New URL for NEMO forge!   http://forge.nemo-ocean.eu

Since March 2022 along with NEMO 4.2 release, the code development moved to a self-hosted GitLab.
This present forge is now archived and remained online for history.
chap_TRA.tex in NEMO/trunk/doc/latex/NEMO/subfiles – NEMO

source: NEMO/trunk/doc/latex/NEMO/subfiles/chap_TRA.tex @ 11582

Last change on this file since 11582 was 11582, checked in by nicolasmartin, 5 years ago

New LaTeX commands \nam and \np to mention namelist content (step 2)
Finally convert \forcode{...} following \np{}{} into optional arg of the new command \np[]{}{}

File size: 86.1 KB
Line 
1\documentclass[../main/NEMO_manual]{subfiles}
2
3\onlyinsubfile{\makeindex}
4
5\begin{document}
6% ================================================================
7% Chapter 1 ——— Ocean Tracers (TRA)
8% ================================================================
9\chapter{Ocean Tracers (TRA)}
10\label{chap:TRA}
11
12\chaptertoc
13
14% missing/update
15% traqsr: need to coordinate with SBC module
16
17%STEVEN :  is the use of the word "positive" to describe a scheme enough, or should it be "positive definite"?
18%I added a comment to this effect on some instances of this below
19
20Using the representation described in \autoref{chap:DOM}, several semi -discrete space forms of
21the tracer equations are available depending on the vertical coordinate used and on the physics used.
22In all the equations presented here, the masking has been omitted for simplicity.
23One must be aware that all the quantities are masked fields and that each time a mean or
24difference operator is used, the resulting field is multiplied by a mask.
25
26The two active tracers are potential temperature and salinity.
27Their prognostic equations can be summarized as follows:
28\[
29  \text{NXT} =     \text{ADV} + \text{LDF} + \text{ZDF} + \text{SBC}
30               + \{\text{QSR},  \text{BBC},  \text{BBL},  \text{DMP}\}
31\]
32
33NXT stands for next, referring to the time-stepping.
34From left to right, the terms on the rhs of the tracer equations are the advection (ADV),
35the lateral diffusion (LDF), the vertical diffusion (ZDF), the contributions from the external forcings
36(SBC: Surface Boundary Condition, QSR: penetrative Solar Radiation, and BBC: Bottom Boundary Condition),
37the contribution from the bottom boundary Layer (BBL) parametrisation, and an internal damping (DMP) term.
38The terms QSR, BBC, BBL and DMP are optional.
39The external forcings and parameterisations require complex inputs and complex calculations
40(\eg\ bulk formulae, estimation of mixing coefficients) that are carried out in the SBC,
41LDF and ZDF modules and described in \autoref{chap:SBC}, \autoref{chap:LDF} and
42\autoref{chap:ZDF}, respectively.
43Note that \mdl{tranpc}, the non-penetrative convection module, although located in
44the \path{./src/OCE/TRA} directory as it directly modifies the tracer fields,
45is described with the model vertical physics (ZDF) together with
46other available parameterization of convection.
47
48In the present chapter we also describe the diagnostic equations used to compute the sea-water properties
49(density, Brunt-V\"{a}is\"{a}l\"{a} frequency, specific heat and freezing point with
50associated modules \mdl{eosbn2} and \mdl{phycst}).
51
52The different options available to the user are managed by namelist logicals.
53For each equation term \textit{TTT}, the namelist logicals are \textit{ln\_traTTT\_xxx},
54where \textit{xxx} is a 3 or 4 letter acronym corresponding to each optional scheme.
55The equivalent code can be found in the \textit{traTTT} or \textit{traTTT\_xxx} module,
56in the \path{./src/OCE/TRA} directory.
57
58The user has the option of extracting each tendency term on the RHS of the tracer equation for output
59(\np{ln_tra_trd}{ln\_tra\_trd} or \np[=.true.]{ln_tra_mxl}{ln\_tra\_mxl}), as described in \autoref{chap:DIA}.
60
61% ================================================================
62% Tracer Advection
63% ================================================================
64\section[Tracer advection (\textit{traadv.F90})]{Tracer advection (\protect\mdl{traadv})}
65\label{sec:TRA_adv}
66%------------------------------------------namtra_adv-----------------------------------------------------
67
68\begin{listing}
69  \nlst{namtra_adv}
70  \caption{\forcode{&namtra_adv}}
71  \label{lst:namtra_adv}
72\end{listing}
73%-------------------------------------------------------------------------------------------------------------
74
75When considered (\ie\ when \np{ln_traadv_OFF}{ln\_traadv\_OFF} is not set to \forcode{.true.}),
76the advection tendency of a tracer is expressed in flux form,
77\ie\ as the divergence of the advective fluxes.
78Its discrete expression is given by :
79\begin{equation}
80  \label{eq:TRA_adv}
81  ADV_\tau = - \frac{1}{b_t} \Big(   \delta_i [ e_{2u} \, e_{3u} \; u \; \tau_u]
82                                   + \delta_j [ e_{1v} \, e_{3v} \; v \; \tau_v] \Big)
83             - \frac{1}{e_{3t}} \delta_k [w \; \tau_w]
84\end{equation}
85where $\tau$ is either T or S, and $b_t = e_{1t} \, e_{2t} \, e_{3t}$ is the volume of $T$-cells.
86The flux form in \autoref{eq:TRA_adv} implicitly requires the use of the continuity equation.
87Indeed, it is obtained by using the following equality: $\nabla \cdot (\vect U \, T) = \vect U \cdot \nabla T$ which
88results from the use of the continuity equation, $\partial_t e_3 + e_3 \; \nabla \cdot \vect U = 0$
89(which reduces to $\nabla \cdot \vect U = 0$ in linear free surface, \ie\ \np[=.true.]{ln_linssh}{ln\_linssh}).
90Therefore it is of paramount importance to design the discrete analogue of the advection tendency so that
91it is consistent with the continuity equation in order to enforce the conservation properties of
92the continuous equations.
93In other words, by setting $\tau = 1$ in (\autoref{eq:TRA_adv}) we recover the discrete form of
94the continuity equation which is used to calculate the vertical velocity.
95%>>>>>>>>>>>>>>>>>>>>>>>>>>>>
96\begin{figure}[!t]
97  \centering
98  \includegraphics[width=0.66\textwidth]{Fig_adv_scheme}
99  \caption[Ways to evaluate the tracer value and the amount of tracer exchanged]{
100    Schematic representation of some ways used to evaluate the tracer value at $u$-point and
101    the amount of tracer exchanged between two neighbouring grid points.
102    Upsteam biased scheme (ups):
103    the upstream value is used and the black area is exchanged.
104    Piecewise parabolic method (ppm):
105    a parabolic interpolation is used and the black and dark grey areas are exchanged.
106    Monotonic upstream scheme for conservative laws (muscl):
107    a parabolic interpolation is used and black, dark grey and grey areas are exchanged.
108    Second order scheme (cen2):
109    the mean value is used and black, dark grey, grey and light grey areas are exchanged.
110    Note that this illustration does not include the flux limiter used in ppm and muscl schemes.}
111  \label{fig:TRA_adv_scheme}
112\end{figure}
113%>>>>>>>>>>>>>>>>>>>>>>>>>>>>
114
115The key difference between the advection schemes available in \NEMO\ is the choice made in space and
116time interpolation to define the value of the tracer at the velocity points
117(\autoref{fig:TRA_adv_scheme}).
118
119Along solid lateral and bottom boundaries a zero tracer flux is automatically specified,
120since the normal velocity is zero there.
121At the sea surface the boundary condition depends on the type of sea surface chosen:
122
123\begin{description}
124\item[linear free surface:]
125  (\np[=.true.]{ln_linssh}{ln\_linssh})
126  the first level thickness is constant in time:
127  the vertical boundary condition is applied at the fixed surface $z = 0$ rather than on
128  the moving surface $z = \eta$.
129  There is a non-zero advective flux which is set for all advection schemes as
130  $\tau_w|_{k = 1/2} = T_{k = 1}$, \ie\ the product of surface velocity (at $z = 0$) by
131  the first level tracer value.
132\item[non-linear free surface:]
133  (\np[=.false.]{ln_linssh}{ln\_linssh})
134  convergence/divergence in the first ocean level moves the free surface up/down.
135  There is no tracer advection through it so that the advective fluxes through the surface are also zero.
136\end{description}
137
138In all cases, this boundary condition retains local conservation of tracer.
139Global conservation is obtained in non-linear free surface case, but \textit{not} in the linear free surface case.
140Nevertheless, in the latter case, it is achieved to a good approximation since
141the non-conservative term is the product of the time derivative of the tracer and the free surface height,
142two quantities that are not correlated \citep{roullet.madec_JGR00, griffies.pacanowski.ea_MWR01, campin.adcroft.ea_OM04}.
143
144The velocity field that appears in (\autoref{eq:TRA_adv} is
145the centred (\textit{now}) \textit{effective} ocean velocity, \ie\ the \textit{eulerian} velocity
146(see \autoref{chap:DYN}) plus the eddy induced velocity (\textit{eiv}) and/or
147the mixed layer eddy induced velocity (\textit{eiv}) when those parameterisations are used
148(see \autoref{chap:LDF}).
149
150Several tracer advection scheme are proposed, namely a $2^{nd}$ or $4^{th}$ order centred schemes (CEN),
151a $2^{nd}$ or $4^{th}$ order Flux Corrected Transport scheme (FCT), a Monotone Upstream Scheme for
152Conservative Laws scheme (MUSCL), a $3^{rd}$ Upstream Biased Scheme (UBS, also often called UP3),
153and a Quadratic Upstream Interpolation for Convective Kinematics with Estimated Streaming Terms scheme (QUICKEST).
154The choice is made in the \nam{tra_adv}{tra\_adv} namelist, by setting to \forcode{.true.} one of
155the logicals \textit{ln\_traadv\_xxx}.
156The corresponding code can be found in the \textit{traadv\_xxx.F90} module, where
157\textit{xxx} is a 3 or 4 letter acronym corresponding to each scheme.
158By default (\ie\ in the reference namelist, \textit{namelist\_ref}), all the logicals are set to \forcode{.false.}.
159If the user does not select an advection scheme in the configuration namelist (\textit{namelist\_cfg}),
160the tracers will \textit{not} be advected!
161
162Details of the advection schemes are given below.
163The choosing an advection scheme is a complex matter which depends on the model physics, model resolution,
164type of tracer, as well as the issue of numerical cost. In particular, we note that
165
166\begin{enumerate}
167\item
168  CEN and FCT schemes require an explicit diffusion operator while the other schemes are diffusive enough so that
169  they do not necessarily need additional diffusion;
170\item
171  CEN and UBS are not \textit{positive} schemes
172  \footnote{negative values can appear in an initially strictly positive tracer field which is advected},
173  implying that false extrema are permitted.
174  Their use is not recommended on passive tracers;
175\item
176  It is recommended that the same advection-diffusion scheme is used on both active and passive tracers.
177\end{enumerate}
178
179Indeed, if a source or sink of a passive tracer depends on an active one, the difference of treatment of active and
180passive tracers can create very nice-looking frontal structures that are pure numerical artefacts.
181Nevertheless, most of our users set a different treatment on passive and active tracers,
182that's the reason why this possibility is offered.
183We strongly suggest them to perform a sensitivity experiment using a same treatment to assess the robustness of
184their results.
185
186% -------------------------------------------------------------------------------------------------------------
187%        2nd and 4th order centred schemes
188% -------------------------------------------------------------------------------------------------------------
189\subsection[CEN: Centred scheme (\forcode{ln_traadv_cen})]{CEN: Centred scheme (\protect\np{ln_traadv_cen}{ln\_traadv\_cen})}
190\label{subsec:TRA_adv_cen}
191
192%        2nd order centred scheme
193
194The centred advection scheme (CEN) is used when \np[=.true.]{ln_traadv_cen}{ln\_traadv\_cen}.
195Its order ($2^{nd}$ or $4^{th}$) can be chosen independently on horizontal (iso-level) and vertical direction by
196setting \np{nn_cen_h}{nn\_cen\_h} and \np{nn_cen_v}{nn\_cen\_v} to $2$ or $4$.
197CEN implementation can be found in the \mdl{traadv\_cen} module.
198
199In the $2^{nd}$ order centred formulation (CEN2), the tracer at velocity points is evaluated as the mean of
200the two neighbouring $T$-point values.
201For example, in the $i$-direction :
202\begin{equation}
203  \label{eq:TRA_adv_cen2}
204  \tau_u^{cen2} = \overline T ^{i + 1/2}
205\end{equation}
206
207CEN2 is non diffusive (\ie\ it conserves the tracer variance, $\tau^2$) but dispersive
208(\ie\ it may create false extrema).
209It is therefore notoriously noisy and must be used in conjunction with an explicit diffusion operator to
210produce a sensible solution.
211The associated time-stepping is performed using a leapfrog scheme in conjunction with an Asselin time-filter,
212so $T$ in (\autoref{eq:TRA_adv_cen2}) is the \textit{now} tracer value.
213
214Note that using the CEN2, the overall tracer advection is of second order accuracy since
215both (\autoref{eq:TRA_adv}) and (\autoref{eq:TRA_adv_cen2}) have this order of accuracy.
216
217%        4nd order centred scheme
218
219In the $4^{th}$ order formulation (CEN4), tracer values are evaluated at u- and v-points as
220a $4^{th}$ order interpolation, and thus depend on the four neighbouring $T$-points.
221For example, in the $i$-direction:
222\begin{equation}
223  \label{eq:TRA_adv_cen4}
224  \tau_u^{cen4} = \overline{T - \frac{1}{6} \, \delta_i \Big[ \delta_{i + 1/2}[T] \, \Big]}^{\,i + 1/2}
225\end{equation}
226In the vertical direction (\np[=4]{nn_cen_v}{nn\_cen\_v}),
227a $4^{th}$ COMPACT interpolation has been prefered \citep{demange_phd14}.
228In the COMPACT scheme, both the field and its derivative are interpolated, which leads, after a matrix inversion,
229spectral characteristics similar to schemes of higher order \citep{lele_JCP92}.
230
231Strictly speaking, the CEN4 scheme is not a $4^{th}$ order advection scheme but
232a $4^{th}$ order evaluation of advective fluxes,
233since the divergence of advective fluxes \autoref{eq:TRA_adv} is kept at $2^{nd}$ order.
234The expression \textit{$4^{th}$ order scheme} used in oceanographic literature is usually associated with
235the scheme presented here.
236Introducing a \forcode{.true.} $4^{th}$ order advection scheme is feasible but, for consistency reasons,
237it requires changes in the discretisation of the tracer advection together with changes in the continuity equation,
238and the momentum advection and pressure terms.
239
240A direct consequence of the pseudo-fourth order nature of the scheme is that it is not non-diffusive,
241\ie\ the global variance of a tracer is not preserved using CEN4.
242Furthermore, it must be used in conjunction with an explicit diffusion operator to produce a sensible solution.
243As in CEN2 case, the time-stepping is performed using a leapfrog scheme in conjunction with an Asselin time-filter,
244so $T$ in (\autoref{eq:TRA_adv_cen4}) is the \textit{now} tracer.
245
246At a $T$-grid cell adjacent to a boundary (coastline, bottom and surface),
247an additional hypothesis must be made to evaluate $\tau_u^{cen4}$.
248This hypothesis usually reduces the order of the scheme.
249Here we choose to set the gradient of $T$ across the boundary to zero.
250Alternative conditions can be specified, such as a reduction to a second order scheme for
251these near boundary grid points.
252
253% -------------------------------------------------------------------------------------------------------------
254%        FCT scheme
255% -------------------------------------------------------------------------------------------------------------
256\subsection[FCT: Flux Corrected Transport scheme (\forcode{ln_traadv_fct})]{FCT: Flux Corrected Transport scheme (\protect\np{ln_traadv_fct}{ln\_traadv\_fct})}
257\label{subsec:TRA_adv_tvd}
258
259The Flux Corrected Transport schemes (FCT) is used when \np[=.true.]{ln_traadv_fct}{ln\_traadv\_fct}.
260Its order ($2^{nd}$ or $4^{th}$) can be chosen independently on horizontal (iso-level) and vertical direction by
261setting \np{nn_fct_h}{nn\_fct\_h} and \np{nn_fct_v}{nn\_fct\_v} to $2$ or $4$.
262FCT implementation can be found in the \mdl{traadv\_fct} module.
263
264In FCT formulation, the tracer at velocity points is evaluated using a combination of an upstream and
265a centred scheme.
266For example, in the $i$-direction :
267\begin{equation}
268  \label{eq:TRA_adv_fct}
269  \begin{split}
270    \tau_u^{ups} &=
271    \begin{cases}
272                     T_{i + 1} & \text{if~} u_{i + 1/2} <    0 \\
273                     T_i       & \text{if~} u_{i + 1/2} \geq 0 \\
274    \end{cases}
275    \\
276    \tau_u^{fct} &= \tau_u^{ups} + c_u \, \big( \tau_u^{cen} - \tau_u^{ups} \big)
277  \end{split}
278\end{equation}
279where $c_u$ is a flux limiter function taking values between 0 and 1.
280The FCT order is the one of the centred scheme used
281(\ie\ it depends on the setting of \np{nn_fct_h}{nn\_fct\_h} and \np{nn_fct_v}{nn\_fct\_v}).
282There exist many ways to define $c_u$, each corresponding to a different FCT scheme.
283The one chosen in \NEMO\ is described in \citet{zalesak_JCP79}.
284$c_u$ only departs from $1$ when the advective term produces a local extremum in the tracer field.
285The resulting scheme is quite expensive but \textit{positive}.
286It can be used on both active and passive tracers.
287A comparison of FCT-2 with MUSCL and a MPDATA scheme can be found in \citet{levy.estublier.ea_GRL01}.
288
289
290For stability reasons (see \autoref{chap:TD}),
291$\tau_u^{cen}$ is evaluated in (\autoref{eq:TRA_adv_fct}) using the \textit{now} tracer while
292$\tau_u^{ups}$ is evaluated using the \textit{before} tracer.
293In other words, the advective part of the scheme is time stepped with a leap-frog scheme
294while a forward scheme is used for the diffusive part.
295
296% -------------------------------------------------------------------------------------------------------------
297%        MUSCL scheme
298% -------------------------------------------------------------------------------------------------------------
299\subsection[MUSCL: Monotone Upstream Scheme for Conservative Laws (\forcode{ln_traadv_mus})]{MUSCL: Monotone Upstream Scheme for Conservative Laws (\protect\np{ln_traadv_mus}{ln\_traadv\_mus})}
300\label{subsec:TRA_adv_mus}
301
302The Monotone Upstream Scheme for Conservative Laws (MUSCL) is used when \np[=.true.]{ln_traadv_mus}{ln\_traadv\_mus}.
303MUSCL implementation can be found in the \mdl{traadv\_mus} module.
304
305MUSCL has been first implemented in \NEMO\ by \citet{levy.estublier.ea_GRL01}.
306In its formulation, the tracer at velocity points is evaluated assuming a linear tracer variation between
307two $T$-points (\autoref{fig:TRA_adv_scheme}).
308For example, in the $i$-direction :
309\begin{equation}
310  % \label{eq:TRA_adv_mus}
311  \tau_u^{mus} = \lt\{
312  \begin{split}
313                       \tau_i         &+ \frac{1}{2} \lt( 1 - \frac{u_{i + 1/2} \, \rdt}{e_{1u}} \rt)
314                       \widetilde{\partial_i         \tau} & \text{if~} u_{i + 1/2} \geqslant 0 \\
315                       \tau_{i + 1/2} &+ \frac{1}{2} \lt( 1 + \frac{u_{i + 1/2} \, \rdt}{e_{1u}} \rt)
316                       \widetilde{\partial_{i + 1/2} \tau} & \text{if~} u_{i + 1/2} <         0
317  \end{split}
318                                                                                                      \rt.
319\end{equation}
320where $\widetilde{\partial_i \tau}$ is the slope of the tracer on which a limitation is imposed to
321ensure the \textit{positive} character of the scheme.
322
323The time stepping is performed using a forward scheme, that is the \textit{before} tracer field is used to
324evaluate $\tau_u^{mus}$.
325
326For an ocean grid point adjacent to land and where the ocean velocity is directed toward land,
327an upstream flux is used.
328This choice ensure the \textit{positive} character of the scheme.
329In addition, fluxes round a grid-point where a runoff is applied can optionally be computed using upstream fluxes
330(\np[=.true.]{ln_mus_ups}{ln\_mus\_ups}).
331
332% -------------------------------------------------------------------------------------------------------------
333%        UBS scheme
334% -------------------------------------------------------------------------------------------------------------
335\subsection[UBS a.k.a. UP3: Upstream-Biased Scheme (\forcode{ln_traadv_ubs})]{UBS a.k.a. UP3: Upstream-Biased Scheme (\protect\np{ln_traadv_ubs}{ln\_traadv\_ubs})}
336\label{subsec:TRA_adv_ubs}
337
338The Upstream-Biased Scheme (UBS) is used when \np[=.true.]{ln_traadv_ubs}{ln\_traadv\_ubs}.
339UBS implementation can be found in the \mdl{traadv\_mus} module.
340
341The UBS scheme, often called UP3, is also known as the Cell Averaged QUICK scheme
342(Quadratic Upstream Interpolation for Convective Kinematics).
343It is an upstream-biased third order scheme based on an upstream-biased parabolic interpolation.
344For example, in the $i$-direction:
345\begin{equation}
346  \label{eq:TRA_adv_ubs}
347  \tau_u^{ubs} = \overline T ^{i + 1/2} - \frac{1}{6}
348    \begin{cases}
349                                                      \tau"_i       & \text{if~} u_{i + 1/2} \geqslant 0 \\
350                                                      \tau"_{i + 1} & \text{if~} u_{i + 1/2} <         0
351    \end{cases}
352  \quad
353  \text{where~} \tau"_i = \delta_i \lt[ \delta_{i + 1/2} [\tau] \rt]
354\end{equation}
355
356This results in a dissipatively dominant (i.e. hyper-diffusive) truncation error
357\citep{shchepetkin.mcwilliams_OM05}.
358The overall performance of the advection scheme is similar to that reported in \cite{farrow.stevens_JPO95}.
359It is a relatively good compromise between accuracy and smoothness.
360Nevertheless the scheme is not \textit{positive}, meaning that false extrema are permitted,
361but the amplitude of such are significantly reduced over the centred second or fourth order method.
362Therefore it is not recommended that it should be applied to a passive tracer that requires positivity.
363
364The intrinsic diffusion of UBS makes its use risky in the vertical direction where
365the control of artificial diapycnal fluxes is of paramount importance
366\citep{shchepetkin.mcwilliams_OM05, demange_phd14}.
367Therefore the vertical flux is evaluated using either a $2^nd$ order FCT scheme or a $4^th$ order COMPACT scheme
368(\np[=2 or 4]{nn_ubs_v}{nn\_ubs\_v}).
369
370For stability reasons (see \autoref{chap:TD}), the first term  in \autoref{eq:TRA_adv_ubs}
371(which corresponds to a second order centred scheme)
372is evaluated using the \textit{now} tracer (centred in time) while the second term
373(which is the diffusive part of the scheme),
374is evaluated using the \textit{before} tracer (forward in time).
375This choice is discussed by \citet{webb.de-cuevas.ea_JAOT98} in the context of the QUICK advection scheme.
376UBS and QUICK schemes only differ by one coefficient.
377Replacing 1/6 with 1/8 in \autoref{eq:TRA_adv_ubs} leads to the QUICK advection scheme \citep{webb.de-cuevas.ea_JAOT98}.
378This option is not available through a namelist parameter, since the 1/6 coefficient is hard coded.
379Nevertheless it is quite easy to make the substitution in the \mdl{traadv\_ubs} module and obtain a QUICK scheme.
380
381Note that it is straightforward to rewrite \autoref{eq:TRA_adv_ubs} as follows:
382\begin{gather}
383  \label{eq:TRA_adv_ubs2}
384  \tau_u^{ubs} = \tau_u^{cen4} + \frac{1}{12}
385    \begin{cases}
386      + \tau"_i       & \text{if} \ u_{i + 1/2} \geqslant 0 \\
387      - \tau"_{i + 1} & \text{if} \ u_{i + 1/2} <         0
388    \end{cases}
389  \intertext{or equivalently}
390  % \label{eq:TRA_adv_ubs2b}
391  u_{i + 1/2} \ \tau_u^{ubs} = u_{i + 1/2} \, \overline{T - \frac{1}{6} \, \delta_i \Big[ \delta_{i + 1/2}[T] \Big]}^{\,i + 1/2}
392                             - \frac{1}{2} |u|_{i + 1/2} \, \frac{1}{6} \, \delta_{i + 1/2} [\tau"_i] \nonumber
393\end{gather}
394
395\autoref{eq:TRA_adv_ubs2} has several advantages.
396Firstly, it clearly reveals that the UBS scheme is based on the fourth order scheme to which
397an upstream-biased diffusion term is added.
398Secondly, this emphasises that the $4^{th}$ order part (as well as the $2^{nd}$ order part as stated above) has to
399be evaluated at the \textit{now} time step using \autoref{eq:TRA_adv_ubs}.
400Thirdly, the diffusion term is in fact a biharmonic operator with an eddy coefficient which
401is simply proportional to the velocity: $A_u^{lm} = \frac{1}{12} \, {e_{1u}}^3 \, |u|$.
402Note the current version of \NEMO\ uses the computationally more efficient formulation \autoref{eq:TRA_adv_ubs}.
403
404% -------------------------------------------------------------------------------------------------------------
405%        QCK scheme
406% -------------------------------------------------------------------------------------------------------------
407\subsection[QCK: QuiCKest scheme (\forcode{ln_traadv_qck})]{QCK: QuiCKest scheme (\protect\np{ln_traadv_qck}{ln\_traadv\_qck})}
408\label{subsec:TRA_adv_qck}
409
410The Quadratic Upstream Interpolation for Convective Kinematics with Estimated Streaming Terms (QUICKEST) scheme
411proposed by \citet{leonard_CMAME79} is used when \np[=.true.]{ln_traadv_qck}{ln\_traadv\_qck}.
412QUICKEST implementation can be found in the \mdl{traadv\_qck} module.
413
414QUICKEST is the third order Godunov scheme which is associated with the ULTIMATE QUICKEST limiter
415\citep{leonard_CMAME91}.
416It has been implemented in \NEMO\ by G. Reffray (MERCATOR-ocean) and can be found in the \mdl{traadv\_qck} module.
417The resulting scheme is quite expensive but \textit{positive}.
418It can be used on both active and passive tracers.
419However, the intrinsic diffusion of QCK makes its use risky in the vertical direction where
420the control of artificial diapycnal fluxes is of paramount importance.
421Therefore the vertical flux is evaluated using the CEN2 scheme.
422This no longer guarantees the positivity of the scheme.
423The use of FCT in the vertical direction (as for the UBS case) should be implemented to restore this property.
424
425%%%gmcomment   :  Cross term are missing in the current implementation....
426
427% ================================================================
428% Tracer Lateral Diffusion
429% ================================================================
430\section[Tracer lateral diffusion (\textit{traldf.F90})]{Tracer lateral diffusion (\protect\mdl{traldf})}
431\label{sec:TRA_ldf}
432%-----------------------------------------nam_traldf------------------------------------------------------
433
434\begin{listing}
435  \nlst{namtra_ldf}
436  \caption{\forcode{&namtra_ldf}}
437  \label{lst:namtra_ldf}
438\end{listing}
439%-------------------------------------------------------------------------------------------------------------
440
441Options are defined through the \nam{tra_ldf}{tra\_ldf} namelist variables.
442They are regrouped in four items, allowing to specify
443$(i)$   the type of operator used (none, laplacian, bilaplacian),
444$(ii)$  the direction along which the operator acts (iso-level, horizontal, iso-neutral),
445$(iii)$ some specific options related to the rotated operators (\ie\ non-iso-level operator), and
446$(iv)$  the specification of eddy diffusivity coefficient (either constant or variable in space and time).
447Item $(iv)$ will be described in \autoref{chap:LDF}.
448The direction along which the operators act is defined through the slope between
449this direction and the iso-level surfaces.
450The slope is computed in the \mdl{ldfslp} module and will also be described in \autoref{chap:LDF}.
451
452The lateral diffusion of tracers is evaluated using a forward scheme,
453\ie\ the tracers appearing in its expression are the \textit{before} tracers in time,
454except for the pure vertical component that appears when a rotation tensor is used.
455This latter component is solved implicitly together with the vertical diffusion term (see \autoref{chap:TD}).
456When \np[=.true.]{ln_traldf_msc}{ln\_traldf\_msc}, a Method of Stabilizing Correction is used in which
457the pure vertical component is split into an explicit and an implicit part \citep{lemarie.debreu.ea_OM12}.
458
459% -------------------------------------------------------------------------------------------------------------
460%        Type of operator
461% -------------------------------------------------------------------------------------------------------------
462\subsection[Type of operator (\forcode{ln_traldf_}\{\forcode{OFF,lap,blp}\})]{Type of operator (\protect\np{ln_traldf_OFF}{ln\_traldf\_OFF}, \protect\np{ln_traldf_lap}{ln\_traldf\_lap}, or \protect\np{ln_traldf_blp}{ln\_traldf\_blp})}
463\label{subsec:TRA_ldf_op}
464
465Three operator options are proposed and, one and only one of them must be selected:
466
467\begin{description}
468\item[{\np[=.true.]{ln_traldf_OFF}{ln\_traldf\_OFF}}]
469  no operator selected, the lateral diffusive tendency will not be applied to the tracer equation.
470  This option can be used when the selected advection scheme is diffusive enough (MUSCL scheme for example).
471\item[{\np[=.true.]{ln_traldf_lap}{ln\_traldf\_lap}}]
472  a laplacian operator is selected.
473  This harmonic operator takes the following expression:  $\mathcal{L}(T) = \nabla \cdot A_{ht} \; \nabla T $,
474  where the gradient operates along the selected direction (see \autoref{subsec:TRA_ldf_dir}),
475  and $A_{ht}$ is the eddy diffusivity coefficient expressed in $m^2/s$ (see \autoref{chap:LDF}).
476\item[{\np[=.true.]{ln_traldf_blp}{ln\_traldf\_blp}}]:
477  a bilaplacian operator is selected.
478  This biharmonic operator takes the following expression:
479  $\mathcal{B} = - \mathcal{L}(\mathcal{L}(T)) = - \nabla \cdot b \nabla (\nabla \cdot b \nabla T)$
480  where the gradient operats along the selected direction,
481  and $b^2 = B_{ht}$ is the eddy diffusivity coefficient expressed in $m^4/s$ (see \autoref{chap:LDF}).
482  In the code, the bilaplacian operator is obtained by calling the laplacian twice.
483\end{description}
484
485Both laplacian and bilaplacian operators ensure the total tracer variance decrease.
486Their primary role is to provide strong dissipation at the smallest scale supported by the grid while
487minimizing the impact on the larger scale features.
488The main difference between the two operators is the scale selectiveness.
489The bilaplacian damping time (\ie\ its spin down time) scales like $\lambda^{-4}$ for
490disturbances of wavelength $\lambda$ (so that short waves damped more rapidelly than long ones),
491whereas the laplacian damping time scales only like $\lambda^{-2}$.
492
493% -------------------------------------------------------------------------------------------------------------
494%        Direction of action
495% -------------------------------------------------------------------------------------------------------------
496\subsection[Action direction (\forcode{ln_traldf_}\{\forcode{lev,hor,iso,triad}\})]{Direction of action (\protect\np{ln_traldf_lev}{ln\_traldf\_lev}, \protect\np{ln_traldf_hor}{ln\_traldf\_hor}, \protect\np{ln_traldf_iso}{ln\_traldf\_iso}, or \protect\np{ln_traldf_triad}{ln\_traldf\_triad})}
497\label{subsec:TRA_ldf_dir}
498
499The choice of a direction of action determines the form of operator used.
500The operator is a simple (re-entrant) laplacian acting in the (\textbf{i},\textbf{j}) plane when
501iso-level option is used (\np[=.true.]{ln_traldf_lev}{ln\_traldf\_lev}) or
502when a horizontal (\ie\ geopotential) operator is demanded in \textit{z}-coordinate
503(\np{ln_traldf_hor}{ln\_traldf\_hor} and \np[=.true.]{ln_zco}{ln\_zco}).
504The associated code can be found in the \mdl{traldf\_lap\_blp} module.
505The operator is a rotated (re-entrant) laplacian when
506the direction along which it acts does not coincide with the iso-level surfaces,
507that is when standard or triad iso-neutral option is used
508(\np{ln_traldf_iso}{ln\_traldf\_iso} or \np{ln_traldf_triad}{ln\_traldf\_triad} = \forcode{.true.},
509see \mdl{traldf\_iso} or \mdl{traldf\_triad} module, resp.), or
510when a horizontal (\ie\ geopotential) operator is demanded in \textit{s}-coordinate
511(\np{ln_traldf_hor}{ln\_traldf\_hor} and \np{ln_sco}{ln\_sco} = \forcode{.true.})
512\footnote{In this case, the standard iso-neutral operator will be automatically selected}.
513In that case, a rotation is applied to the gradient(s) that appears in the operator so that
514diffusive fluxes acts on the three spatial direction.
515
516The resulting discret form of the three operators (one iso-level and two rotated one) is given in
517the next two sub-sections.
518
519% -------------------------------------------------------------------------------------------------------------
520%       iso-level operator
521% -------------------------------------------------------------------------------------------------------------
522\subsection[Iso-level (bi-)laplacian operator (\forcode{ln_traldf_iso})]{Iso-level (bi-)laplacian operator ( \protect\np{ln_traldf_iso}{ln\_traldf\_iso})}
523\label{subsec:TRA_ldf_lev}
524
525The laplacian diffusion operator acting along the model (\textit{i,j})-surfaces is given by:
526\begin{equation}
527  \label{eq:TRA_ldf_lap}
528  D_t^{lT} = \frac{1}{b_t} \Bigg(   \delta_{i} \lt[ A_u^{lT} \; \frac{e_{2u} \, e_{3u}}{e_{1u}} \; \delta_{i + 1/2} [T] \rt]
529                                  + \delta_{j} \lt[ A_v^{lT} \; \frac{e_{1v} \, e_{3v}}{e_{2v}} \; \delta_{j + 1/2} [T] \rt] \Bigg)
530\end{equation}
531where $b_t = e_{1t} \, e_{2t} \, e_{3t}$  is the volume of $T$-cells and
532where zero diffusive fluxes is assumed across solid boundaries,
533first (and third in bilaplacian case) horizontal tracer derivative are masked.
534It is implemented in the \rou{tra\_ldf\_lap} subroutine found in the \mdl{traldf\_lap\_blp} module.
535The module also contains \rou{tra\_ldf\_blp}, the subroutine calling twice \rou{tra\_ldf\_lap} in order to
536compute the iso-level bilaplacian operator.
537
538It is a \textit{horizontal} operator (\ie acting along geopotential surfaces) in
539the $z$-coordinate with or without partial steps, but is simply an iso-level operator in the $s$-coordinate.
540It is thus used when, in addition to \np{ln_traldf_lap}{ln\_traldf\_lap} or \np[=.true.]{ln_traldf_blp}{ln\_traldf\_blp},
541we have \np[=.true.]{ln_traldf_lev}{ln\_traldf\_lev} or \np{ln_traldf_hor}{ln\_traldf\_hor}~=~\np[=.true.]{ln_zco}{ln\_zco}.
542In both cases, it significantly contributes to diapycnal mixing.
543It is therefore never recommended, even when using it in the bilaplacian case.
544
545Note that in the partial step $z$-coordinate (\np[=.true.]{ln_zps}{ln\_zps}),
546tracers in horizontally adjacent cells are located at different depths in the vicinity of the bottom.
547In this case, horizontal derivatives in (\autoref{eq:TRA_ldf_lap}) at the bottom level require a specific treatment.
548They are calculated in the \mdl{zpshde} module, described in \autoref{sec:TRA_zpshde}.
549
550% -------------------------------------------------------------------------------------------------------------
551%         Rotated laplacian operator
552% -------------------------------------------------------------------------------------------------------------
553\subsection{Standard and triad (bi-)laplacian operator}
554\label{subsec:TRA_ldf_iso_triad}
555
556%&&    Standard rotated (bi-)laplacian operator
557%&& ----------------------------------------------
558\subsubsection[Standard rotated (bi-)laplacian operator (\textit{traldf\_iso.F90})]{Standard rotated (bi-)laplacian operator (\protect\mdl{traldf\_iso})}
559\label{subsec:TRA_ldf_iso}
560The general form of the second order lateral tracer subgrid scale physics (\autoref{eq:MB_zdf})
561takes the following semi -discrete space form in $z$- and $s$-coordinates:
562\begin{equation}
563  \label{eq:TRA_ldf_iso}
564  \begin{split}
565    D_T^{lT} = \frac{1}{b_t} \Bigg[ \quad &\delta_i A_u^{lT} \lt( \frac{e_{2u} e_{3u}}{e_{1u}}                      \, \delta_{i + 1/2} [T]
566                                                                  - e_{2u} r_{1u} \, \overline{\overline{\delta_{k + 1/2} [T]}}^{\,i + 1/2,k} \rt) \Bigg. \\
567                                    +     &\delta_j A_v^{lT} \lt( \frac{e_{1v} e_{3v}}{e_{2v}}                       \, \delta_{j + 1/2} [T]
568                                                                  - e_{1v} r_{2v} \, \overline{\overline{\delta_{k + 1/2} [T]}}^{\,j + 1/2,k} \rt)        \\
569                                   +     &\delta_k A_w^{lT} \lt( \frac{e_{1w} e_{2w}}{e_{3w}} (r_{1w}^2 + r_{2w}^2) \, \delta_{k + 1/2} [T] \rt.           \\
570                                   & \qquad \quad \Bigg. \lt.     - e_{2w} r_{1w} \, \overline{\overline{\delta_{i + 1/2} [T]}}^{\,i,k + 1/2}
571                                                                  - e_{1w} r_{2w} \, \overline{\overline{\delta_{j + 1/2} [T]}}^{\,j,k + 1/2} \rt) \Bigg]
572  \end{split}
573\end{equation}
574where $b_t = e_{1t} \, e_{2t} \, e_{3t}$  is the volume of $T$-cells,
575$r_1$ and $r_2$ are the slopes between the surface of computation ($z$- or $s$-surfaces) and
576the surface along which the diffusion operator acts (\ie\ horizontal or iso-neutral surfaces).
577It is thus used when, in addition to \np[=.true.]{ln_traldf_lap}{ln\_traldf\_lap},
578we have \np[=.true.]{ln_traldf_iso}{ln\_traldf\_iso},
579or both \np[=.true.]{ln_traldf_hor}{ln\_traldf\_hor} and \np[=.true.]{ln_zco}{ln\_zco}.
580The way these slopes are evaluated is given in \autoref{sec:LDF_slp}.
581At the surface, bottom and lateral boundaries, the turbulent fluxes of heat and salt are set to zero using
582the mask technique (see \autoref{sec:LBC_coast}).
583
584The operator in \autoref{eq:TRA_ldf_iso} involves both lateral and vertical derivatives.
585For numerical stability, the vertical second derivative must be solved using the same implicit time scheme as that
586used in the vertical physics (see \autoref{sec:TRA_zdf}).
587For computer efficiency reasons, this term is not computed in the \mdl{traldf\_iso} module,
588but in the \mdl{trazdf} module where, if iso-neutral mixing is used,
589the vertical mixing coefficient is simply increased by $\frac{e_{1w} e_{2w}}{e_{3w}}(r_{1w}^2 + r_{2w}^2)$.
590
591This formulation conserves the tracer but does not ensure the decrease of the tracer variance.
592Nevertheless the treatment performed on the slopes (see \autoref{chap:LDF}) allows the model to run safely without
593any additional background horizontal diffusion \citep{guilyardi.madec.ea_CD01}.
594
595Note that in the partial step $z$-coordinate (\np[=.true.]{ln_zps}{ln\_zps}),
596the horizontal derivatives at the bottom level in \autoref{eq:TRA_ldf_iso} require a specific treatment.
597They are calculated in module zpshde, described in \autoref{sec:TRA_zpshde}.
598
599%&&     Triad rotated (bi-)laplacian operator
600%&&  -------------------------------------------
601\subsubsection[Triad rotated (bi-)laplacian operator (\forcode{ln_traldf_triad})]{Triad rotated (bi-)laplacian operator (\protect\np{ln_traldf_triad}{ln\_traldf\_triad})}
602\label{subsec:TRA_ldf_triad}
603
604An alternative scheme developed by \cite{griffies.gnanadesikan.ea_JPO98} which ensures tracer variance decreases
605is also available in \NEMO\ (\np[=.true.]{ln_traldf_triad}{ln\_traldf\_triad}).
606A complete description of the algorithm is given in \autoref{apdx:TRIADS}.
607
608The lateral fourth order bilaplacian operator on tracers is obtained by applying (\autoref{eq:TRA_ldf_lap}) twice.
609The operator requires an additional assumption on boundary conditions:
610both first and third derivative terms normal to the coast are set to zero.
611
612The lateral fourth order operator formulation on tracers is obtained by applying (\autoref{eq:TRA_ldf_iso}) twice.
613It requires an additional assumption on boundary conditions:
614first and third derivative terms normal to the coast,
615normal to the bottom and normal to the surface are set to zero.
616
617%&&    Option for the rotated operators
618%&& ----------------------------------------------
619\subsubsection{Option for the rotated operators}
620\label{subsec:TRA_ldf_options}
621
622\begin{itemize}
623\item \np{ln_traldf_msc}{ln\_traldf\_msc} = Method of Stabilizing Correction (both operators)
624\item \np{rn_slpmax}{rn\_slpmax} = slope limit (both operators)
625\item \np{ln_triad_iso}{ln\_triad\_iso} = pure horizontal mixing in ML (triad only)
626\item \np{rn_sw_triad}{rn\_sw\_triad} $= 1$ switching triad; $= 0$ all 4 triads used (triad only)
627\item \np{ln_botmix_triad}{ln\_botmix\_triad} = lateral mixing on bottom (triad only)
628\end{itemize}
629
630% ================================================================
631% Tracer Vertical Diffusion
632% ================================================================
633\section[Tracer vertical diffusion (\textit{trazdf.F90})]{Tracer vertical diffusion (\protect\mdl{trazdf})}
634\label{sec:TRA_zdf}
635%--------------------------------------------namzdf---------------------------------------------------------
636
637%--------------------------------------------------------------------------------------------------------------
638
639Options are defined through the \nam{zdf}{zdf} namelist variables.
640The formulation of the vertical subgrid scale tracer physics is the same for all the vertical coordinates,
641and is based on a laplacian operator.
642The vertical diffusion operator given by (\autoref{eq:MB_zdf}) takes the following semi -discrete space form:
643\begin{gather*}
644  % \label{eq:TRA_zdf}
645    D^{vT}_T = \frac{1}{e_{3t}} \, \delta_k \lt[ \, \frac{A^{vT}_w}{e_{3w}} \delta_{k + 1/2}[T] \, \rt] \\
646    D^{vS}_T = \frac{1}{e_{3t}} \; \delta_k \lt[ \, \frac{A^{vS}_w}{e_{3w}} \delta_{k + 1/2}[S] \, \rt]
647\end{gather*}
648where $A_w^{vT}$ and $A_w^{vS}$ are the vertical eddy diffusivity coefficients on temperature and salinity,
649respectively.
650Generally, $A_w^{vT} = A_w^{vS}$ except when double diffusive mixing is parameterised
651(\ie\ \np[=.true.]{ln_zdfddm}{ln\_zdfddm},).
652The way these coefficients are evaluated is given in \autoref{chap:ZDF} (ZDF).
653Furthermore, when iso-neutral mixing is used, both mixing coefficients are increased by
654$\frac{e_{1w} e_{2w}}{e_{3w} }({r_{1w}^2 + r_{2w}^2})$ to account for the vertical second derivative of
655\autoref{eq:TRA_ldf_iso}.
656
657At the surface and bottom boundaries, the turbulent fluxes of heat and salt must be specified.
658At the surface they are prescribed from the surface forcing and added in a dedicated routine
659(see \autoref{subsec:TRA_sbc}), whilst at the bottom they are set to zero for heat and salt unless
660a geothermal flux forcing is prescribed as a bottom boundary condition (see \autoref{subsec:TRA_bbc}).
661
662The large eddy coefficient found in the mixed layer together with high vertical resolution implies that
663there would be too restrictive constraint on the time step if we use explicit time stepping.
664Therefore an implicit time stepping is preferred for the vertical diffusion since
665it overcomes the stability constraint.
666
667% ================================================================
668% External Forcing
669% ================================================================
670\section{External forcing}
671\label{sec:TRA_sbc_qsr_bbc}
672
673% -------------------------------------------------------------------------------------------------------------
674%        surface boundary condition
675% -------------------------------------------------------------------------------------------------------------
676\subsection[Surface boundary condition (\textit{trasbc.F90})]{Surface boundary condition (\protect\mdl{trasbc})}
677\label{subsec:TRA_sbc}
678
679The surface boundary condition for tracers is implemented in a separate module (\mdl{trasbc}) instead of
680entering as a boundary condition on the vertical diffusion operator (as in the case of momentum).
681This has been found to enhance readability of the code.
682The two formulations are completely equivalent;
683the forcing terms in trasbc are the surface fluxes divided by the thickness of the top model layer.
684
685Due to interactions and mass exchange of water ($F_{mass}$) with other Earth system components
686(\ie\ atmosphere, sea-ice, land), the change in the heat and salt content of the surface layer of the ocean is due
687both to the heat and salt fluxes crossing the sea surface (not linked with $F_{mass}$) and
688to the heat and salt content of the mass exchange.
689They are both included directly in $Q_{ns}$, the surface heat flux,
690and $F_{salt}$, the surface salt flux (see \autoref{chap:SBC} for further details).
691By doing this, the forcing formulation is the same for any tracer (including temperature and salinity).
692
693The surface module (\mdl{sbcmod}, see \autoref{chap:SBC}) provides the following forcing fields (used on tracers):
694
695\begin{itemize}
696\item
697  $Q_{ns}$, the non-solar part of the net surface heat flux that crosses the sea surface
698  (\ie\ the difference between the total surface heat flux and the fraction of the short wave flux that
699  penetrates into the water column, see \autoref{subsec:TRA_qsr})
700  plus the heat content associated with of the mass exchange with the atmosphere and lands.
701\item
702  $\textit{sfx}$, the salt flux resulting from ice-ocean mass exchange (freezing, melting, ridging...)
703\item
704  \textit{emp}, the mass flux exchanged with the atmosphere (evaporation minus precipitation) and
705  possibly with the sea-ice and ice-shelves.
706\item
707  \textit{rnf}, the mass flux associated with runoff
708  (see \autoref{sec:SBC_rnf} for further detail of how it acts on temperature and salinity tendencies)
709\item
710  \textit{fwfisf}, the mass flux associated with ice shelf melt,
711  (see \autoref{sec:SBC_isf} for further details on how the ice shelf melt is computed and applied).
712\end{itemize}
713
714The surface boundary condition on temperature and salinity is applied as follows:
715\begin{equation}
716  \label{eq:TRA_sbc}
717  \begin{alignedat}{2}
718    F^T &= \frac{1}{C_p} &\frac{1}{\rho_o \lt. e_{3t} \rt|_{k = 1}} &\overline{Q_{ns}      }^t \\
719    F^S &=               &\frac{1}{\rho_o \lt. e_{3t} \rt|_{k = 1}} &\overline{\textit{sfx}}^t
720  \end{alignedat}
721\end{equation}
722where $\overline x^t$ means that $x$ is averaged over two consecutive time steps
723($t - \rdt / 2$ and $t + \rdt / 2$).
724Such time averaging prevents the divergence of odd and even time step (see \autoref{chap:TD}).
725
726In the linear free surface case (\np[=.true.]{ln_linssh}{ln\_linssh}), an additional term has to be added on
727both temperature and salinity.
728On temperature, this term remove the heat content associated with mass exchange that has been added to $Q_{ns}$.
729On salinity, this term mimics the concentration/dilution effect that would have resulted from a change in
730the volume of the first level.
731The resulting surface boundary condition is applied as follows:
732\begin{equation}
733  \label{eq:TRA_sbc_lin}
734  \begin{alignedat}{2}
735    F^T &= \frac{1}{C_p} &\frac{1}{\rho_o \lt. e_{3t} \rt|_{k = 1}}
736          &\overline{(Q_{ns}       - C_p \, \textit{emp} \lt. T \rt|_{k = 1})}^t \\
737    F^S &=               &\frac{1}{\rho_o \lt. e_{3t} \rt|_{k = 1}}
738          &\overline{(\textit{sfx} -        \textit{emp} \lt. S \rt|_{k = 1})}^t
739  \end{alignedat}
740\end{equation}
741Note that an exact conservation of heat and salt content is only achieved with non-linear free surface.
742In the linear free surface case, there is a small imbalance.
743The imbalance is larger than the imbalance associated with the Asselin time filter \citep{leclair.madec_OM09}.
744This is the reason why the modified filter is not applied in the linear free surface case (see \autoref{chap:TD}).
745
746% -------------------------------------------------------------------------------------------------------------
747%        Solar Radiation Penetration
748% -------------------------------------------------------------------------------------------------------------
749\subsection[Solar radiation penetration (\textit{traqsr.F90})]{Solar radiation penetration (\protect\mdl{traqsr})}
750\label{subsec:TRA_qsr}
751%--------------------------------------------namqsr--------------------------------------------------------
752
753\begin{listing}
754  \nlst{namtra_qsr}
755  \caption{\forcode{&namtra_qsr}}
756  \label{lst:namtra_qsr}
757\end{listing}
758%--------------------------------------------------------------------------------------------------------------
759
760Options are defined through the \nam{tra_qsr}{tra\_qsr} namelist variables.
761When the penetrative solar radiation option is used (\np[=.true.]{ln_traqsr}{ln\_traqsr}),
762the solar radiation penetrates the top few tens of meters of the ocean.
763If it is not used (\np[=.false.]{ln_traqsr}{ln\_traqsr}) all the heat flux is absorbed in the first ocean level.
764Thus, in the former case a term is added to the time evolution equation of temperature \autoref{eq:MB_PE_tra_T} and
765the surface boundary condition is modified to take into account only the non-penetrative part of the surface
766heat flux:
767\begin{equation}
768  \label{eq:TRA_PE_qsr}
769  \begin{gathered}
770    \pd[T]{t} = \ldots + \frac{1}{\rho_o \, C_p \, e_3} \; \pd[I]{k} \\
771    Q_{ns} = Q_\text{Total} - Q_{sr}
772  \end{gathered}
773\end{equation}
774where $Q_{sr}$ is the penetrative part of the surface heat flux (\ie\ the shortwave radiation) and
775$I$ is the downward irradiance ($\lt. I \rt|_{z = \eta} = Q_{sr}$).
776The additional term in \autoref{eq:TRA_PE_qsr} is discretized as follows:
777\begin{equation}
778  \label{eq:TRA_qsr}
779  \frac{1}{\rho_o \, C_p \, e_3} \, \pd[I]{k} \equiv \frac{1}{\rho_o \, C_p \, e_{3t}} \delta_k [I_w]
780\end{equation}
781
782The shortwave radiation, $Q_{sr}$, consists of energy distributed across a wide spectral range.
783The ocean is strongly absorbing for wavelengths longer than 700~nm and these wavelengths contribute to
784heating the upper few tens of centimetres.
785The fraction of $Q_{sr}$ that resides in these almost non-penetrative wavebands, $R$, is $\sim 58\%$
786(specified through namelist parameter \np{rn_abs}{rn\_abs}).
787It is assumed to penetrate the ocean with a decreasing exponential profile, with an e-folding depth scale, $\xi_0$,
788of a few tens of centimetres (typically $\xi_0 = 0.35~m$ set as \np{rn_si0}{rn\_si0} in the \nam{tra_qsr}{tra\_qsr} namelist).
789For shorter wavelengths (400-700~nm), the ocean is more transparent, and solar energy propagates to
790larger depths where it contributes to local heating.
791The way this second part of the solar energy penetrates into the ocean depends on which formulation is chosen.
792In the simple 2-waveband light penetration scheme (\np[=.true.]{ln_qsr_2bd}{ln\_qsr\_2bd})
793a chlorophyll-independent monochromatic formulation is chosen for the shorter wavelengths,
794leading to the following expression \citep{paulson.simpson_JPO77}:
795\[
796  % \label{eq:TRA_qsr_iradiance}
797  I(z) = Q_{sr} \lt[ Re^{- z / \xi_0} + (1 - R) e^{- z / \xi_1} \rt]
798\]
799where $\xi_1$ is the second extinction length scale associated with the shorter wavelengths.
800It is usually chosen to be 23~m by setting the \np{rn_si0}{rn\_si0} namelist parameter.
801The set of default values ($\xi_0, \xi_1, R$) corresponds to a Type I water in Jerlov's (1968) classification
802(oligotrophic waters).
803
804Such assumptions have been shown to provide a very crude and simplistic representation of
805observed light penetration profiles (\cite{morel_JGR88}, see also \autoref{fig:TRA_qsr_irradiance}).
806Light absorption in the ocean depends on particle concentration and is spectrally selective.
807\cite{morel_JGR88} has shown that an accurate representation of light penetration can be provided by
808a 61 waveband formulation.
809Unfortunately, such a model is very computationally expensive.
810Thus, \cite{lengaigne.menkes.ea_CD07} have constructed a simplified version of this formulation in which
811visible light is split into three wavebands: blue (400-500 nm), green (500-600 nm) and red (600-700nm).
812For each wave-band, the chlorophyll-dependent attenuation coefficient is fitted to the coefficients computed from
813the full spectral model of \cite{morel_JGR88} (as modified by \cite{morel.maritorena_JGR01}),
814assuming the same power-law relationship.
815As shown in \autoref{fig:TRA_qsr_irradiance}, this formulation, called RGB (Red-Green-Blue),
816reproduces quite closely the light penetration profiles predicted by the full spectal model,
817but with much greater computational efficiency.
818The 2-bands formulation does not reproduce the full model very well.
819
820The RGB formulation is used when \np[=.true.]{ln_qsr_rgb}{ln\_qsr\_rgb}.
821The RGB attenuation coefficients (\ie\ the inverses of the extinction length scales) are tabulated over
82261 nonuniform chlorophyll classes ranging from 0.01 to 10 g.Chl/L
823(see the routine \rou{trc\_oce\_rgb} in \mdl{trc\_oce} module).
824Four types of chlorophyll can be chosen in the RGB formulation:
825
826\begin{description}
827\item[{\np[=0]{nn_chldta}{nn\_chldta}}]
828  a constant 0.05 g.Chl/L value everywhere ;
829\item[{\np[=1]{nn_chldta}{nn\_chldta}}]
830  an observed time varying chlorophyll deduced from satellite surface ocean color measurement spread uniformly in
831  the vertical direction;
832\item[{\np[=2]{nn_chldta}{nn\_chldta}}]
833  same as previous case except that a vertical profile of chlorophyl is used.
834  Following \cite{morel.berthon_LO89}, the profile is computed from the local surface chlorophyll value;
835\item[{\np[=.true.]{ln_qsr_bio}{ln\_qsr\_bio}}]
836  simulated time varying chlorophyll by TOP biogeochemical model.
837  In this case, the RGB formulation is used to calculate both the phytoplankton light limitation in
838  PISCES and the oceanic heating rate.
839\end{description}
840
841The trend in \autoref{eq:TRA_qsr} associated with the penetration of the solar radiation is added to
842the temperature trend, and the surface heat flux is modified in routine \mdl{traqsr}.
843
844When the $z$-coordinate is preferred to the $s$-coordinate,
845the depth of $w-$levels does not significantly vary with location.
846The level at which the light has been totally absorbed
847(\ie\ it is less than the computer precision) is computed once,
848and the trend associated with the penetration of the solar radiation is only added down to that level.
849Finally, note that when the ocean is shallow ($<$ 200~m), part of the solar radiation can reach the ocean floor.
850In this case, we have chosen that all remaining radiation is absorbed in the last ocean level
851(\ie\ $I$ is masked).
852
853%>>>>>>>>>>>>>>>>>>>>>>>>>>>>
854\begin{figure}[!t]
855  \centering
856  \includegraphics[width=0.66\textwidth]{Fig_TRA_Irradiance}
857  \caption[Penetration profile of the downward solar irradiance calculated by four models]{
858    Penetration profile of the downward solar irradiance calculated by four models.
859    Two waveband chlorophyll-independent formulation (blue),
860    a chlorophyll-dependent monochromatic formulation (green),
861    4 waveband RGB formulation (red),
862    61 waveband Morel (1988) formulation (black) for a chlorophyll concentration of
863    (a) Chl=0.05 mg/m$^3$ and (b) Chl=0.5 mg/m$^3$.
864    From \citet{lengaigne.menkes.ea_CD07}.}
865  \label{fig:TRA_qsr_irradiance}
866\end{figure}
867%>>>>>>>>>>>>>>>>>>>>>>>>>>>>
868
869% -------------------------------------------------------------------------------------------------------------
870%        Bottom Boundary Condition
871% -------------------------------------------------------------------------------------------------------------
872\subsection[Bottom boundary condition (\textit{trabbc.F90}) - \forcode{ln_trabbc})]{Bottom boundary condition (\protect\mdl{trabbc} - \protect\np{ln_trabbc}{ln\_trabbc})}
873\label{subsec:TRA_bbc}
874%--------------------------------------------nambbc--------------------------------------------------------
875
876\begin{listing}
877  \nlst{nambbc}
878  \caption{\forcode{&nambbc}}
879  \label{lst:nambbc}
880\end{listing}
881%--------------------------------------------------------------------------------------------------------------
882%>>>>>>>>>>>>>>>>>>>>>>>>>>>>
883\begin{figure}[!t]
884  \centering
885  \includegraphics[width=0.66\textwidth]{Fig_TRA_geoth}
886  \caption[Geothermal heat flux]{
887    Geothermal Heat flux (in $mW.m^{-2}$) used by \cite{emile-geay.madec_OS09}.
888    It is inferred from the age of the sea floor and the formulae of \citet{stein.stein_N92}.}
889  \label{fig:TRA_geothermal}
890\end{figure}
891%>>>>>>>>>>>>>>>>>>>>>>>>>>>>
892
893Usually it is assumed that there is no exchange of heat or salt through the ocean bottom,
894\ie\ a no flux boundary condition is applied on active tracers at the bottom.
895This is the default option in \NEMO, and it is implemented using the masking technique.
896However, there is a non-zero heat flux across the seafloor that is associated with solid earth cooling.
897This flux is weak compared to surface fluxes (a mean global value of $\sim 0.1 \, W/m^2$ \citep{stein.stein_N92}),
898but it warms systematically the ocean and acts on the densest water masses.
899Taking this flux into account in a global ocean model increases the deepest overturning cell
900(\ie\ the one associated with the Antarctic Bottom Water) by a few Sverdrups \citep{emile-geay.madec_OS09}.
901
902Options are defined through the \nam{bbc}{bbc} namelist variables.
903The presence of geothermal heating is controlled by setting the namelist parameter \np{ln_trabbc}{ln\_trabbc} to true.
904Then, when \np{nn_geoflx}{nn\_geoflx} is set to 1, a constant geothermal heating is introduced whose value is given by
905the \np{rn_geoflx_cst}{rn\_geoflx\_cst}, which is also a namelist parameter.
906When \np{nn_geoflx}{nn\_geoflx} is set to 2, a spatially varying geothermal heat flux is introduced which is provided in
907the \ifile{geothermal\_heating} NetCDF file (\autoref{fig:TRA_geothermal}) \citep{emile-geay.madec_OS09}.
908
909% ================================================================
910% Bottom Boundary Layer
911% ================================================================
912\section[Bottom boundary layer (\textit{trabbl.F90} - \forcode{ln_trabbl})]{Bottom boundary layer (\protect\mdl{trabbl} - \protect\np{ln_trabbl}{ln\_trabbl})}
913\label{sec:TRA_bbl}
914%--------------------------------------------nambbl---------------------------------------------------------
915
916\begin{listing}
917  \nlst{nambbl}
918  \caption{\forcode{&nambbl}}
919  \label{lst:nambbl}
920\end{listing}
921%--------------------------------------------------------------------------------------------------------------
922
923Options are defined through the \nam{bbl}{bbl} namelist variables.
924In a $z$-coordinate configuration, the bottom topography is represented by a series of discrete steps.
925This is not adequate to represent gravity driven downslope flows.
926Such flows arise either downstream of sills such as the Strait of Gibraltar or Denmark Strait,
927where dense water formed in marginal seas flows into a basin filled with less dense water,
928or along the continental slope when dense water masses are formed on a continental shelf.
929The amount of entrainment that occurs in these gravity plumes is critical in determining the density and
930volume flux of the densest waters of the ocean, such as Antarctic Bottom Water, or North Atlantic Deep Water.
931$z$-coordinate models tend to overestimate the entrainment,
932because the gravity flow is mixed vertically by convection as it goes ''downstairs'' following the step topography,
933sometimes over a thickness much larger than the thickness of the observed gravity plume.
934A similar problem occurs in the $s$-coordinate when the thickness of the bottom level varies rapidly downstream of
935a sill \citep{willebrand.barnier.ea_PO01}, and the thickness of the plume is not resolved.
936
937The idea of the bottom boundary layer (BBL) parameterisation, first introduced by \citet{beckmann.doscher_JPO97},
938is to allow a direct communication between two adjacent bottom cells at different levels,
939whenever the densest water is located above the less dense water.
940The communication can be by a diffusive flux (diffusive BBL), an advective flux (advective BBL), or both.
941In the current implementation of the BBL, only the tracers are modified, not the velocities.
942Furthermore, it only connects ocean bottom cells, and therefore does not include all the improvements introduced by
943\citet{campin.goosse_T99}.
944
945% -------------------------------------------------------------------------------------------------------------
946%        Diffusive BBL
947% -------------------------------------------------------------------------------------------------------------
948\subsection[Diffusive bottom boundary layer (\forcode{nn_bbl_ldf=1})]{Diffusive bottom boundary layer (\protect\np[=1]{nn_bbl_ldf}{nn\_bbl\_ldf})}
949\label{subsec:TRA_bbl_diff}
950
951When applying sigma-diffusion (\np[=.true.]{ln_trabbl}{ln\_trabbl} and \np{nn_bbl_ldf}{nn\_bbl\_ldf} set to 1),
952the diffusive flux between two adjacent cells at the ocean floor is given by
953\[
954  % \label{eq:TRA_bbl_diff}
955  \vect F_\sigma = A_l^\sigma \, \nabla_\sigma T
956\]
957with $\nabla_\sigma$ the lateral gradient operator taken between bottom cells, and
958$A_l^\sigma$ the lateral diffusivity in the BBL.
959Following \citet{beckmann.doscher_JPO97}, the latter is prescribed with a spatial dependence,
960\ie\ in the conditional form
961\begin{equation}
962  \label{eq:TRA_bbl_coef}
963  A_l^\sigma (i,j,t) =
964      \begin{cases}
965        A_{bbl} & \text{if~} \nabla_\sigma \rho \cdot \nabla H < 0 \\
966        \\
967        0      & \text{otherwise} \\
968      \end{cases}
969\end{equation}
970where $A_{bbl}$ is the BBL diffusivity coefficient, given by the namelist parameter \np{rn_ahtbbl}{rn\_ahtbbl} and
971usually set to a value much larger than the one used for lateral mixing in the open ocean.
972The constraint in \autoref{eq:TRA_bbl_coef} implies that sigma-like diffusion only occurs when
973the density above the sea floor, at the top of the slope, is larger than in the deeper ocean
974(see green arrow in \autoref{fig:TRA_bbl}).
975In practice, this constraint is applied separately in the two horizontal directions,
976and the density gradient in \autoref{eq:TRA_bbl_coef} is evaluated with the log gradient formulation:
977\[
978  % \label{eq:TRA_bbl_Drho}
979  \nabla_\sigma \rho / \rho = \alpha \, \nabla_\sigma T + \beta \, \nabla_\sigma S
980\]
981where $\rho$, $\alpha$ and $\beta$ are functions of $\overline T^\sigma$, $\overline S^\sigma$ and
982$\overline H^\sigma$, the along bottom mean temperature, salinity and depth, respectively.
983
984% -------------------------------------------------------------------------------------------------------------
985%        Advective BBL
986% -------------------------------------------------------------------------------------------------------------
987\subsection[Advective bottom boundary layer (\forcode{nn_bbl_adv=1,2})]{Advective bottom boundary layer (\protect\np[=1,2]{nn_bbl_adv}{nn\_bbl\_adv})}
988\label{subsec:TRA_bbl_adv}
989
990%\sgacomment{
991%  "downsloping flow" has been replaced by "downslope flow" in the following
992%  if this is not what is meant then "downwards sloping flow" is also a possibility"
993%}
994
995%>>>>>>>>>>>>>>>>>>>>>>>>>>>>
996\begin{figure}[!t]
997  \centering
998  \includegraphics[width=0.66\textwidth]{Fig_BBL_adv}
999  \caption[Advective/diffusive bottom boundary layer]{
1000    Advective/diffusive Bottom Boundary Layer.
1001    The BBL parameterisation is activated when $\rho^i_{kup}$ is larger than $\rho^{i + 1}_{kdnw}$.
1002    Red arrows indicate the additional overturning circulation due to the advective BBL.
1003    The transport of the downslope flow is defined either
1004    as the transport of the bottom ocean cell (black arrow),
1005    or as a function of the along slope density gradient.
1006    The green arrow indicates the diffusive BBL flux directly connecting
1007    $kup$ and $kdwn$ ocean bottom cells.}
1008  \label{fig:TRA_bbl}
1009\end{figure}
1010%>>>>>>>>>>>>>>>>>>>>>>>>>>>>
1011
1012%!!      nn_bbl_adv = 1   use of the ocean velocity as bbl velocity
1013%!!      nn_bbl_adv = 2   follow Campin and Goosse (1999) implentation
1014%!!        i.e. transport proportional to the along-slope density gradient
1015
1016%%%gmcomment   :  this section has to be really written
1017
1018When applying an advective BBL (\np[=1..2]{nn_bbl_adv}{nn\_bbl\_adv}), an overturning circulation is added which
1019connects two adjacent bottom grid-points only if dense water overlies less dense water on the slope.
1020The density difference causes dense water to move down the slope.
1021
1022\np[=1]{nn_bbl_adv}{nn\_bbl\_adv}:
1023the downslope velocity is chosen to be the Eulerian ocean velocity just above the topographic step
1024(see black arrow in \autoref{fig:TRA_bbl}) \citep{beckmann.doscher_JPO97}.
1025It is a \textit{conditional advection}, that is, advection is allowed only
1026if dense water overlies less dense water on the slope (\ie\ $\nabla_\sigma \rho \cdot \nabla H < 0$) and
1027if the velocity is directed towards greater depth (\ie\ $\vect U \cdot \nabla H > 0$).
1028
1029\np[=2]{nn_bbl_adv}{nn\_bbl\_adv}:
1030the downslope velocity is chosen to be proportional to $\Delta \rho$,
1031the density difference between the higher cell and lower cell densities \citep{campin.goosse_T99}.
1032The advection is allowed only  if dense water overlies less dense water on the slope
1033(\ie\ $\nabla_\sigma \rho \cdot \nabla H < 0$).
1034For example, the resulting transport of the downslope flow, here in the $i$-direction (\autoref{fig:TRA_bbl}),
1035is simply given by the following expression:
1036\[
1037  % \label{eq:TRA_bbl_Utr}
1038  u^{tr}_{bbl} = \gamma g \frac{\Delta \rho}{\rho_o} e_{1u} \, min ({e_{3u}}_{kup},{e_{3u}}_{kdwn})
1039\]
1040where $\gamma$, expressed in seconds, is the coefficient of proportionality provided as \np{rn_gambbl}{rn\_gambbl},
1041a namelist parameter, and \textit{kup} and \textit{kdwn} are the vertical index of the higher and lower cells,
1042respectively.
1043The parameter $\gamma$ should take a different value for each bathymetric step, but for simplicity,
1044and because no direct estimation of this parameter is available, a uniform value has been assumed.
1045The possible values for $\gamma$ range between 1 and $10~s$ \citep{campin.goosse_T99}.
1046
1047Scalar properties are advected by this additional transport $(u^{tr}_{bbl},v^{tr}_{bbl})$ using the upwind scheme.
1048Such a diffusive advective scheme has been chosen to mimic the entrainment between the downslope plume and
1049the surrounding water at intermediate depths.
1050The entrainment is replaced by the vertical mixing implicit in the advection scheme.
1051Let us consider as an example the case displayed in \autoref{fig:TRA_bbl} where
1052the density at level $(i,kup)$ is larger than the one at level $(i,kdwn)$.
1053The advective BBL scheme modifies the tracer time tendency of the ocean cells near the topographic step by
1054the downslope flow \autoref{eq:TRA_bbl_dw}, the horizontal \autoref{eq:TRA_bbl_hor} and
1055the upward \autoref{eq:TRA_bbl_up} return flows as follows:
1056\begin{alignat}{3}
1057  \label{eq:TRA_bbl_dw}
1058  \partial_t T^{do}_{kdw} &\equiv \partial_t T^{do}_{kdw}
1059                                &&+ \frac{u^{tr}_{bbl}}{{b_t}^{do}_{kdw}} &&\lt( T^{sh}_{kup} - T^{do}_{kdw} \rt) \\
1060  \label{eq:TRA_bbl_hor}
1061  \partial_t T^{sh}_{kup} &\equiv \partial_t T^{sh}_{kup}
1062                                &&+ \frac{u^{tr}_{bbl}}{{b_t}^{sh}_{kup}} &&\lt( T^{do}_{kup} - T^{sh}_{kup} \rt) \\
1063  %
1064  \intertext{and for $k =kdw-1,\;..., \; kup$ :}
1065  %
1066  \label{eq:TRA_bbl_up}
1067  \partial_t T^{do}_{k} &\equiv \partial_t S^{do}_{k}
1068                                &&+ \frac{u^{tr}_{bbl}}{{b_t}^{do}_{k}}   &&\lt( T^{do}_{k +1} - T^{sh}_{k}   \rt)
1069\end{alignat}
1070where $b_t$ is the $T$-cell volume.
1071
1072Note that the BBL transport, $(u^{tr}_{bbl},v^{tr}_{bbl})$, is available in the model outputs.
1073It has to be used to compute the effective velocity as well as the effective overturning circulation.
1074
1075% ================================================================
1076% Tracer damping
1077% ================================================================
1078\section[Tracer damping (\textit{tradmp.F90})]{Tracer damping (\protect\mdl{tradmp})}
1079\label{sec:TRA_dmp}
1080%--------------------------------------------namtra_dmp-------------------------------------------------
1081
1082\begin{listing}
1083  \nlst{namtra_dmp}
1084  \caption{\forcode{&namtra_dmp}}
1085  \label{lst:namtra_dmp}
1086\end{listing}
1087%--------------------------------------------------------------------------------------------------------------
1088
1089In some applications it can be useful to add a Newtonian damping term into the temperature and salinity equations:
1090\begin{equation}
1091  \label{eq:TRA_dmp}
1092  \begin{gathered}
1093    \pd[T]{t} = \cdots - \gamma (T - T_o) \\
1094    \pd[S]{t} = \cdots - \gamma (S - S_o)
1095  \end{gathered}
1096\end{equation}
1097where $\gamma$ is the inverse of a time scale, and $T_o$ and $S_o$ are given temperature and salinity fields
1098(usually a climatology).
1099Options are defined through the  \nam{tra_dmp}{tra\_dmp} namelist variables.
1100The restoring term is added when the namelist parameter \np{ln_tradmp}{ln\_tradmp} is set to true.
1101It also requires that both \np{ln_tsd_init}{ln\_tsd\_init} and \np{ln_tsd_dmp}{ln\_tsd\_dmp} are set to true in
1102\nam{tsd}{tsd} namelist as well as \np{sn_tem}{sn\_tem} and \np{sn_sal}{sn\_sal} structures are correctly set
1103(\ie\ that $T_o$ and $S_o$ are provided in input files and read using \mdl{fldread},
1104see \autoref{subsec:SBC_fldread}).
1105The restoring coefficient $\gamma$ is a three-dimensional array read in during the \rou{tra\_dmp\_init} routine.
1106The file name is specified by the namelist variable \np{cn_resto}{cn\_resto}.
1107The DMP\_TOOLS tool is provided to allow users to generate the netcdf file.
1108
1109The two main cases in which \autoref{eq:TRA_dmp} is used are
1110\textit{(a)} the specification of the boundary conditions along artificial walls of a limited domain basin and
1111\textit{(b)} the computation of the velocity field associated with a given $T$-$S$ field
1112(for example to build the initial state of a prognostic simulation,
1113or to use the resulting velocity field for a passive tracer study).
1114The first case applies to regional models that have artificial walls instead of open boundaries.
1115In the vicinity of these walls, $\gamma$ takes large values (equivalent to a time scale of a few days) whereas
1116it is zero in the interior of the model domain.
1117The second case corresponds to the use of the robust diagnostic method \citep{sarmiento.bryan_JGR82}.
1118It allows us to find the velocity field consistent with the model dynamics whilst
1119having a $T$, $S$ field close to a given climatological field ($T_o$, $S_o$).
1120
1121The robust diagnostic method is very efficient in preventing temperature drift in intermediate waters but
1122it produces artificial sources of heat and salt within the ocean.
1123It also has undesirable effects on the ocean convection.
1124It tends to prevent deep convection and subsequent deep-water formation, by stabilising the water column too much.
1125
1126The namelist parameter \np{nn_zdmp}{nn\_zdmp} sets whether the damping should be applied in the whole water column or
1127only below the mixed layer (defined either on a density or $S_o$ criterion).
1128It is common to set the damping to zero in the mixed layer as the adjustment time scale is short here
1129\citep{madec.delecluse.ea_JPO96}.
1130
1131For generating \ifile{resto}, see the documentation for the DMP tool provided with the source code under
1132\path{./tools/DMP_TOOLS}.
1133
1134% ================================================================
1135% Tracer time evolution
1136% ================================================================
1137\section[Tracer time evolution (\textit{tranxt.F90})]{Tracer time evolution (\protect\mdl{tranxt})}
1138\label{sec:TRA_nxt}
1139%--------------------------------------------namdom-----------------------------------------------------
1140%--------------------------------------------------------------------------------------------------------------
1141
1142Options are defined through the \nam{dom}{dom} namelist variables.
1143The general framework for tracer time stepping is a modified leap-frog scheme \citep{leclair.madec_OM09},
1144\ie\ a three level centred time scheme associated with a Asselin time filter (cf. \autoref{sec:TD_mLF}):
1145\begin{equation}
1146  \label{eq:TRA_nxt}
1147  \begin{alignedat}{3}
1148    &(e_{3t}T)^{t + \rdt} &&= (e_{3t}T)_f^{t - \rdt} &&+ 2 \, \rdt \,e_{3t}^t \ \text{RHS}^t \\
1149    &(e_{3t}T)_f^t        &&= (e_{3t}T)^t            &&+ \, \gamma \, \lt[ (e_{3t}T)_f^{t - \rdt} - 2(e_{3t}T)^t + (e_{3t}T)^{t + \rdt} \rt] \\
1150    &                     &&                         &&- \, \gamma \, \rdt \, \lt[ Q^{t + \rdt/2} - Q^{t - \rdt/2} \rt]
1151  \end{alignedat}
1152\end{equation}
1153where RHS is the right hand side of the temperature equation, the subscript $f$ denotes filtered values,
1154$\gamma$ is the Asselin coefficient, and $S$ is the total forcing applied on $T$
1155(\ie\ fluxes plus content in mass exchanges).
1156$\gamma$ is initialized as \np{rn_atfp}{rn\_atfp} (\textbf{namelist} parameter).
1157Its default value is \np[=10.e-3]{rn_atfp}{rn\_atfp}.
1158Note that the forcing correction term in the filter is not applied in linear free surface
1159(\jp{ln\_linssh}\forcode{=.true.}) (see \autoref{subsec:TRA_sbc}).
1160Not also that in constant volume case, the time stepping is performed on $T$, not on its content, $e_{3t}T$.
1161
1162When the vertical mixing is solved implicitly, the update of the \textit{next} tracer fields is done in
1163\mdl{trazdf} module.
1164In this case only the swapping of arrays and the Asselin filtering is done in the \mdl{tranxt} module.
1165
1166In order to prepare for the computation of the \textit{next} time step, a swap of tracer arrays is performed:
1167$T^{t - \rdt} = T^t$ and $T^t = T_f$.
1168
1169% ================================================================
1170% Equation of State (eosbn2)
1171% ================================================================
1172\section[Equation of state (\textit{eosbn2.F90})]{Equation of state (\protect\mdl{eosbn2})}
1173\label{sec:TRA_eosbn2}
1174%--------------------------------------------nameos-----------------------------------------------------
1175
1176\begin{listing}
1177  \nlst{nameos}
1178  \caption{\forcode{&nameos}}
1179  \label{lst:nameos}
1180\end{listing}
1181%--------------------------------------------------------------------------------------------------------------
1182
1183% -------------------------------------------------------------------------------------------------------------
1184%        Equation of State
1185% -------------------------------------------------------------------------------------------------------------
1186\subsection[Equation of seawater (\forcode{ln_}\{\forcode{teos10,eos80,seos}\})]{Equation of seawater (\protect\np{ln_teos10}{ln\_teos10}, \protect\np{ln_teos80}{ln\_teos80}, or \protect\np{ln_seos}{ln\_seos})}
1187\label{subsec:TRA_eos}
1188
1189
1190The Equation Of Seawater (EOS) is an empirical nonlinear thermodynamic relationship linking seawater density,
1191$\rho$, to a number of state variables, most typically temperature, salinity and pressure.
1192Because density gradients control the pressure gradient force through the hydrostatic balance,
1193the equation of state provides a fundamental bridge between the distribution of active tracers and
1194the fluid dynamics.
1195Nonlinearities of the EOS are of major importance, in particular influencing the circulation through
1196determination of the static stability below the mixed layer,
1197thus controlling rates of exchange between the atmosphere and the ocean interior \citep{roquet.madec.ea_JPO15}.
1198Therefore an accurate EOS based on either the 1980 equation of state (EOS-80, \cite{fofonoff.millard_bk83}) or
1199TEOS-10 \citep{ioc.iapso_bk10} standards should be used anytime a simulation of the real ocean circulation is attempted
1200\citep{roquet.madec.ea_JPO15}.
1201The use of TEOS-10 is highly recommended because
1202\textit{(i)}   it is the new official EOS,
1203\textit{(ii)}  it is more accurate, being based on an updated database of laboratory measurements, and
1204\textit{(iii)} it uses Conservative Temperature and Absolute Salinity (instead of potential temperature and
1205practical salinity for EOS-80, both variables being more suitable for use as model variables
1206\citep{ioc.iapso_bk10, graham.mcdougall_JPO13}.
1207EOS-80 is an obsolescent feature of the \NEMO\ system, kept only for backward compatibility.
1208For process studies, it is often convenient to use an approximation of the EOS.
1209To that purposed, a simplified EOS (S-EOS) inspired by \citet{vallis_bk06} is also available.
1210
1211In the computer code, a density anomaly, $d_a = \rho / \rho_o - 1$, is computed, with $\rho_o$ a reference density.
1212Called \textit{rau0} in the code, $\rho_o$ is set in \mdl{phycst} to a value of $1,026~Kg/m^3$.
1213This is a sensible choice for the reference density used in a Boussinesq ocean climate model, as,
1214with the exception of only a small percentage of the ocean,
1215density in the World Ocean varies by no more than 2$\%$ from that value \citep{gill_bk82}.
1216
1217Options which control the EOS used are defined through the \nam{eos}{eos} namelist variables.
1218
1219\begin{description}
1220\item[{\np[=.true.]{ln_teos10}{ln\_teos10}}]
1221  the polyTEOS10-bsq equation of seawater \citep{roquet.madec.ea_OM15} is used.
1222  The accuracy of this approximation is comparable to the TEOS-10 rational function approximation,
1223  but it is optimized for a boussinesq fluid and the polynomial expressions have simpler and
1224  more computationally efficient expressions for their derived quantities which make them more adapted for
1225  use in ocean models.
1226  Note that a slightly higher precision polynomial form is now used replacement of
1227  the TEOS-10 rational function approximation for hydrographic data analysis \citep{ioc.iapso_bk10}.
1228  A key point is that conservative state variables are used:
1229  Absolute Salinity (unit: g/kg, notation: $S_A$) and Conservative Temperature (unit: \deg{C}, notation: $\Theta$).
1230  The pressure in decibars is approximated by the depth in meters.
1231  With TEOS10, the specific heat capacity of sea water, $C_p$, is a constant.
1232  It is set to $C_p = 3991.86795711963~J\,Kg^{-1}\,^{\circ}K^{-1}$, according to \citet{ioc.iapso_bk10}.
1233  Choosing polyTEOS10-bsq implies that the state variables used by the model are $\Theta$ and $S_A$.
1234  In particular, the initial state deined by the user have to be given as \textit{Conservative} Temperature and
1235  \textit{Absolute} Salinity.
1236  In addition, when using TEOS10, the Conservative SST is converted to potential SST prior to
1237  either computing the air-sea and ice-sea fluxes (forced mode) or
1238  sending the SST field to the atmosphere (coupled mode).
1239\item[{\np[=.true.]{ln_eos80}{ln\_eos80}}]
1240  the polyEOS80-bsq equation of seawater is used.
1241  It takes the same polynomial form as the polyTEOS10, but the coefficients have been optimized to
1242  accurately fit EOS80 (Roquet, personal comm.).
1243  The state variables used in both the EOS80 and the ocean model are:
1244  the Practical Salinity ((unit: psu, notation: $S_p$)) and
1245  Potential Temperature (unit: $^{\circ}C$, notation: $\theta$).
1246  The pressure in decibars is approximated by the depth in meters.
1247  With thsi EOS, the specific heat capacity of sea water, $C_p$, is a function of temperature, salinity and
1248  pressure \citep{fofonoff.millard_bk83}.
1249  Nevertheless, a severe assumption is made in order to have a heat content ($C_p T_p$) which
1250  is conserved by the model: $C_p$ is set to a constant value, the TEOS10 value.
1251\item[{\np[=.true.]{ln_seos}{ln\_seos}}]
1252  a simplified EOS (S-EOS) inspired by \citet{vallis_bk06} is chosen,
1253  the coefficients of which has been optimized to fit the behavior of TEOS10
1254  (Roquet, personal comm.) (see also \citet{roquet.madec.ea_JPO15}).
1255  It provides a simplistic linear representation of both cabbeling and thermobaricity effects which
1256  is enough for a proper treatment of the EOS in theoretical studies \citep{roquet.madec.ea_JPO15}.
1257  With such an equation of state there is no longer a distinction between
1258  \textit{conservative} and \textit{potential} temperature,
1259  as well as between \textit{absolute} and \textit{practical} salinity.
1260  S-EOS takes the following expression:
1261
1262  \begin{gather*}
1263    % \label{eq:TRA_S-EOS}
1264    \begin{alignedat}{2}
1265    &d_a(T,S,z) = \frac{1}{\rho_o} \big[ &- a_0 \; ( 1 + 0.5 \; \lambda_1 \; T_a + \mu_1 \; z ) * &T_a \big. \\
1266    &                                    &+ b_0 \; ( 1 - 0.5 \; \lambda_2 \; S_a - \mu_2 \; z ) * &S_a       \\
1267    &                              \big. &- \nu \;                           T_a                  &S_a \big] \\
1268    \end{alignedat}
1269    \\
1270    \text{with~} T_a = T - 10 \, ; \, S_a = S - 35 \, ; \, \rho_o = 1026~Kg/m^3
1271  \end{gather*}
1272  where the computer name of the coefficients as well as their standard value are given in \autoref{tab:TRA_SEOS}.
1273  In fact, when choosing S-EOS, various approximation of EOS can be specified simply by
1274  changing the associated coefficients.
1275  Setting to zero the two thermobaric coefficients $(\mu_1,\mu_2)$ remove thermobaric effect from S-EOS.
1276  setting to zero the three cabbeling coefficients $(\lambda_1,\lambda_2,\nu)$ remove cabbeling effect from
1277  S-EOS.
1278  Keeping non-zero value to $a_0$ and $b_0$ provide a linear EOS function of T and S.
1279\end{description}
1280
1281%>>>>>>>>>>>>>>>>>>>>>>>>>>>>
1282\begin{table}[!tb]
1283  \centering
1284  \begin{tabular}{|l|l|l|l|}
1285    \hline
1286    coeff.     & computer name   & S-EOS           & description                      \\
1287    \hline
1288    $a_0$       & \np{rn_a0}{rn\_a0}     & $1.6550~10^{-1}$ & linear thermal expansion coeff. \\
1289    \hline
1290    $b_0$         & \np{rn_b0}{rn\_b0}       & $7.6554~10^{-1}$ & linear haline  expansion coeff. \\
1291    \hline
1292    $\lambda_1$   & \np{rn_lambda1}{rn\_lambda1}& $5.9520~10^{-2}$ & cabbeling coeff. in $T^2$       \\
1293    \hline
1294    $\lambda_2$   & \np{rn_lambda2}{rn\_lambda2}& $5.4914~10^{-4}$ & cabbeling coeff. in $S^2$       \\
1295    \hline
1296    $\nu$       & \np{rn_nu}{rn\_nu}     & $2.4341~10^{-3}$ & cabbeling coeff. in $T \, S$     \\
1297    \hline
1298    $\mu_1$     & \np{rn_mu1}{rn\_mu1}    & $1.4970~10^{-4}$ & thermobaric coeff. in T         \\
1299    \hline
1300    $\mu_2$     & \np{rn_mu2}{rn\_mu2}    & $1.1090~10^{-5}$ & thermobaric coeff. in S         \\
1301    \hline
1302  \end{tabular}
1303  \caption{Standard value of S-EOS coefficients}
1304  \label{tab:TRA_SEOS}
1305\end{table}
1306%>>>>>>>>>>>>>>>>>>>>>>>>>>>>
1307
1308% -------------------------------------------------------------------------------------------------------------
1309%        Brunt-V\"{a}is\"{a}l\"{a} Frequency
1310% -------------------------------------------------------------------------------------------------------------
1311\subsection[Brunt-V\"{a}is\"{a}l\"{a} frequency]{Brunt-V\"{a}is\"{a}l\"{a} frequency}
1312\label{subsec:TRA_bn2}
1313
1314An accurate computation of the ocean stability (i.e. of $N$, the brunt-V\"{a}is\"{a}l\"{a} frequency) is of
1315paramount importance as determine the ocean stratification and is used in several ocean parameterisations
1316(namely TKE, GLS, Richardson number dependent vertical diffusion, enhanced vertical diffusion,
1317non-penetrative convection, tidal mixing  parameterisation, iso-neutral diffusion).
1318In particular, $N^2$ has to be computed at the local pressure
1319(pressure in decibar being approximated by the depth in meters).
1320The expression for $N^2$  is given by:
1321\[
1322  % \label{eq:TRA_bn2}
1323  N^2 = \frac{g}{e_{3w}} \lt( \beta \; \delta_{k + 1/2}[S] - \alpha \; \delta_{k + 1/2}[T] \rt)
1324\]
1325where $(T,S) = (\Theta,S_A)$ for TEOS10, $(\theta,S_p)$ for TEOS-80, or $(T,S)$ for S-EOS, and,
1326$\alpha$ and $\beta$ are the thermal and haline expansion coefficients.
1327The coefficients are a polynomial function of temperature, salinity and depth which expression depends on
1328the chosen EOS.
1329They are computed through \textit{eos\_rab}, a \fortran\ function that can be found in \mdl{eosbn2}.
1330
1331% -------------------------------------------------------------------------------------------------------------
1332%        Freezing Point of Seawater
1333% -------------------------------------------------------------------------------------------------------------
1334\subsection{Freezing point of seawater}
1335\label{subsec:TRA_fzp}
1336
1337The freezing point of seawater is a function of salinity and pressure \citep{fofonoff.millard_bk83}:
1338\begin{equation}
1339  \label{eq:TRA_eos_fzp}
1340  \begin{split}
1341    &T_f (S,p) = \lt( a + b \, \sqrt{S} + c \, S \rt) \, S + d \, p \\
1342    &\text{where~} a = -0.0575, \, b = 1.710523~10^{-3}, \, c = -2.154996~10^{-4} \\
1343    &\text{and~} d = -7.53~10^{-3}
1344    \end{split}
1345\end{equation}
1346
1347\autoref{eq:TRA_eos_fzp} is only used to compute the potential freezing point of sea water
1348(\ie\ referenced to the surface $p = 0$),
1349thus the pressure dependent terms in \autoref{eq:TRA_eos_fzp} (last term) have been dropped.
1350The freezing point is computed through \textit{eos\_fzp},
1351a \fortran\ function that can be found in \mdl{eosbn2}.
1352
1353% -------------------------------------------------------------------------------------------------------------
1354%        Potential Energy
1355% -------------------------------------------------------------------------------------------------------------
1356%\subsection{Potential Energy anomalies}
1357%\label{subsec:TRA_bn2}
1358
1359%    =====>>>>> TO BE written
1360%
1361
1362% ================================================================
1363% Horizontal Derivative in zps-coordinate
1364% ================================================================
1365\section[Horizontal derivative in \textit{zps}-coordinate (\textit{zpshde.F90})]{Horizontal derivative in \textit{zps}-coordinate (\protect\mdl{zpshde})}
1366\label{sec:TRA_zpshde}
1367
1368\gmcomment{STEVEN: to be consistent with earlier discussion of differencing and averaging operators,
1369I've changed "derivative" to "difference" and "mean" to "average"}
1370
1371With partial cells (\np[=.true.]{ln_zps}{ln\_zps}) at bottom and top (\np[=.true.]{ln_isfcav}{ln\_isfcav}),
1372in general, tracers in horizontally adjacent cells live at different depths.
1373Horizontal gradients of tracers are needed for horizontal diffusion (\mdl{traldf} module) and
1374the hydrostatic pressure gradient calculations (\mdl{dynhpg} module).
1375The partial cell properties at the top (\np[=.true.]{ln_isfcav}{ln\_isfcav}) are computed in the same way as
1376for the bottom.
1377So, only the bottom interpolation is explained below.
1378
1379Before taking horizontal gradients between the tracers next to the bottom,
1380a linear interpolation in the vertical is used to approximate the deeper tracer as if
1381it actually lived at the depth of the shallower tracer point (\autoref{fig:TRA_Partial_step_scheme}).
1382For example, for temperature in the $i$-direction the needed interpolated temperature, $\widetilde T$, is:
1383
1384%>>>>>>>>>>>>>>>>>>>>>>>>>>>>
1385\begin{figure}[!p]
1386  \centering
1387  \includegraphics[width=0.66\textwidth]{Fig_partial_step_scheme}
1388  \caption[Discretisation of the horizontal difference and average of tracers in
1389  the $z$-partial step coordinate]{
1390    Discretisation of the horizontal difference and average of tracers in
1391    the $z$-partial step coordinate (\protect\np[=.true.]{ln_zps}{ln\_zps}) in
1392    the case $(e3w_k^{i + 1} - e3w_k^i) > 0$.
1393    A linear interpolation is used to estimate $\widetilde T_k^{i + 1}$,
1394    the tracer value at the depth of the shallower tracer point of
1395    the two adjacent bottom $T$-points.
1396    The horizontal difference is then given by:
1397    $\delta_{i + 1/2} T_k = \widetilde T_k^{\, i + 1} -T_k^{\, i}$ and
1398    the average by:
1399    $\overline T_k^{\, i + 1/2} = (\widetilde T_k^{\, i + 1/2} - T_k^{\, i}) / 2$.}
1400  \label{fig:TRA_Partial_step_scheme}
1401\end{figure}
1402%>>>>>>>>>>>>>>>>>>>>>>>>>>>>
1403\[
1404  \widetilde T = \lt\{
1405    \begin{alignedat}{2}
1406      &T^{\, i + 1} &-\frac{ \lt( e_{3w}^{i + 1} -e_{3w}^i \rt) }{ e_{3w}^{i + 1} } \; \delta_k T^{i + 1}
1407      & \quad \text{if $e_{3w}^{i + 1} \geq e_{3w}^i$} \\ \\
1408      &T^{\, i}     &+\frac{ \lt( e_{3w}^{i + 1} -e_{3w}^i \rt )}{e_{3w}^i       } \; \delta_k T^{i + 1}
1409      & \quad \text{if $e_{3w}^{i + 1} <    e_{3w}^i$}
1410    \end{alignedat}
1411  \rt.
1412\]
1413and the resulting forms for the horizontal difference and the horizontal average value of $T$ at a $U$-point are:
1414\begin{equation}
1415  \label{eq:TRA_zps_hde}
1416  \begin{split}
1417    \delta_{i + 1/2} T       &=
1418    \begin{cases}
1419                                \widetilde T - T^i          & \text{if~} e_{3w}^{i + 1} \geq e_{3w}^i \\
1420                                \\
1421                                T^{\, i + 1} - \widetilde T & \text{if~} e_{3w}^{i + 1} <    e_{3w}^i
1422    \end{cases}
1423    \\
1424    \overline T^{\, i + 1/2} &=
1425    \begin{cases}
1426                                (\widetilde T - T^{\, i}   ) / 2 & \text{if~} e_{3w}^{i + 1} \geq e_{3w}^i \\
1427                                \\
1428                                (T^{\, i + 1} - \widetilde T) / 2 & \text{if~} e_{3w}^{i + 1} <   e_{3w}^i
1429    \end{cases}
1430  \end{split}
1431\end{equation}
1432
1433The computation of horizontal derivative of tracers as well as of density is performed once for all at
1434each time step in \mdl{zpshde} module and stored in shared arrays to be used when needed.
1435It has to be emphasized that the procedure used to compute the interpolated density, $\widetilde \rho$,
1436is not the same as that used for $T$ and $S$.
1437Instead of forming a linear approximation of density, we compute $\widetilde \rho$ from the interpolated values of
1438$T$ and $S$, and the pressure at a $u$-point
1439(in the equation of state pressure is approximated by depth, see \autoref{subsec:TRA_eos}):
1440\[
1441  % \label{eq:TRA_zps_hde_rho}
1442  \widetilde \rho = \rho (\widetilde T,\widetilde S,z_u) \quad \text{where~} z_u = \min \lt( z_T^{i + 1},z_T^i \rt)
1443\]
1444
1445This is a much better approximation as the variation of $\rho$ with depth (and thus pressure)
1446is highly non-linear with a true equation of state and thus is badly approximated with a linear interpolation.
1447This approximation is used to compute both the horizontal pressure gradient (\autoref{sec:DYN_hpg}) and
1448the slopes of neutral surfaces (\autoref{sec:LDF_slp}).
1449
1450Note that in almost all the advection schemes presented in this Chapter,
1451both averaging and differencing operators appear.
1452Yet \autoref{eq:TRA_zps_hde} has not been used in these schemes:
1453in contrast to diffusion and pressure gradient computations,
1454no correction for partial steps is applied for advection.
1455The main motivation is to preserve the domain averaged mean variance of the advected field when
1456using the $2^{nd}$ order centred scheme.
1457Sensitivity of the advection schemes to the way horizontal averages are performed in the vicinity of
1458partial cells should be further investigated in the near future.
1459%%%
1460\gmcomment{gm :   this last remark has to be done}
1461%%%
1462
1463\onlyinsubfile{\bibliography{../main/bibliography}}
1464
1465\onlyinsubfile{\printindex}
1466
1467\end{document}
Note: See TracBrowser for help on using the repository browser.