New URL for NEMO forge!   http://forge.nemo-ocean.eu

Since March 2022 along with NEMO 4.2 release, the code development moved to a self-hosted GitLab.
This present forge is now archived and remained online for history.
chap_conservation.tex in NEMO/trunk/doc/latex/NEMO/subfiles – NEMO

source: NEMO/trunk/doc/latex/NEMO/subfiles/chap_conservation.tex @ 11596

Last change on this file since 11596 was 11596, checked in by nicolasmartin, 5 years ago

Application of some coding rules

  • Replace comments before sectioning cmds by a single line of 100 characters long to display when every line should break
  • Replace multi blank lines by one single blank line
  • For list environment, put \item, label and content on the same line
  • Remove \newpage and comments line around figure envs
File size: 16.5 KB
Line 
1\documentclass[../main/NEMO_manual]{subfiles}
2
3\begin{document}
4
5\chapter{Invariants of the Primitive Equations}
6\label{chap:CONS}
7
8\chaptertoc
9
10The continuous equations of motion have many analytic properties.
11Many quantities (total mass, energy, enstrophy, etc.) are strictly conserved in the inviscid and unforced limit,
12while ocean physics conserve the total quantities on which they act (momentum, temperature, salinity) but
13dissipate their total variance (energy, enstrophy, etc.).
14Unfortunately, the finite difference form of these equations is not guaranteed to
15retain all these important properties.
16In constructing the finite differencing schemes, we wish to ensure that
17certain integral constraints will be maintained.
18In particular, it is desirable to construct the finite difference equations so that
19horizontal kinetic energy and/or potential enstrophy of horizontally non-divergent flow,
20and variance of temperature and salinity will be conserved in the absence of dissipative effects and forcing.
21\citet{arakawa_JCP66} has first pointed out the advantage of this approach.
22He showed that if integral constraints on energy are maintained,
23the computation will be free of the troublesome "non linear" instability originally pointed out by
24\citet{phillips_TAMS59}.
25A consistent formulation of the energetic properties is also extremely important in carrying out
26long-term numerical simulations for an oceanographic model.
27Such a formulation avoids systematic errors that accumulate with time \citep{bryan_JCP97}.
28
29The general philosophy of OPA which has led to the discrete formulation presented in {\S}II.2 and II.3 is to
30choose second order non-diffusive scheme for advective terms for both dynamical and tracer equations.
31At this level of complexity, the resulting schemes are dispersive schemes.
32Therefore, they require the addition of a diffusive operator to be stable.
33The alternative is to use diffusive schemes such as upstream or flux corrected schemes.
34This last option was rejected because we prefer a complete handling of the model diffusion,
35\ie\ of the model physics rather than letting the advective scheme produces its own implicit diffusion without
36controlling the space and time structure of this implicit diffusion.
37Note that in some very specific cases as passive tracer studies, the positivity of the advective scheme is required.
38In that case, and in that case only, the advective scheme used for passive tracer is a flux correction scheme
39\citep{Marti1992?, Levy1996?, Levy1998?}.
40
41\section{Conservation properties on ocean dynamics}
42\label{sec:CONS_Invariant_dyn}
43
44The non linear term of the momentum equations has been split into a vorticity term,
45a gradient of horizontal kinetic energy and a vertical advection term.
46Three schemes are available for the former (see {\S}~II.2) according to the CPP variable defined
47(default option\textbf{?}or \textbf{key{\_}vorenergy} or \textbf{key{\_}vorcombined} defined).
48They differ in their conservative properties (energy or enstrophy conserving scheme).
49The two latter terms preserve the total kinetic energy:
50the large scale kinetic energy is also preserved in practice.
51The remaining non-diffusive terms of the momentum equation
52(namely the hydrostatic and surface pressure gradient terms) also preserve the total kinetic energy and
53have no effect on the vorticity of the flow.
54
55\textbf{* relative, planetary and total vorticity term:}
56
57Let us define as either the relative, planetary and total potential vorticity, \ie, ?, and ?, respectively.
58The continuous formulation of the vorticity term satisfies following integral constraints:
59\[
60  % \label{eq:CONS_vor_vorticity}
61  \int_D {{\textbf {k}}\cdot \frac{1}{e_3 }\nabla \times \left( {\varsigma
62        \;{\mathrm {\mathbf k}}\times {\textbf {U}}_h } \right)\;dv} =0
63\]
64
65\[
66  % \label{eq:CONS_vor_enstrophy}
67  if\quad \chi =0\quad \quad \int\limits_D {\varsigma \;{\textbf{k}}\cdot
68    \frac{1}{e_3 }\nabla \times \left( {\varsigma {\textbf{k}}\times {\textbf{U}}_h } \right)\;dv} =-\int\limits_D {\frac{1}{2}\varsigma ^2\,\chi \;dv}
69  =0
70\]
71
72\[
73  % \label{eq:CONS_vor_energy}
74  \int_D {{\textbf{U}}_h \times \left( {\varsigma \;{\textbf{k}}\times {\textbf{U}}_h } \right)\;dv} =0
75\]
76where $dv = e_1\, e_2\, e_3\, di\, dj\, dk$ is the volume element.
77(II.4.1a) means that $\varsigma $ is conserved. (II.4.1b) is obtained by an integration by part.
78It means that $\varsigma^2$ is conserved for a horizontally non-divergent flow.
79(II.4.1c) is even satisfied locally since the vorticity term is orthogonal to the horizontal velocity.
80It means that the vorticity term has no contribution to the evolution of the total kinetic energy.
81(II.4.1a) is obviously always satisfied, but (II.4.1b) and (II.4.1c) cannot be satisfied simultaneously with
82a second order scheme.
83Using the symmetry or anti-symmetry properties of the operators (Eqs II.1.10 and 11),
84it can be shown that the scheme (II.2.11) satisfies (II.4.1b) but not (II.4.1c),
85while scheme (II.2.12) satisfies (II.4.1c) but not (II.4.1b) (see appendix C).
86Note that the enstrophy conserving scheme on total vorticity has been chosen as the standard discrete form of
87the vorticity term.
88
89\textbf{* Gradient of kinetic energy / vertical advection}
90
91In continuous formulation, the gradient of horizontal kinetic energy has no contribution to the evolution of
92the vorticity as the curl of a gradient is zero.
93This property is satisfied locally with the discrete form of both the gradient and the curl operator we have made
94(property (II.1.9)~).
95Another continuous property is that the change of horizontal kinetic energy due to
96vertical advection is exactly balanced by the change of horizontal kinetic energy due to
97the horizontal gradient of horizontal kinetic energy:
98
99\begin{equation} \label{eq:CONS_keg_zad}
100\int_D {{\textbf{U}}_h \cdot \nabla _h \left( {1/2\;{\textbf{U}}_h ^2} \right)\;dv} =-\int_D {{\textbf{U}}_h \cdot \frac{w}{e_3 }\;\frac{\partial
101{\textbf{U}}_h }{\partial k}\;dv}
102\end{equation}
103
104Using the discrete form given in {\S}II.2-a and the symmetry or anti-symmetry properties of
105the mean and difference operators, \autoref{eq:CONS_keg_zad} is demonstrated in the Appendix C.
106The main point here is that satisfying \autoref{eq:CONS_keg_zad} links the choice of the discrete forms of
107the vertical advection and of the horizontal gradient of horizontal kinetic energy.
108Choosing one imposes the other.
109The discrete form of the vertical advection given in {\S}II.2-a is a direct consequence of
110formulating the horizontal kinetic energy as $1/2 \left( \overline{u^2}^i + \overline{v^2}^j \right) $ in
111the gradient term.
112
113\textbf{* hydrostatic pressure gradient term}
114
115In continuous formulation, a pressure gradient has no contribution to the evolution of the vorticity as
116the curl of a gradient is zero.
117This properties is satisfied locally with the choice of discretization we have made (property (II.1.9)~).
118In addition, when the equation of state is linear
119(\ie\ when an advective-diffusive equation for density can be derived from those of temperature and salinity)
120the change of horizontal kinetic energy due to the work of pressure forces is balanced by the change of
121potential energy due to buoyancy forces:
122
123\[
124  % \label{eq:CONS_hpg_pe}
125  \int_D {-\frac{1}{\rho_o }\left. {\nabla p^h} \right|_z \cdot {\textbf {U}}_h \;dv} \;=\;\int_D {\nabla .\left( {\rho \,{\textbf{U}}} \right)\;g\;z\;\;dv}
126\]
127
128Using the discrete form given in {\S}~II.2-a and the symmetry or anti-symmetry properties of
129the mean and difference operators, (II.4.3) is demonstrated in the Appendix C.
130The main point here is that satisfying (II.4.3) strongly constraints the discrete expression of the depth of
131$T$-points and of the term added to the pressure gradient in $s-$coordinates: the depth of a $T$-point, $z_T$,
132is defined as the sum the vertical scale factors at $w$-points starting from the surface.
133
134\textbf{* surface pressure gradient term}
135
136In continuous formulation, the surface pressure gradient has no contribution to the evolution of vorticity.
137This properties is trivially satisfied locally as (II.2.3)
138(the equation verified by $\psi$ has been derived from the discrete formulation of the momentum equations,
139vertical sum and curl).
140Nevertheless, the $\psi$-equation is solved numerically by an iterative solver (see {\S}~III.5),
141thus the property is only satisfied with the accuracy required on the solver.
142In addition, with the rigid-lid approximation, the change of horizontal kinetic energy due to the work of
143surface pressure forces is exactly zero:
144\[
145  % \label{eq:CONS_spg}
146  \int_D {-\frac{1}{\rho_o }\nabla _h } \left( {p_s } \right)\cdot {\textbf{U}}_h \;dv=0
147\]
148
149(II.4.4) is satisfied in discrete form only if
150the discrete barotropic streamfunction time evolution equation is given by (II.2.3) (see appendix C).
151This shows that (II.2.3) is the only way to compute the streamfunction,
152otherwise there is no guarantee that the surface pressure force work vanishes.
153
154\section{Conservation properties on ocean thermodynamics}
155\label{sec:CONS_Invariant_tra}
156
157In continuous formulation, the advective terms of the tracer equations conserve the tracer content and
158the quadratic form of the tracer, \ie
159\[
160  % \label{eq:CONS_tra_tra2}
161  \int_D {\nabla .\left( {T\;{\textbf{U}}} \right)\;dv} =0
162  \;\text{and}
163  \int_D {T\;\nabla .\left( {T\;{\textbf{U}}} \right)\;dv} =0
164\]
165
166The numerical scheme used ({\S}II.2-b) (equations in flux form, second order centred finite differences) satisfies
167(II.4.5) (see appendix C).
168Note that in both continuous and discrete formulations, there is generally no strict conservation of mass,
169since the equation of state is non linear with respect to $T$ and $S$.
170In practice, the mass is conserved with a very good accuracy.
171
172\subsection{Conservation properties on momentum physics}
173\label{subsec:CONS_Invariant_dyn_physics}
174
175\textbf{* lateral momentum diffusion term}
176
177The continuous formulation of the horizontal diffusion of momentum satisfies the following integral constraints~:
178\[
179  % \label{eq:CONS_dynldf_dyn}
180  \int\limits_D {\frac{1}{e_3 }{\mathrm {\mathbf k}}\cdot \nabla \times \left[ {\nabla
181        _h \left( {A^{lm}\;\chi } \right)-\nabla _h \times \left( {A^{lm}\;\zeta
182            \;{\mathrm {\mathbf k}}} \right)} \right]\;dv} =0
183\]
184
185\[
186  % \label{eq:CONS_dynldf_div}
187  \int\limits_D {\nabla _h \cdot \left[ {\nabla _h \left( {A^{lm}\;\chi }
188        \right)-\nabla _h \times \left( {A^{lm}\;\zeta \;{\mathrm {\mathbf k}}} \right)}
189    \right]\;dv} =0
190\]
191
192\[
193  % \label{eq:CONS_dynldf_curl}
194  \int_D {{\mathrm {\mathbf U}}_h \cdot \left[ {\nabla _h \left( {A^{lm}\;\chi }
195        \right)-\nabla _h \times \left( {A^{lm}\;\zeta \;{\mathrm {\mathbf k}}} \right)}
196    \right]\;dv} \leqslant 0
197\]
198
199\[
200  % \label{eq:CONS_dynldf_curl2}
201  \mbox{if}\quad A^{lm}=cste\quad \quad \int_D {\zeta \;{\mathrm {\mathbf k}}\cdot
202    \nabla \times \left[ {\nabla _h \left( {A^{lm}\;\chi } \right)-\nabla _h
203        \times \left( {A^{lm}\;\zeta \;{\mathrm {\mathbf k}}} \right)} \right]\;dv}
204  \leqslant 0
205\]
206
207\[
208  % \label{eq:CONS_dynldf_div2}
209  \mbox{if}\quad A^{lm}=cste\quad \quad \int_D {\chi \;\nabla _h \cdot \left[
210      {\nabla _h \left( {A^{lm}\;\chi } \right)-\nabla _h \times \left(
211          {A^{lm}\;\zeta \;{\mathrm {\mathbf k}}} \right)} \right]\;dv} \leqslant 0
212\]
213
214(II.4.6a) and (II.4.6b) means that the horizontal diffusion of momentum conserve both the potential vorticity and
215the divergence of the flow, while Eqs (II.4.6c) to (II.4.6e) mean that it dissipates the energy, the enstrophy and
216the square of the divergence.
217The two latter properties are only satisfied when the eddy coefficients are horizontally uniform.
218
219Using (II.1.8) and (II.1.9), and the symmetry or anti-symmetry properties of the mean and difference operators,
220it is shown that the discrete form of the lateral momentum diffusion given in
221{\S}II.2-c satisfies all the integral constraints (II.4.6) (see appendix C).
222In particular, when the eddy coefficients are horizontally uniform,
223a complete separation of vorticity and horizontal divergence fields is ensured,
224so that diffusion (dissipation) of vorticity (enstrophy) does not generate horizontal divergence
225(variance of the horizontal divergence) and \textit{vice versa}.
226When the vertical curl of the horizontal diffusion of momentum (discrete sense) is taken,
227the term associated to the horizontal gradient of the divergence is zero locally.
228When the horizontal divergence of the horizontal diffusion of momentum (discrete sense) is taken,
229the term associated to the vertical curl of the vorticity is zero locally.
230The resulting term conserves $\chi$ and dissipates $\chi^2$ when the eddy coefficient is horizontally uniform.
231
232\textbf{* vertical momentum diffusion term}
233
234As for the lateral momentum physics, the continuous form of the vertical diffusion of
235momentum satisfies following integral constraints~:
236
237conservation of momentum, dissipation of horizontal kinetic energy
238
239\[
240  % \label{eq:CONS_dynzdf_dyn}
241  \begin{aligned}
242    & \int_D {\frac{1}{e_3 }}  \frac{\partial }{\partial k}\left( \frac{A^{vm}}{e_3 }\frac{\partial {\textbf{U}}_h }{\partial k} \right) \;dv = \overrightarrow{\textbf{0}} \\
243    & \int_D \textbf{U}_h \cdot \frac{1}{e_3} \frac{\partial}{\partial k} \left( {\frac{A^{vm}}{e_3 }}{\frac{\partial \textbf{U}_h }{\partial k}} \right) \;dv \leq 0 \\
244  \end{aligned}
245\]
246conservation of vorticity, dissipation of enstrophy
247\[
248  % \label{eq:CONS_dynzdf_vor}
249  \begin{aligned}
250    & \int_D {\frac{1}{e_3 }{\mathrm {\mathbf k}}\cdot \nabla \times \left( {\frac{1}{e_3
251          }\frac{\partial }{\partial k}\left( {\frac{A^{vm}}{e_3 }\frac{\partial {\mathrm
252                  {\mathbf U}}_h }{\partial k}} \right)} \right)\;dv} =0 \\
253    & \int_D {\zeta \,{\mathrm {\mathbf k}}\cdot \nabla \times \left( {\frac{1}{e_3
254          }\frac{\partial }{\partial k}\left( {\frac{A^{vm}}{e_3 }\frac{\partial {\mathrm
255                  {\mathbf U}}_h }{\partial k}} \right)} \right)\;dv} \leq 0 \\
256  \end{aligned}
257\]
258conservation of horizontal divergence, dissipation of square of the horizontal divergence
259\[
260  % \label{eq:CONS_dynzdf_div}
261  \begin{aligned}
262    &\int_D {\nabla \cdot \left( {\frac{1}{e_3 }\frac{\partial }{\partial
263            k}\left( {\frac{A^{vm}}{e_3 }\frac{\partial {\mathrm {\mathbf U}}_h }{\partial k}}
264          \right)} \right)\;dv} =0 \\
265    & \int_D {\chi \;\nabla \cdot \left( {\frac{1}{e_3 }\frac{\partial }{\partial
266            k}\left( {\frac{A^{vm}}{e_3 }\frac{\partial {\mathrm {\mathbf U}}_h }{\partial k}}
267          \right)} \right)\;dv} \leq 0 \\
268  \end{aligned}
269\]
270
271In discrete form, all these properties are satisfied in $z$-coordinate (see Appendix C).
272In $s$-coordinates, only first order properties can be demonstrated,
273\ie\ the vertical momentum physics conserve momentum, potential vorticity, and horizontal divergence.
274
275\subsection{Conservation properties on tracer physics}
276\label{subsec:CONS_Invariant_tra_physics}
277
278The numerical schemes used for tracer subgridscale physics are written in such a way that
279the heat and salt contents are conserved (equations in flux form, second order centred finite differences).
280As a form flux is used to compute the temperature and salinity,
281the quadratic form of these quantities (\ie\ their variance) globally tends to diminish.
282As for the advective term, there is generally no strict conservation of mass even if,
283in practice, the mass is conserved with a very good accuracy.
284
285\textbf{* lateral physics: }conservation of tracer, dissipation of tracer
286variance, i.e.
287
288\[
289  % \label{eq:CONS_traldf_t_t2}
290  \begin{aligned}
291    &\int_D \nabla\, \cdot\, \left( A^{lT} \,\Re \,\nabla \,T \right)\;dv = 0 \\
292    &\int_D \,T\, \nabla\, \cdot\, \left( A^{lT} \,\Re \,\nabla \,T \right)\;dv \leq 0 \\
293  \end{aligned}
294\]
295
296\textbf{* vertical physics: }conservation of tracer, dissipation of tracer variance, \ie
297
298\[
299  % \label{eq:CONS_trazdf_t_t2}
300  \begin{aligned}
301    & \int_D \frac{1}{e_3 } \frac{\partial }{\partial k}\left( \frac{A^{vT}}{e_3 }  \frac{\partial T}{\partial k}  \right)\;dv = 0 \\
302    & \int_D \,T \frac{1}{e_3 } \frac{\partial }{\partial k}\left( \frac{A^{vT}}{e_3 }  \frac{\partial T}{\partial k}  \right)\;dv \leq 0 \\
303  \end{aligned}
304\]
305
306Using the symmetry or anti-symmetry properties of the mean and difference operators,
307it is shown that the discrete form of tracer physics given in {\S}~II.2-c satisfies all the integral constraints
308(II.4.8) and (II.4.9) except the dissipation of the square of the tracer when non-geopotential diffusion is used
309(see appendix C).
310A discrete form of the lateral tracer physics can be derived which satisfies these last properties.
311Nevertheless, it requires a horizontal averaging of the vertical component of the lateral physics that
312prevents the use of implicit resolution in the vertical.
313It has not been implemented.
314
315\onlyinsubfile{\input{../../global/epilogue}}
316
317\end{document}
Note: See TracBrowser for help on using the repository browser.