New URL for NEMO forge!   http://forge.nemo-ocean.eu

Since March 2022 along with NEMO 4.2 release, the code development moved to a self-hosted GitLab.
This present forge is now archived and remained online for history.
chap_conservation.tex in NEMO/trunk/doc/latex/NEMO/subfiles – NEMO

source: NEMO/trunk/doc/latex/NEMO/subfiles/chap_conservation.tex

Last change on this file was 14257, checked in by nicolasmartin, 3 years ago

Overall review of LaTeX sources (not tested completely as of now):

  • Reworking global files: main document.tex, add glossary.tex, cosmetic changes...
  • Ignore missing namelists (namsbc_isf, namsbc_iscpl and namptr)
  • Removal of references for unused indices (\hfile, \ifile and \jp)
  • Update of .svnignore and svn:ignore properties accordingly
  • Split of manual abstract into a common NEMO abs for all and a specific one for each engine
  • Shrinking variables names used in the frontmatter
File size: 17.2 KB
Line 
1\documentclass[../main/NEMO_manual]{subfiles}
2
3\begin{document}
4
5\chapter{Invariants of the Primitive Equations}
6\label{chap:CONS}
7
8\chaptertoc
9
10\paragraph{Changes record} ~\\
11
12{\footnotesize
13  \begin{tabularx}{\textwidth}{l||X|X}
14    Release & Author(s) & Modifications \\
15    \hline
16    {\em   4.0} & {\em ...} & {\em ...} \\
17    {\em   3.6} & {\em ...} & {\em ...} \\
18    {\em   3.4} & {\em ...} & {\em ...} \\
19    {\em <=3.4} & {\em ...} & {\em ...}
20  \end{tabularx}
21}
22
23\clearpage
24
25The continuous equations of motion have many analytic properties.
26Many quantities (total mass, energy, enstrophy, etc.) are strictly conserved in the inviscid and unforced limit,
27while ocean physics conserve the total quantities on which they act (momentum, temperature, salinity) but
28dissipate their total variance (energy, enstrophy, etc.).
29Unfortunately, the finite difference form of these equations is not guaranteed to
30retain all these important properties.
31In constructing the finite differencing schemes, we wish to ensure that
32certain integral constraints will be maintained.
33In particular, it is desirable to construct the finite difference equations so that
34horizontal kinetic energy and/or potential enstrophy of horizontally non-divergent flow,
35and variance of temperature and salinity will be conserved in the absence of dissipative effects and forcing.
36\citet{arakawa_JCP66} has first pointed out the advantage of this approach.
37He showed that if integral constraints on energy are maintained,
38the computation will be free of the troublesome "non linear" instability originally pointed out by
39\citet{phillips_TAMS59}.
40A consistent formulation of the energetic properties is also extremely important in carrying out
41long-term numerical simulations for an oceanographic model.
42Such a formulation avoids systematic errors that accumulate with time \citep{bryan_JCP97}.
43
44The general philosophy of OPA which has led to the discrete formulation presented in {\S}II.2 and II.3 is to
45choose second order non-diffusive scheme for advective terms for both dynamical and tracer equations.
46At this level of complexity, the resulting schemes are dispersive schemes.
47Therefore, they require the addition of a diffusive operator to be stable.
48The alternative is to use diffusive schemes such as upstream or flux corrected schemes.
49This last option was rejected because we prefer a complete handling of the model diffusion,
50\ie\ of the model physics rather than letting the advective scheme produces its own implicit diffusion without
51controlling the space and time structure of this implicit diffusion.
52Note that in some very specific cases as passive tracer studies, the positivity of the advective scheme is required.
53In that case, and in that case only, the advective scheme used for passive tracer is a flux correction scheme
54\citep{Marti1992?, Levy1996?, Levy1998?}.
55
56%% =================================================================================================
57\section{Conservation properties on ocean dynamics}
58\label{sec:CONS_Invariant_dyn}
59
60The non linear term of the momentum equations has been split into a vorticity term,
61a gradient of horizontal kinetic energy and a vertical advection term.
62Three schemes are available for the former (see {\S}~II.2) according to the CPP variable defined
63(default option\textbf{?}or \textbf{key{\_}vorenergy} or \textbf{key{\_}vorcombined} defined).
64They differ in their conservative properties (energy or enstrophy conserving scheme).
65The two latter terms preserve the total kinetic energy:
66the large scale kinetic energy is also preserved in practice.
67The remaining non-diffusive terms of the momentum equation
68(namely the hydrostatic and surface pressure gradient terms) also preserve the total kinetic energy and
69have no effect on the vorticity of the flow.
70
71\textbf{* relative, planetary and total vorticity term:}
72
73Let us define as either the relative, planetary and total potential vorticity, \ie, ?, and ?, respectively.
74The continuous formulation of the vorticity term satisfies following integral constraints:
75\[
76  % \label{eq:CONS_vor_vorticity}
77  \int_D {{\textbf {k}}\cdot \frac{1}{e_3 }\nabla \times \left( {\varsigma
78        \;{\mathrm {\mathbf k}}\times {\textbf {U}}_h } \right)\;dv} =0
79\]
80
81\[
82  % \label{eq:CONS_vor_enstrophy}
83  if\quad \chi =0\quad \quad \int\limits_D {\varsigma \;{\textbf{k}}\cdot
84    \frac{1}{e_3 }\nabla \times \left( {\varsigma {\textbf{k}}\times {\textbf{U}}_h } \right)\;dv} =-\int\limits_D {\frac{1}{2}\varsigma ^2\,\chi \;dv}
85  =0
86\]
87
88\[
89  % \label{eq:CONS_vor_energy}
90  \int_D {{\textbf{U}}_h \times \left( {\varsigma \;{\textbf{k}}\times {\textbf{U}}_h } \right)\;dv} =0
91\]
92where $dv = e_1\, e_2\, e_3\, di\, dj\, dk$ is the volume element.
93(II.4.1a) means that $\varsigma $ is conserved. (II.4.1b) is obtained by an integration by part.
94It means that $\varsigma^2$ is conserved for a horizontally non-divergent flow.
95(II.4.1c) is even satisfied locally since the vorticity term is orthogonal to the horizontal velocity.
96It means that the vorticity term has no contribution to the evolution of the total kinetic energy.
97(II.4.1a) is obviously always satisfied, but (II.4.1b) and (II.4.1c) cannot be satisfied simultaneously with
98a second order scheme.
99Using the symmetry or anti-symmetry properties of the operators (Eqs II.1.10 and 11),
100it can be shown that the scheme (II.2.11) satisfies (II.4.1b) but not (II.4.1c),
101while scheme (II.2.12) satisfies (II.4.1c) but not (II.4.1b) (see appendix C).
102Note that the enstrophy conserving scheme on total vorticity has been chosen as the standard discrete form of
103the vorticity term.
104
105\textbf{* Gradient of kinetic energy / vertical advection}
106
107In continuous formulation, the gradient of horizontal kinetic energy has no contribution to the evolution of
108the vorticity as the curl of a gradient is zero.
109This property is satisfied locally with the discrete form of both the gradient and the curl operator we have made
110(property (II.1.9)~).
111Another continuous property is that the change of horizontal kinetic energy due to
112vertical advection is exactly balanced by the change of horizontal kinetic energy due to
113the horizontal gradient of horizontal kinetic energy:
114
115\begin{equation} \label{eq:CONS_keg_zad}
116\int_D {{\textbf{U}}_h \cdot \nabla _h \left( {1/2\;{\textbf{U}}_h ^2} \right)\;dv} =-\int_D {{\textbf{U}}_h \cdot \frac{w}{e_3 }\;\frac{\partial
117{\textbf{U}}_h }{\partial k}\;dv}
118\end{equation}
119
120Using the discrete form given in {\S}II.2-a and the symmetry or anti-symmetry properties of
121the mean and difference operators, \autoref{eq:CONS_keg_zad} is demonstrated in the Appendix C.
122The main point here is that satisfying \autoref{eq:CONS_keg_zad} links the choice of the discrete forms of
123the vertical advection and of the horizontal gradient of horizontal kinetic energy.
124Choosing one imposes the other.
125The discrete form of the vertical advection given in {\S}II.2-a is a direct consequence of
126formulating the horizontal kinetic energy as $1/2 \left( \overline{u^2}^i + \overline{v^2}^j \right) $ in
127the gradient term.
128
129\textbf{* hydrostatic pressure gradient term}
130
131In continuous formulation, a pressure gradient has no contribution to the evolution of the vorticity as
132the curl of a gradient is zero.
133This properties is satisfied locally with the choice of discretization we have made (property (II.1.9)~).
134In addition, when the equation of state is linear
135(\ie\ when an advective-diffusive equation for density can be derived from those of temperature and salinity)
136the change of horizontal kinetic energy due to the work of pressure forces is balanced by the change of
137potential energy due to buoyancy forces:
138
139\[
140  % \label{eq:CONS_hpg_pe}
141  \int_D {-\frac{1}{\rho_o }\left. {\nabla p^h} \right|_z \cdot {\textbf {U}}_h \;dv} \;=\;\int_D {\nabla .\left( {\rho \,{\textbf{U}}} \right)\;g\;z\;\;dv}
142\]
143
144Using the discrete form given in {\S}~II.2-a and the symmetry or anti-symmetry properties of
145the mean and difference operators, (II.4.3) is demonstrated in the Appendix C.
146The main point here is that satisfying (II.4.3) strongly constraints the discrete expression of the depth of
147$T$-points and of the term added to the pressure gradient in $s-$coordinates: the depth of a $T$-point, $z_T$,
148is defined as the sum the vertical scale factors at $w$-points starting from the surface.
149
150\textbf{* surface pressure gradient term}
151
152In continuous formulation, the surface pressure gradient has no contribution to the evolution of vorticity.
153This properties is trivially satisfied locally as (II.2.3)
154(the equation verified by $\psi$ has been derived from the discrete formulation of the momentum equations,
155vertical sum and curl).
156Nevertheless, the $\psi$-equation is solved numerically by an iterative solver (see {\S}~III.5),
157thus the property is only satisfied with the accuracy required on the solver.
158In addition, with the rigid-lid approximation, the change of horizontal kinetic energy due to the work of
159surface pressure forces is exactly zero:
160\[
161  % \label{eq:CONS_spg}
162  \int_D {-\frac{1}{\rho_o }\nabla _h } \left( {p_s } \right)\cdot {\textbf{U}}_h \;dv=0
163\]
164
165(II.4.4) is satisfied in discrete form only if
166the discrete barotropic streamfunction time evolution equation is given by (II.2.3) (see appendix C).
167This shows that (II.2.3) is the only way to compute the streamfunction,
168otherwise there is no guarantee that the surface pressure force work vanishes.
169
170%% =================================================================================================
171\section{Conservation properties on ocean thermodynamics}
172\label{sec:CONS_Invariant_tra}
173
174In continuous formulation, the advective terms of the tracer equations conserve the tracer content and
175the quadratic form of the tracer, \ie
176\[
177  % \label{eq:CONS_tra_tra2}
178  \int_D {\nabla .\left( {T\;{\textbf{U}}} \right)\;dv} =0
179  \;\text{and}
180  \int_D {T\;\nabla .\left( {T\;{\textbf{U}}} \right)\;dv} =0
181\]
182
183The numerical scheme used ({\S}II.2-b) (equations in flux form, second order centred finite differences) satisfies
184(II.4.5) (see appendix C).
185Note that in both continuous and discrete formulations, there is generally no strict conservation of mass,
186since the equation of state is non linear with respect to $T$ and $S$.
187In practice, the mass is conserved with a very good accuracy.
188
189%% =================================================================================================
190\subsection{Conservation properties on momentum physics}
191\label{subsec:CONS_Invariant_dyn_physics}
192
193\textbf{* lateral momentum diffusion term}
194
195The continuous formulation of the horizontal diffusion of momentum satisfies the following integral constraints~:
196\[
197  % \label{eq:CONS_dynldf_dyn}
198  \int\limits_D {\frac{1}{e_3 }{\mathrm {\mathbf k}}\cdot \nabla \times \left[ {\nabla
199        _h \left( {A^{lm}\;\chi } \right)-\nabla _h \times \left( {A^{lm}\;\zeta
200            \;{\mathrm {\mathbf k}}} \right)} \right]\;dv} =0
201\]
202
203\[
204  % \label{eq:CONS_dynldf_div}
205  \int\limits_D {\nabla _h \cdot \left[ {\nabla _h \left( {A^{lm}\;\chi }
206        \right)-\nabla _h \times \left( {A^{lm}\;\zeta \;{\mathrm {\mathbf k}}} \right)}
207    \right]\;dv} =0
208\]
209
210\[
211  % \label{eq:CONS_dynldf_curl}
212  \int_D {{\mathrm {\mathbf U}}_h \cdot \left[ {\nabla _h \left( {A^{lm}\;\chi }
213        \right)-\nabla _h \times \left( {A^{lm}\;\zeta \;{\mathrm {\mathbf k}}} \right)}
214    \right]\;dv} \leqslant 0
215\]
216
217\[
218  % \label{eq:CONS_dynldf_curl2}
219  \mbox{if}\quad A^{lm}=cste\quad \quad \int_D {\zeta \;{\mathrm {\mathbf k}}\cdot
220    \nabla \times \left[ {\nabla _h \left( {A^{lm}\;\chi } \right)-\nabla _h
221        \times \left( {A^{lm}\;\zeta \;{\mathrm {\mathbf k}}} \right)} \right]\;dv}
222  \leqslant 0
223\]
224
225\[
226  % \label{eq:CONS_dynldf_div2}
227  \mbox{if}\quad A^{lm}=cste\quad \quad \int_D {\chi \;\nabla _h \cdot \left[
228      {\nabla _h \left( {A^{lm}\;\chi } \right)-\nabla _h \times \left(
229          {A^{lm}\;\zeta \;{\mathrm {\mathbf k}}} \right)} \right]\;dv} \leqslant 0
230\]
231
232(II.4.6a) and (II.4.6b) means that the horizontal diffusion of momentum conserve both the potential vorticity and
233the divergence of the flow, while Eqs (II.4.6c) to (II.4.6e) mean that it dissipates the energy, the enstrophy and
234the square of the divergence.
235The two latter properties are only satisfied when the eddy coefficients are horizontally uniform.
236
237Using (II.1.8) and (II.1.9), and the symmetry or anti-symmetry properties of the mean and difference operators,
238it is shown that the discrete form of the lateral momentum diffusion given in
239{\S}II.2-c satisfies all the integral constraints (II.4.6) (see appendix C).
240In particular, when the eddy coefficients are horizontally uniform,
241a complete separation of vorticity and horizontal divergence fields is ensured,
242so that diffusion (dissipation) of vorticity (enstrophy) does not generate horizontal divergence
243(variance of the horizontal divergence) and \textit{vice versa}.
244When the vertical curl of the horizontal diffusion of momentum (discrete sense) is taken,
245the term associated to the horizontal gradient of the divergence is zero locally.
246When the horizontal divergence of the horizontal diffusion of momentum (discrete sense) is taken,
247the term associated to the vertical curl of the vorticity is zero locally.
248The resulting term conserves $\chi$ and dissipates $\chi^2$ when the eddy coefficient is horizontally uniform.
249
250\textbf{* vertical momentum diffusion term}
251
252As for the lateral momentum physics, the continuous form of the vertical diffusion of
253momentum satisfies following integral constraints~:
254
255conservation of momentum, dissipation of horizontal kinetic energy
256
257\[
258  % \label{eq:CONS_dynzdf_dyn}
259  \begin{aligned}
260    & \int_D {\frac{1}{e_3 }}  \frac{\partial }{\partial k}\left( \frac{A^{vm}}{e_3 }\frac{\partial {\textbf{U}}_h }{\partial k} \right) \;dv = \overrightarrow{\textbf{0}} \\
261    & \int_D \textbf{U}_h \cdot \frac{1}{e_3} \frac{\partial}{\partial k} \left( {\frac{A^{vm}}{e_3 }}{\frac{\partial \textbf{U}_h }{\partial k}} \right) \;dv \leq 0 \\
262  \end{aligned}
263\]
264conservation of vorticity, dissipation of enstrophy
265\[
266  % \label{eq:CONS_dynzdf_vor}
267  \begin{aligned}
268    & \int_D {\frac{1}{e_3 }{\mathrm {\mathbf k}}\cdot \nabla \times \left( {\frac{1}{e_3
269          }\frac{\partial }{\partial k}\left( {\frac{A^{vm}}{e_3 }\frac{\partial {\mathrm
270                  {\mathbf U}}_h }{\partial k}} \right)} \right)\;dv} =0 \\
271    & \int_D {\zeta \,{\mathrm {\mathbf k}}\cdot \nabla \times \left( {\frac{1}{e_3
272          }\frac{\partial }{\partial k}\left( {\frac{A^{vm}}{e_3 }\frac{\partial {\mathrm
273                  {\mathbf U}}_h }{\partial k}} \right)} \right)\;dv} \leq 0 \\
274  \end{aligned}
275\]
276conservation of horizontal divergence, dissipation of square of the horizontal divergence
277\[
278  % \label{eq:CONS_dynzdf_div}
279  \begin{aligned}
280    &\int_D {\nabla \cdot \left( {\frac{1}{e_3 }\frac{\partial }{\partial
281            k}\left( {\frac{A^{vm}}{e_3 }\frac{\partial {\mathrm {\mathbf U}}_h }{\partial k}}
282          \right)} \right)\;dv} =0 \\
283    & \int_D {\chi \;\nabla \cdot \left( {\frac{1}{e_3 }\frac{\partial }{\partial
284            k}\left( {\frac{A^{vm}}{e_3 }\frac{\partial {\mathrm {\mathbf U}}_h }{\partial k}}
285          \right)} \right)\;dv} \leq 0 \\
286  \end{aligned}
287\]
288
289In discrete form, all these properties are satisfied in $z$-coordinate (see Appendix C).
290In $s$-coordinates, only first order properties can be demonstrated,
291\ie\ the vertical momentum physics conserve momentum, potential vorticity, and horizontal divergence.
292
293%% =================================================================================================
294\subsection{Conservation properties on tracer physics}
295\label{subsec:CONS_Invariant_tra_physics}
296
297The numerical schemes used for tracer subgridscale physics are written in such a way that
298the heat and salt contents are conserved (equations in flux form, second order centred finite differences).
299As a form flux is used to compute the temperature and salinity,
300the quadratic form of these quantities (\ie\ their variance) globally tends to diminish.
301As for the advective term, there is generally no strict conservation of mass even if,
302in practice, the mass is conserved with a very good accuracy.
303
304\textbf{* lateral physics: }conservation of tracer, dissipation of tracer
305variance, i.e.
306
307\[
308  % \label{eq:CONS_traldf_t_t2}
309  \begin{aligned}
310    &\int_D \nabla\, \cdot\, \left( A^{lT} \,\Re \,\nabla \,T \right)\;dv = 0 \\
311    &\int_D \,T\, \nabla\, \cdot\, \left( A^{lT} \,\Re \,\nabla \,T \right)\;dv \leq 0 \\
312  \end{aligned}
313\]
314
315\textbf{* vertical physics: }conservation of tracer, dissipation of tracer variance, \ie
316
317\[
318  % \label{eq:CONS_trazdf_t_t2}
319  \begin{aligned}
320    & \int_D \frac{1}{e_3 } \frac{\partial }{\partial k}\left( \frac{A^{vT}}{e_3 }  \frac{\partial T}{\partial k}  \right)\;dv = 0 \\
321    & \int_D \,T \frac{1}{e_3 } \frac{\partial }{\partial k}\left( \frac{A^{vT}}{e_3 }  \frac{\partial T}{\partial k}  \right)\;dv \leq 0 \\
322  \end{aligned}
323\]
324
325Using the symmetry or anti-symmetry properties of the mean and difference operators,
326it is shown that the discrete form of tracer physics given in {\S}~II.2-c satisfies all the integral constraints
327(II.4.8) and (II.4.9) except the dissipation of the square of the tracer when non-geopotential diffusion is used
328(see appendix C).
329A discrete form of the lateral tracer physics can be derived which satisfies these last properties.
330Nevertheless, it requires a horizontal averaging of the vertical component of the lateral physics that
331prevents the use of implicit resolution in the vertical.
332It has not been implemented.
333
334\subinc{\input{../../global/epilogue}}
335
336\end{document}
Note: See TracBrowser for help on using the repository browser.