forcode{ = -1}] the polyTEOS10-bsq equation of seawater \citep{Roquet_OM2015} is used. 
1244The accuracy of this approximation is comparable to the TEOS-10 rational function approximation,
1245but it is optimized for a boussinesq fluid and the polynomial expressions have simpler
1246and more computationally efficient expressions for their derived quantities
1247which make them more adapted for use in ocean models.
1248Note that a slightly higher precision polynomial form is now used replacement of the TEOS-10
1249rational function approximation for hydrographic data analysis  \citep{TEOS10}.
1250A key point is that conservative state variables are used:
1251Absolute Salinity (unit: g/kg, notation: $S_A$) and Conservative Temperature (unit: \degC, notation: $\Theta$).
1252The pressure in decibars is approximated by the depth in meters.
1253With TEOS10, the specific heat capacity of sea water, $C_p$, is a constant. It is set to
1254$C_p=3991.86795711963~J\,Kg^{-1}\,^{\circ}K^{-1}$, according to \citet{TEOS10}.
1255
1256Choosing polyTEOS10-bsq implies that the state variables used by the model are
1257$\Theta$ and $S_A$. In particular, the initial state deined by the user have to be given as
1258\textit{Conservative} Temperature and \textit{Absolute} Salinity.
1259In addition, setting \np{ln\_useCT} to \forcode{.true.} convert the Conservative SST to potential SST
1260prior to either computing the air-sea and ice-sea fluxes (forced mode)
1261or sending the SST field to the atmosphere (coupled mode).
1262
1263\item[\np{nn\_eos}\forcode{ = 0}] the polyEOS80-bsq equation of seawater is used.
1264It takes the same polynomial form as the polyTEOS10, but the coefficients have been optimized
1265to accurately fit EOS80 (Roquet, personal comm.). The state variables used in both the EOS80
1266and the ocean model are:
1267the Practical Salinity ((unit: psu, notation: $S_p$)) and Potential Temperature (unit: $^{\circ}C$, notation: $\theta$).
1268The pressure in decibars is approximated by the depth in meters. 
1269With thsi EOS, the specific heat capacity of sea water, $C_p$, is a function of temperature,
1270salinity and pressure \citep{UNESCO1983}. Nevertheless, a severe assumption is made in order to
1271have a heat content ($C_p T_p$) which is conserved by the model: $C_p$ is set to a constant
1272value, the TEOS10 value.
1273 
1274\item[\np{nn\_eos}\forcode{ = 1}] a simplified EOS (S-EOS) inspired by \citet{Vallis06} is chosen,
1275the coefficients of which has been optimized to fit the behavior of TEOS10 (Roquet, personal comm.)
1276(see also \citet{Roquet_JPO2015}). It provides a simplistic linear representation of both
1277cabbeling and thermobaricity effects which is enough for a proper treatment of the EOS
1278in theoretical studies \citep{Roquet_JPO2015}.
1279With such an equation of state there is no longer a distinction between
1280\textit{conservative} and \textit{potential} temperature, as well as between \textit{absolute} 
1281and \textit{practical} salinity.
1282S-EOS takes the following expression:
1283\begin{equation} \label{eq:tra_S-EOS}
1284\begin{split}
1285  d_a(T,S,z)  =  ( & - a_0 \; ( 1 + 0.5 \; \lambda_1 \; T_a + \mu_1 \; z ) * T_\\
1286                                & + b_0 \; ( 1 - 0.5 \; \lambda_2 \; S_a - \mu_2 \; z ) * S_\\
1287                                & - \nu \; T_a \; S_a \;  ) \; / \; \rho_o                     \\
1288  with \ \  T_a = T-10  \; ;  & \;  S_a = S-35  \; ;\;  \rho_o = 1026~Kg/m^3
1289\end{split}
1290\end{equation} 
1291where the computer name of the coefficients as well as their standard value are given in \autoref{tab:SEOS}.
1292In fact, when choosing S-EOS, various approximation of EOS can be specified simply by changing
1293the associated coefficients.
1294Setting to zero the two thermobaric coefficients ($\mu_1$, $\mu_2$) remove thermobaric effect from S-EOS.
1295setting to zero the three cabbeling coefficients ($\lambda_1$, $\lambda_2$, $\nu$) remove cabbeling effect from S-EOS.
1296Keeping non-zero value to $a_0$ and $b_0$ provide a linear EOS function of T and S.
1297
1298\end{description}
1299
1300
1301%>>>>>>>>>>>>>>>>>>>>>>>>>>>>
1302\begin{table}[!tb]
1303\begin{center} \begin{tabular}{|p{26pt}|p{72pt}|p{56pt}|p{136pt}|}
1304\hline
1305coeff.   & computer name   & S-EOS     &  description                      \\ \hline
1306$a_0$       & \np{rn\_a0}     & 1.6550 $10^{-1}$ &  linear thermal expansion coeff.    \\ \hline
1307$b_0$       & \np{rn\_b0}     & 7.6554 $10^{-1}$ &  linear haline  expansion coeff.    \\ \hline
1308$\lambda_1$ & \np{rn\_lambda1}& 5.9520 $10^{-2}$ &  cabbeling coeff. in $T^2$          \\ \hline
1309$\lambda_2$ & \np{rn\_lambda2}& 5.4914 $10^{-4}$ &  cabbeling coeff. in $S^2$       \\ \hline
1310$\nu$       & \np{rn\_nu}     & 2.4341 $10^{-3}$ &  cabbeling coeff. in $T \, S$       \\ \hline
1311$\mu_1$     & \np{rn\_mu1}    & 1.4970 $10^{-4}$ &  thermobaric coeff. in T         \\ \hline
1312$\mu_2$     & \np{rn\_mu2}    & 1.1090 $10^{-5}$ &  thermobaric coeff. in S            \\ \hline
1313\end{tabular}
1314\caption{ \protect\label{tab:SEOS}
1315Standard value of S-EOS coefficients. }
1316\end{center}
1317\end{table}
1318%>>>>>>>>>>>>>>>>>>>>>>>>>>>>
1319
1320
1321% -------------------------------------------------------------------------------------------------------------
1322%        Brunt-V\"{a}is\"{a}l\"{a} Frequency
1323% -------------------------------------------------------------------------------------------------------------
1324\subsection{Brunt-V\"{a}is\"{a}l\"{a} frequency (\protect\np{nn\_eos}\forcode{ = 0..2})}
1325\label{subsec:TRA_bn2}
1326
1327An accurate computation of the ocean stability (i.e. of $N$, the brunt-V\"{a}is\"{a}l\"{a}
1328 frequency) is of paramount importance as determine the ocean stratification and
1329 is used in several ocean parameterisations (namely TKE, GLS, Richardson number dependent
1330 vertical diffusion, enhanced vertical diffusion, non-penetrative convection, tidal mixing
1331 parameterisation, iso-neutral diffusion). In particular, $N^2$ has to be computed at the local pressure
1332 (pressure in decibar being approximated by the depth in meters). The expression for $N^2$ 
1333 is given by:
1334\begin{equation} \label{eq:tra_bn2}
1335N^2 = \frac{g}{e_{3w}} \left(   \beta \;\delta_{k+1/2}[S] - \alpha \;\delta_{k+1/2}[T]   \right)
1336\end{equation} 
1337where $(T,S) = (\Theta, S_A)$ for TEOS10, $= (\theta, S_p)$ for TEOS-80, or $=(T,S)$ for S-EOS,
1338and, $\alpha$ and $\beta$ are the thermal and haline expansion coefficients.
1339The coefficients are a polynomial function of temperature, salinity and depth which expression
1340depends on the chosen EOS. They are computed through \textit{eos\_rab}, a \textsc{Fortran} 
1341function that can be found in \mdl{eosbn2}.
1342
1343% -------------------------------------------------------------------------------------------------------------
1344%        Freezing Point of Seawater
1345% -------------------------------------------------------------------------------------------------------------
1346\subsection{Freezing point of seawater}
1347\label{subsec:TRA_fzp}
1348
1349The freezing point of seawater is a function of salinity and pressure \citep{UNESCO1983}:
1350\begin{equation} \label{eq:tra_eos_fzp}
1351   \begin{split}
1352T_f (S,p) = \left( -0.0575 + 1.710523 \;10^{-3} \, \sqrt{S} 
1353                       -  2.154996 \;10^{-4} \,\right) \ S    \\
1354               - 7.53\,10^{-3} \ \ p
1355   \end{split}
1356\end{equation}
1357
1358\autoref{eq:tra_eos_fzp} is only used to compute the potential freezing point of
1359sea water ($i.e.$ referenced to the surface $p=0$), thus the pressure dependent
1360terms in \autoref{eq:tra_eos_fzp} (last term) have been dropped. The freezing
1361point is computed through \textit{eos\_fzp}, a \textsc{Fortran} function that can be found
1362in \mdl{eosbn2}
1363
1364
1365% -------------------------------------------------------------------------------------------------------------
1366%        Potential Energy     
1367% -------------------------------------------------------------------------------------------------------------
1368%\subsection{Potential Energy anomalies}
1369%\label{subsec:TRA_bn2}
1370
1371%    =====>>>>> TO BE written
1372%
1373
1374
1375% ================================================================
1376% Horizontal Derivative in zps-coordinate
1377% ================================================================
1378\section{Horizontal derivative in \textit{zps}-coordinate (\protect\mdl{zpshde})}
1379\label{sec:TRA_zpshde}
1380
1381\gmcomment{STEVEN: to be consistent with earlier discussion of differencing and averaging operators,
1382                   I've changed "derivative" to "difference" and "mean" to "average"}
1383
1384With partial cells (\np{ln\_zps}\forcode{ = .true.}) at bottom and top (\np{ln\_isfcav}\forcode{ = .true.}), in general,
1385tracers in horizontally adjacent cells live at different depths.
1386Horizontal gradients of tracers are needed for horizontal diffusion (\mdl{traldf} module)
1387and the hydrostatic pressure gradient calculations (\mdl{dynhpg} module).
1388The partial cell properties at the top (\np{ln\_isfcav}\forcode{ = .true.}) are computed in the same way as for the bottom.
1389So, only the bottom interpolation is explained below.
1390
1391Before taking horizontal gradients between the tracers next to the bottom, a linear
1392interpolation in the vertical is used to approximate the deeper tracer as if it actually
1393lived at the depth of the shallower tracer point (\autoref{fig:Partial_step_scheme}).
1394For example, for temperature in the $i$-direction the needed interpolated
1395temperature, $\widetilde{T}$, is:
1396
1397%>>>>>>>>>>>>>>>>>>>>>>>>>>>>
1398\begin{figure}[!p]    \begin{center}
1399\includegraphics[width=0.9\textwidth]{Partial_step_scheme}
1400\caption{   \protect\label{fig:Partial_step_scheme} 
1401Discretisation of the horizontal difference and average of tracers in the $z$-partial
1402step coordinate (\protect\np{ln\_zps}\forcode{ = .true.}) in the case $( e3w_k^{i+1} - e3w_k^i  )>0$.
1403A linear interpolation is used to estimate $\widetilde{T}_k^{i+1}$, the tracer value
1404at the depth of the shallower tracer point of the two adjacent bottom $T$-points.
1405The horizontal difference is then given by: $\delta _{i+1/2} T_k=  \widetilde{T}_k^{\,i+1} -T_k^{\,i}$ 
1406and the average by: $\overline{T}_k^{\,i+1/2}= ( \widetilde{T}_k^{\,i+1/2} - T_k^{\,i} ) / 2$}
1407\end{center}   \end{figure}
1408%>>>>>>>>>>>>>>>>>>>>>>>>>>>>
1409\begin{equation*}
1410\widetilde{T}= \left\{  \begin{aligned} 
1411&T^{\,i+1}      -\frac{ \left( e_{3w}^{i+1} -e_{3w}^i \right)}{ e_{3w}^{i+1} }\;\delta _k T^{i+1} 
1412                        && \quad\text{if  $\ e_{3w}^{i+1} \geq e_{3w}^i$   }  \\
1413                              \\
1414&T^{\,i} \ \ \ \,+\frac{ \left( e_{3w}^{i+1} -e_{3w}^i \right) }{e_{3w}^i       }\;\delta _k T^{i+1}
1415                        && \quad\text{if  $\ e_{3w}^{i+1}    <   e_{3w}^i$   } 
1416            \end{aligned}   \right.
1417\end{equation*}
1418and the resulting forms for the horizontal difference and the horizontal average
1419value of $T$ at a $U$-point are:
1420\begin{equation} \label{eq:zps_hde}
1421\begin{aligned}
1422 \delta _{i+1/2} T=  \begin{cases}
1423\ \ \ \widetilde {T}\quad\ -T^i     & \ \ \quad\quad\text{if  $\ e_{3w}^{i+1} \geq e_{3w}^i$ } \\
1424                              \\
1425\ \ \ T^{\,i+1}-\widetilde{T}    & \ \ \quad\quad\text{if  $\ e_{3w}^{i+1}    <   e_{3w}^i$   } 
1426                  \end{cases}     \\
1427\\
1428\overline {T}^{\,i+1/2} \ =   \begin{cases}
1429( \widetilde {T}\ \ \;\,-T^{\,i})    / 2  & \;\ \ \quad\text{if  $\ e_{3w}^{i+1} \geq e_{3w}^i$ } \\
1430                              \\
1431( T^{\,i+1}-\widetilde{T} ) / 2     & \;\ \ \quad\text{if  $\ e_{3w}^{i+1}    <   e_{3w}^i$   } 
1432            \end{cases}
1433\end{aligned}
1434\end{equation}
1435
1436The computation of horizontal derivative of tracers as well as of density is
1437performed once for all at each time step in \mdl{zpshde} module and stored
1438in shared arrays to be used when needed. It has to be emphasized that the
1439procedure used to compute the interpolated density, $\widetilde{\rho}$, is not
1440the same as that used for $T$ and $S$. Instead of forming a linear approximation
1441of density, we compute $\widetilde{\rho }$ from the interpolated values of $T$ 
1442and $S$, and the pressure at a $u$-point (in the equation of state pressure is
1443approximated by depth, see \autoref{subsec:TRA_eos} ) :
1444\begin{equation} \label{eq:zps_hde_rho}
1445\widetilde{\rho } = \rho ( {\widetilde{T},\widetilde {S},z_u })
1446\quad \text{where }\  z_u = \min \left( {z_T^{i+1} ,z_T^i } \right)
1447\end{equation} 
1448
1449This is a much better approximation as the variation of $\rho$ with depth (and
1450thus pressure) is highly non-linear with a true equation of state and thus is badly
1451approximated with a linear interpolation. This approximation is used to compute
1452both the horizontal pressure gradient (\autoref{sec:DYN_hpg}) and the slopes of neutral
1453surfaces (\autoref{sec:LDF_slp})
1454
1455Note that in almost all the advection schemes presented in this Chapter, both
1456averaging and differencing operators appear. Yet \autoref{eq:zps_hde} has not
1457been used in these schemes: in contrast to diffusion and pressure gradient
1458computations, no correction for partial steps is applied for advection. The main
1459motivation is to preserve the domain averaged mean variance of the advected
1460field when using the $2^{nd}$ order centred scheme. Sensitivity of the advection
1461schemes to the way horizontal averages are performed in the vicinity of partial
1462cells should be further investigated in the near future.
1463%%%
1464\gmcomment{gm :   this last remark has to be done}
1465%%%
1466\end{document}
Note: See TracBrowser for help on using the repository browser.