New URL for NEMO forge!   http://forge.nemo-ocean.eu

Since March 2022 along with NEMO 4.2 release, the code development moved to a self-hosted GitLab.
This present forge is now archived and remained online for history.
chap_conservation.tex in NEMO/trunk/doc/latex/NEMO/subfiles – NEMO

source: NEMO/trunk/doc/latex/NEMO/subfiles/chap_conservation.tex @ 11597

Last change on this file since 11597 was 11597, checked in by nicolasmartin, 5 years ago

Continuation of coding rules application
Recovery of some sections deleted by the previous commit

File size: 16.9 KB
Line 
1\documentclass[../main/NEMO_manual]{subfiles}
2
3\begin{document}
4
5\chapter{Invariants of the Primitive Equations}
6\label{chap:CONS}
7
8\chaptertoc
9
10The continuous equations of motion have many analytic properties.
11Many quantities (total mass, energy, enstrophy, etc.) are strictly conserved in the inviscid and unforced limit,
12while ocean physics conserve the total quantities on which they act (momentum, temperature, salinity) but
13dissipate their total variance (energy, enstrophy, etc.).
14Unfortunately, the finite difference form of these equations is not guaranteed to
15retain all these important properties.
16In constructing the finite differencing schemes, we wish to ensure that
17certain integral constraints will be maintained.
18In particular, it is desirable to construct the finite difference equations so that
19horizontal kinetic energy and/or potential enstrophy of horizontally non-divergent flow,
20and variance of temperature and salinity will be conserved in the absence of dissipative effects and forcing.
21\citet{arakawa_JCP66} has first pointed out the advantage of this approach.
22He showed that if integral constraints on energy are maintained,
23the computation will be free of the troublesome "non linear" instability originally pointed out by
24\citet{phillips_TAMS59}.
25A consistent formulation of the energetic properties is also extremely important in carrying out
26long-term numerical simulations for an oceanographic model.
27Such a formulation avoids systematic errors that accumulate with time \citep{bryan_JCP97}.
28
29The general philosophy of OPA which has led to the discrete formulation presented in {\S}II.2 and II.3 is to
30choose second order non-diffusive scheme for advective terms for both dynamical and tracer equations.
31At this level of complexity, the resulting schemes are dispersive schemes.
32Therefore, they require the addition of a diffusive operator to be stable.
33The alternative is to use diffusive schemes such as upstream or flux corrected schemes.
34This last option was rejected because we prefer a complete handling of the model diffusion,
35\ie\ of the model physics rather than letting the advective scheme produces its own implicit diffusion without
36controlling the space and time structure of this implicit diffusion.
37Note that in some very specific cases as passive tracer studies, the positivity of the advective scheme is required.
38In that case, and in that case only, the advective scheme used for passive tracer is a flux correction scheme
39\citep{Marti1992?, Levy1996?, Levy1998?}.
40
41%% =================================================================================================
42\section{Conservation properties on ocean dynamics}
43\label{sec:CONS_Invariant_dyn}
44
45The non linear term of the momentum equations has been split into a vorticity term,
46a gradient of horizontal kinetic energy and a vertical advection term.
47Three schemes are available for the former (see {\S}~II.2) according to the CPP variable defined
48(default option\textbf{?}or \textbf{key{\_}vorenergy} or \textbf{key{\_}vorcombined} defined).
49They differ in their conservative properties (energy or enstrophy conserving scheme).
50The two latter terms preserve the total kinetic energy:
51the large scale kinetic energy is also preserved in practice.
52The remaining non-diffusive terms of the momentum equation
53(namely the hydrostatic and surface pressure gradient terms) also preserve the total kinetic energy and
54have no effect on the vorticity of the flow.
55
56\textbf{* relative, planetary and total vorticity term:}
57
58Let us define as either the relative, planetary and total potential vorticity, \ie, ?, and ?, respectively.
59The continuous formulation of the vorticity term satisfies following integral constraints:
60\[
61  % \label{eq:CONS_vor_vorticity}
62  \int_D {{\textbf {k}}\cdot \frac{1}{e_3 }\nabla \times \left( {\varsigma
63        \;{\mathrm {\mathbf k}}\times {\textbf {U}}_h } \right)\;dv} =0
64\]
65
66\[
67  % \label{eq:CONS_vor_enstrophy}
68  if\quad \chi =0\quad \quad \int\limits_D {\varsigma \;{\textbf{k}}\cdot
69    \frac{1}{e_3 }\nabla \times \left( {\varsigma {\textbf{k}}\times {\textbf{U}}_h } \right)\;dv} =-\int\limits_D {\frac{1}{2}\varsigma ^2\,\chi \;dv}
70  =0
71\]
72
73\[
74  % \label{eq:CONS_vor_energy}
75  \int_D {{\textbf{U}}_h \times \left( {\varsigma \;{\textbf{k}}\times {\textbf{U}}_h } \right)\;dv} =0
76\]
77where $dv = e_1\, e_2\, e_3\, di\, dj\, dk$ is the volume element.
78(II.4.1a) means that $\varsigma $ is conserved. (II.4.1b) is obtained by an integration by part.
79It means that $\varsigma^2$ is conserved for a horizontally non-divergent flow.
80(II.4.1c) is even satisfied locally since the vorticity term is orthogonal to the horizontal velocity.
81It means that the vorticity term has no contribution to the evolution of the total kinetic energy.
82(II.4.1a) is obviously always satisfied, but (II.4.1b) and (II.4.1c) cannot be satisfied simultaneously with
83a second order scheme.
84Using the symmetry or anti-symmetry properties of the operators (Eqs II.1.10 and 11),
85it can be shown that the scheme (II.2.11) satisfies (II.4.1b) but not (II.4.1c),
86while scheme (II.2.12) satisfies (II.4.1c) but not (II.4.1b) (see appendix C).
87Note that the enstrophy conserving scheme on total vorticity has been chosen as the standard discrete form of
88the vorticity term.
89
90\textbf{* Gradient of kinetic energy / vertical advection}
91
92In continuous formulation, the gradient of horizontal kinetic energy has no contribution to the evolution of
93the vorticity as the curl of a gradient is zero.
94This property is satisfied locally with the discrete form of both the gradient and the curl operator we have made
95(property (II.1.9)~).
96Another continuous property is that the change of horizontal kinetic energy due to
97vertical advection is exactly balanced by the change of horizontal kinetic energy due to
98the horizontal gradient of horizontal kinetic energy:
99
100\begin{equation} \label{eq:CONS_keg_zad}
101\int_D {{\textbf{U}}_h \cdot \nabla _h \left( {1/2\;{\textbf{U}}_h ^2} \right)\;dv} =-\int_D {{\textbf{U}}_h \cdot \frac{w}{e_3 }\;\frac{\partial
102{\textbf{U}}_h }{\partial k}\;dv}
103\end{equation}
104
105Using the discrete form given in {\S}II.2-a and the symmetry or anti-symmetry properties of
106the mean and difference operators, \autoref{eq:CONS_keg_zad} is demonstrated in the Appendix C.
107The main point here is that satisfying \autoref{eq:CONS_keg_zad} links the choice of the discrete forms of
108the vertical advection and of the horizontal gradient of horizontal kinetic energy.
109Choosing one imposes the other.
110The discrete form of the vertical advection given in {\S}II.2-a is a direct consequence of
111formulating the horizontal kinetic energy as $1/2 \left( \overline{u^2}^i + \overline{v^2}^j \right) $ in
112the gradient term.
113
114\textbf{* hydrostatic pressure gradient term}
115
116In continuous formulation, a pressure gradient has no contribution to the evolution of the vorticity as
117the curl of a gradient is zero.
118This properties is satisfied locally with the choice of discretization we have made (property (II.1.9)~).
119In addition, when the equation of state is linear
120(\ie\ when an advective-diffusive equation for density can be derived from those of temperature and salinity)
121the change of horizontal kinetic energy due to the work of pressure forces is balanced by the change of
122potential energy due to buoyancy forces:
123
124\[
125  % \label{eq:CONS_hpg_pe}
126  \int_D {-\frac{1}{\rho_o }\left. {\nabla p^h} \right|_z \cdot {\textbf {U}}_h \;dv} \;=\;\int_D {\nabla .\left( {\rho \,{\textbf{U}}} \right)\;g\;z\;\;dv}
127\]
128
129Using the discrete form given in {\S}~II.2-a and the symmetry or anti-symmetry properties of
130the mean and difference operators, (II.4.3) is demonstrated in the Appendix C.
131The main point here is that satisfying (II.4.3) strongly constraints the discrete expression of the depth of
132$T$-points and of the term added to the pressure gradient in $s-$coordinates: the depth of a $T$-point, $z_T$,
133is defined as the sum the vertical scale factors at $w$-points starting from the surface.
134
135\textbf{* surface pressure gradient term}
136
137In continuous formulation, the surface pressure gradient has no contribution to the evolution of vorticity.
138This properties is trivially satisfied locally as (II.2.3)
139(the equation verified by $\psi$ has been derived from the discrete formulation of the momentum equations,
140vertical sum and curl).
141Nevertheless, the $\psi$-equation is solved numerically by an iterative solver (see {\S}~III.5),
142thus the property is only satisfied with the accuracy required on the solver.
143In addition, with the rigid-lid approximation, the change of horizontal kinetic energy due to the work of
144surface pressure forces is exactly zero:
145\[
146  % \label{eq:CONS_spg}
147  \int_D {-\frac{1}{\rho_o }\nabla _h } \left( {p_s } \right)\cdot {\textbf{U}}_h \;dv=0
148\]
149
150(II.4.4) is satisfied in discrete form only if
151the discrete barotropic streamfunction time evolution equation is given by (II.2.3) (see appendix C).
152This shows that (II.2.3) is the only way to compute the streamfunction,
153otherwise there is no guarantee that the surface pressure force work vanishes.
154
155%% =================================================================================================
156\section{Conservation properties on ocean thermodynamics}
157\label{sec:CONS_Invariant_tra}
158
159In continuous formulation, the advective terms of the tracer equations conserve the tracer content and
160the quadratic form of the tracer, \ie
161\[
162  % \label{eq:CONS_tra_tra2}
163  \int_D {\nabla .\left( {T\;{\textbf{U}}} \right)\;dv} =0
164  \;\text{and}
165  \int_D {T\;\nabla .\left( {T\;{\textbf{U}}} \right)\;dv} =0
166\]
167
168The numerical scheme used ({\S}II.2-b) (equations in flux form, second order centred finite differences) satisfies
169(II.4.5) (see appendix C).
170Note that in both continuous and discrete formulations, there is generally no strict conservation of mass,
171since the equation of state is non linear with respect to $T$ and $S$.
172In practice, the mass is conserved with a very good accuracy.
173
174%% =================================================================================================
175\subsection{Conservation properties on momentum physics}
176\label{subsec:CONS_Invariant_dyn_physics}
177
178\textbf{* lateral momentum diffusion term}
179
180The continuous formulation of the horizontal diffusion of momentum satisfies the following integral constraints~:
181\[
182  % \label{eq:CONS_dynldf_dyn}
183  \int\limits_D {\frac{1}{e_3 }{\mathrm {\mathbf k}}\cdot \nabla \times \left[ {\nabla
184        _h \left( {A^{lm}\;\chi } \right)-\nabla _h \times \left( {A^{lm}\;\zeta
185            \;{\mathrm {\mathbf k}}} \right)} \right]\;dv} =0
186\]
187
188\[
189  % \label{eq:CONS_dynldf_div}
190  \int\limits_D {\nabla _h \cdot \left[ {\nabla _h \left( {A^{lm}\;\chi }
191        \right)-\nabla _h \times \left( {A^{lm}\;\zeta \;{\mathrm {\mathbf k}}} \right)}
192    \right]\;dv} =0
193\]
194
195\[
196  % \label{eq:CONS_dynldf_curl}
197  \int_D {{\mathrm {\mathbf U}}_h \cdot \left[ {\nabla _h \left( {A^{lm}\;\chi }
198        \right)-\nabla _h \times \left( {A^{lm}\;\zeta \;{\mathrm {\mathbf k}}} \right)}
199    \right]\;dv} \leqslant 0
200\]
201
202\[
203  % \label{eq:CONS_dynldf_curl2}
204  \mbox{if}\quad A^{lm}=cste\quad \quad \int_D {\zeta \;{\mathrm {\mathbf k}}\cdot
205    \nabla \times \left[ {\nabla _h \left( {A^{lm}\;\chi } \right)-\nabla _h
206        \times \left( {A^{lm}\;\zeta \;{\mathrm {\mathbf k}}} \right)} \right]\;dv}
207  \leqslant 0
208\]
209
210\[
211  % \label{eq:CONS_dynldf_div2}
212  \mbox{if}\quad A^{lm}=cste\quad \quad \int_D {\chi \;\nabla _h \cdot \left[
213      {\nabla _h \left( {A^{lm}\;\chi } \right)-\nabla _h \times \left(
214          {A^{lm}\;\zeta \;{\mathrm {\mathbf k}}} \right)} \right]\;dv} \leqslant 0
215\]
216
217(II.4.6a) and (II.4.6b) means that the horizontal diffusion of momentum conserve both the potential vorticity and
218the divergence of the flow, while Eqs (II.4.6c) to (II.4.6e) mean that it dissipates the energy, the enstrophy and
219the square of the divergence.
220The two latter properties are only satisfied when the eddy coefficients are horizontally uniform.
221
222Using (II.1.8) and (II.1.9), and the symmetry or anti-symmetry properties of the mean and difference operators,
223it is shown that the discrete form of the lateral momentum diffusion given in
224{\S}II.2-c satisfies all the integral constraints (II.4.6) (see appendix C).
225In particular, when the eddy coefficients are horizontally uniform,
226a complete separation of vorticity and horizontal divergence fields is ensured,
227so that diffusion (dissipation) of vorticity (enstrophy) does not generate horizontal divergence
228(variance of the horizontal divergence) and \textit{vice versa}.
229When the vertical curl of the horizontal diffusion of momentum (discrete sense) is taken,
230the term associated to the horizontal gradient of the divergence is zero locally.
231When the horizontal divergence of the horizontal diffusion of momentum (discrete sense) is taken,
232the term associated to the vertical curl of the vorticity is zero locally.
233The resulting term conserves $\chi$ and dissipates $\chi^2$ when the eddy coefficient is horizontally uniform.
234
235\textbf{* vertical momentum diffusion term}
236
237As for the lateral momentum physics, the continuous form of the vertical diffusion of
238momentum satisfies following integral constraints~:
239
240conservation of momentum, dissipation of horizontal kinetic energy
241
242\[
243  % \label{eq:CONS_dynzdf_dyn}
244  \begin{aligned}
245    & \int_D {\frac{1}{e_3 }}  \frac{\partial }{\partial k}\left( \frac{A^{vm}}{e_3 }\frac{\partial {\textbf{U}}_h }{\partial k} \right) \;dv = \overrightarrow{\textbf{0}} \\
246    & \int_D \textbf{U}_h \cdot \frac{1}{e_3} \frac{\partial}{\partial k} \left( {\frac{A^{vm}}{e_3 }}{\frac{\partial \textbf{U}_h }{\partial k}} \right) \;dv \leq 0 \\
247  \end{aligned}
248\]
249conservation of vorticity, dissipation of enstrophy
250\[
251  % \label{eq:CONS_dynzdf_vor}
252  \begin{aligned}
253    & \int_D {\frac{1}{e_3 }{\mathrm {\mathbf k}}\cdot \nabla \times \left( {\frac{1}{e_3
254          }\frac{\partial }{\partial k}\left( {\frac{A^{vm}}{e_3 }\frac{\partial {\mathrm
255                  {\mathbf U}}_h }{\partial k}} \right)} \right)\;dv} =0 \\
256    & \int_D {\zeta \,{\mathrm {\mathbf k}}\cdot \nabla \times \left( {\frac{1}{e_3
257          }\frac{\partial }{\partial k}\left( {\frac{A^{vm}}{e_3 }\frac{\partial {\mathrm
258                  {\mathbf U}}_h }{\partial k}} \right)} \right)\;dv} \leq 0 \\
259  \end{aligned}
260\]
261conservation of horizontal divergence, dissipation of square of the horizontal divergence
262\[
263  % \label{eq:CONS_dynzdf_div}
264  \begin{aligned}
265    &\int_D {\nabla \cdot \left( {\frac{1}{e_3 }\frac{\partial }{\partial
266            k}\left( {\frac{A^{vm}}{e_3 }\frac{\partial {\mathrm {\mathbf U}}_h }{\partial k}}
267          \right)} \right)\;dv} =0 \\
268    & \int_D {\chi \;\nabla \cdot \left( {\frac{1}{e_3 }\frac{\partial }{\partial
269            k}\left( {\frac{A^{vm}}{e_3 }\frac{\partial {\mathrm {\mathbf U}}_h }{\partial k}}
270          \right)} \right)\;dv} \leq 0 \\
271  \end{aligned}
272\]
273
274In discrete form, all these properties are satisfied in $z$-coordinate (see Appendix C).
275In $s$-coordinates, only first order properties can be demonstrated,
276\ie\ the vertical momentum physics conserve momentum, potential vorticity, and horizontal divergence.
277
278%% =================================================================================================
279\subsection{Conservation properties on tracer physics}
280\label{subsec:CONS_Invariant_tra_physics}
281
282The numerical schemes used for tracer subgridscale physics are written in such a way that
283the heat and salt contents are conserved (equations in flux form, second order centred finite differences).
284As a form flux is used to compute the temperature and salinity,
285the quadratic form of these quantities (\ie\ their variance) globally tends to diminish.
286As for the advective term, there is generally no strict conservation of mass even if,
287in practice, the mass is conserved with a very good accuracy.
288
289\textbf{* lateral physics: }conservation of tracer, dissipation of tracer
290variance, i.e.
291
292\[
293  % \label{eq:CONS_traldf_t_t2}
294  \begin{aligned}
295    &\int_D \nabla\, \cdot\, \left( A^{lT} \,\Re \,\nabla \,T \right)\;dv = 0 \\
296    &\int_D \,T\, \nabla\, \cdot\, \left( A^{lT} \,\Re \,\nabla \,T \right)\;dv \leq 0 \\
297  \end{aligned}
298\]
299
300\textbf{* vertical physics: }conservation of tracer, dissipation of tracer variance, \ie
301
302\[
303  % \label{eq:CONS_trazdf_t_t2}
304  \begin{aligned}
305    & \int_D \frac{1}{e_3 } \frac{\partial }{\partial k}\left( \frac{A^{vT}}{e_3 }  \frac{\partial T}{\partial k}  \right)\;dv = 0 \\
306    & \int_D \,T \frac{1}{e_3 } \frac{\partial }{\partial k}\left( \frac{A^{vT}}{e_3 }  \frac{\partial T}{\partial k}  \right)\;dv \leq 0 \\
307  \end{aligned}
308\]
309
310Using the symmetry or anti-symmetry properties of the mean and difference operators,
311it is shown that the discrete form of tracer physics given in {\S}~II.2-c satisfies all the integral constraints
312(II.4.8) and (II.4.9) except the dissipation of the square of the tracer when non-geopotential diffusion is used
313(see appendix C).
314A discrete form of the lateral tracer physics can be derived which satisfies these last properties.
315Nevertheless, it requires a horizontal averaging of the vertical component of the lateral physics that
316prevents the use of implicit resolution in the vertical.
317It has not been implemented.
318
319\onlyinsubfile{\input{../../global/epilogue}}
320
321\end{document}
Note: See TracBrowser for help on using the repository browser.