New URL for NEMO forge!   http://forge.nemo-ocean.eu

Since March 2022 along with NEMO 4.2 release, the code development moved to a self-hosted GitLab.
This present forge is now archived and remained online for history.
chap_model_basics_zstar.tex in NEMO/trunk/doc/latex/NEMO/subfiles – NEMO

source: NEMO/trunk/doc/latex/NEMO/subfiles/chap_model_basics_zstar.tex @ 10405

Last change on this file since 10405 was 10354, checked in by nicolasmartin, 5 years ago

Vast edition of LaTeX subfiles to improve the readability by cutting sentences in a more suitable way
Every sentence begins in a new line and if necessary is splitted around 110 characters lenght for side-by-side visualisation,
this setting may not be adequate for everyone but something has to be set.
The punctuation was the primer trigger for the cutting process, otherwise subordinators and coordinators, in order to mostly keep a meaning for each line

File size: 16.1 KB
Line 
1\documentclass[../tex_main/NEMO_manual]{subfiles}
2\begin{document}
3% ================================================================
4% Chapter 1 ——— Model Basics
5% ================================================================
6% ================================================================
7% Curvilinear z*- s*-coordinate System
8% ================================================================
9\chapter{ essai z* s*}
10\section{Curvilinear \textit{z*}- or \textit{s*} coordinate system}
11
12% -------------------------------------------------------------------------------------------------------------
13% ????
14% -------------------------------------------------------------------------------------------------------------
15
16\colorbox{yellow}{ to be updated }
17
18In that case, the free surface equation is nonlinear, and the variations of volume are fully taken into account.
19These coordinates systems is presented in a report \citep{Levier2007} available on the \NEMO web site.
20
21\colorbox{yellow}{  end of to be updated}
22\newline
23
24% from MOM4p1 documentation
25
26To overcome problems with vanishing surface and/or bottom cells, we consider the zstar coordinate
27\begin{equation} \label{eq:PE_}
28   z^\star = H \left( \frac{z-\eta}{H+\eta} \right)
29\end{equation}
30
31This coordinate is closely related to the "eta" coordinate used in many atmospheric models
32(see Black (1994) for a review of eta coordinate atmospheric models).
33It was originally used in ocean models by Stacey et al. (1995) for studies of tides next to shelves,
34and it has been recently promoted by Adcroft and Campin (2004) for global climate modelling.
35
36The surfaces of constant $z^\star$ are quasi-horizontal.
37Indeed, the $z^\star$ coordinate reduces to $z$ when $\eta$ is zero.
38In general, when noting the large differences between undulations of the bottom topography versus undulations in
39the surface height, it is clear that surfaces constant $z^\star$ are very similar to the depth surfaces.
40These properties greatly reduce difficulties of computing the horizontal pressure gradient relative to
41terrain following sigma models discussed in \autoref{subsec:PE_sco}.
42Additionally, since $z^\star$ when $\eta = 0$, no flow is spontaneously generated in
43an unforced ocean starting from rest, regardless the bottom topography.
44This behaviour is in contrast to the case with "s"-models, where pressure gradient errors in the presence of
45nontrivial topographic variations can generate nontrivial spontaneous flow from a resting state,
46depending on the sophistication of the pressure gradient solver.
47The quasi-horizontal nature of the coordinate surfaces also facilitates the implementation of
48neutral physics parameterizations in $z^\star$ models using the same techniques as in $z$-models
49(see Chapters 13-16 of Griffies (2004) for a discussion of neutral physics in $z$-models,
50as well as  \autoref{sec:LDF_slp} in this document for treatment in \NEMO).
51
52The range over which $z^\star$ varies is time independent $-H \leq z^\star \leq 0$.
53Hence, all cells remain nonvanishing, so long as the surface height maintains $\eta > ?H$.
54This is a minor constraint relative to that encountered on the surface height when using $s = z$ or $s = z - \eta$.
55
56Because $z^\star$ has a time independent range, all grid cells have static increments ds,
57and the sum of the ver tical increments yields the time independent ocean depth %�k ds = H.
58The $z^\star$ coordinate is therefore invisible to undulations of the free surface,
59since it moves along with the free surface.
60This proper ty means that no spurious ver tical transpor t is induced across surfaces of
61constant $z^\star$ by the motion of external gravity waves.
62Such spurious transpor t can be a problem in z-models, especially those with tidal forcing.
63Quite generally, the time independent range for the $z^\star$ coordinate is a very convenient property that
64allows for a nearly arbitrary vertical resolution even in the presence of large amplitude fluctuations of
65the surface height, again so long as $\eta > -H$.
66
67
68
69%%%
70%  essai update time splitting...
71%%%
72
73
74% ================================================================
75% Surface Pressure Gradient and Sea Surface Height
76% ================================================================
77\section{Surface pressure gradient and sea surface heigth (\protect\mdl{dynspg})}
78\label{sec:DYN_hpg_spg}
79%-----------------------------------------nam_dynspg----------------------------------------------------
80
81\nlst{nam_dynspg} 
82%------------------------------------------------------------------------------------------------------------
83Options are defined through the \ngn{nam\_dynspg} namelist variables.
84The surface pressure gradient term is related to the representation of the free surface (\autoref{sec:PE_hor_pg}).
85The main distinction is between the fixed volume case (linear free surface or rigid lid) and
86the variable volume case (nonlinear free surface, \key{vvl} is active).
87In the linear free surface case (\autoref{subsec:PE_free_surface}) and rigid lid (\autoref{PE_rigid_lid}),
88the vertical scale factors $e_{3}$ are fixed in time,
89while in the nonlinear case (\autoref{subsec:PE_free_surface}) they are time-dependent.
90With both linear and nonlinear free surface, external gravity waves are allowed in the equations,
91which imposes a very small time step when an explicit time stepping is used.
92Two methods are proposed to allow a longer time step for the three-dimensional equations:
93the filtered free surface, which is a modification of the continuous equations (see \autoref{eq:PE_flt}),
94and the split-explicit free surface described below.
95The extra term introduced in the filtered method is calculated implicitly,
96so that the update of the next velocities is done in module \mdl{dynspg\_flt} and not in \mdl{dynnxt}.
97
98%-------------------------------------------------------------
99% Explicit
100%-------------------------------------------------------------
101\subsubsection{Explicit (\protect\key{dynspg\_exp})}
102\label{subsec:DYN_spg_exp}
103
104In the explicit free surface formulation, the model time step is chosen small enough to
105describe the external gravity waves (typically a few ten seconds).
106The sea surface height is given by:
107\begin{equation} \label{eq:dynspg_ssh}
108\frac{\partial \eta }{\partial t}\equiv \frac{\text{EMP}}{\rho _w }+\frac{1}{e_{1T} 
109e_{2T} }\sum\limits_k {\left( {\delta _i \left[ {e_{2u} e_{3u} u} 
110\right]+\delta _j \left[ {e_{1v} e_{3v} v} \right]} \right)} 
111\end{equation}
112
113where EMP is the surface freshwater budget (evaporation minus precipitation, and minus river runoffs
114(if the later are introduced as a surface freshwater flux, see \autoref{chap:SBC}) expressed in $Kg.m^{-2}.s^{-1}$,
115and $\rho _w =1,000\,Kg.m^{-3}$ is the volumic mass of pure water.
116The sea-surface height is evaluated using a leapfrog scheme in combination with an Asselin time filter,
117i.e. the velocity appearing in (\autoref{eq:dynspg_ssh}) is centred in time (\textit{now} velocity).
118
119The surface pressure gradient, also evaluated using a leap-frog scheme, is then simply given by:
120\begin{equation} \label{eq:dynspg_exp}
121\left\{ \begin{aligned}
122 - \frac{1}                      {e_{1u}} \; \delta _{i+1/2} \left[  \,\eta\,  \right]    \\
123 \\
124 - \frac{1}                      {e_{2v}} \; \delta _{j+1/2} \left[  \,\eta\,  \right] 
125\end{aligned} \right.
126\end{equation} 
127
128Consistent with the linearization, a $\left. \rho \right|_{k=1} / \rho _o$ factor is omitted in
129(\autoref{eq:dynspg_exp}).
130
131%-------------------------------------------------------------
132% Split-explicit time-stepping
133%-------------------------------------------------------------
134\subsubsection{Split-explicit time-stepping (\protect\key{dynspg\_ts})}
135\label{subsec:DYN_spg_ts}
136%--------------------------------------------namdom----------------------------------------------------
137
138\nlst{namdom} 
139%--------------------------------------------------------------------------------------------------------------
140The split-explicit free surface formulation used in OPA follows the one proposed by \citet{Griffies2004}.
141The general idea is to solve the free surface equation with a small time step,
142while the three dimensional prognostic variables are solved with a longer time step that
143is a multiple of \np{rdtbt} in the \ngn{namdom} namelist (Figure III.3).
144
145%>   >   >   >   >   >   >   >   >   >   >   >   >   >   >   >   >   >   >   >   >   >   >   >   >   >   >   >
146\begin{figure}[!t]   \begin{center}
147\includegraphics[width=0.90\textwidth]{Fig_DYN_dynspg_ts}
148\caption{    \protect\label{fig:DYN_dynspg_ts}
149  Schematic of the split-explicit time stepping scheme for the barotropic and baroclinic modes,
150  after \citet{Griffies2004}.
151  Time increases to the right.
152  Baroclinic time steps are denoted by $t-\Delta t$, $t, t+\Delta t$, and $t+2\Delta t$.
153  The curved line represents a leap-frog time step,
154  and the smaller barotropic time steps $N \Delta t=2\Delta t$ are denoted by the zig-zag line.
155  The vertically integrated forcing \textbf{M}(t) computed at
156  baroclinic time step t represents the interaction between the barotropic and baroclinic motions.
157  While keeping the total depth, tracer, and freshwater forcing fields fixed,
158  a leap-frog integration carries the surface height and vertically integrated velocity from
159  t to $t+2 \Delta t$ using N barotropic time steps of length $\Delta t$.
160  Time averaging the barotropic fields over the N+1 time steps (endpoints included)
161  centers the vertically integrated velocity at the baroclinic timestep $t+\Delta t$.
162  A baroclinic leap-frog time step carries the surface height to $t+\Delta t$ using the convergence of
163  the time averaged vertically integrated velocity taken from baroclinic time step t. }
164\end{center}
165\end{figure}
166%>   >   >   >   >   >   >   >   >   >   >   >   >   >   >   >   >   >   >   >   >   >   >   >   >   >   >   >
167
168The split-explicit formulation has a damping effect on external gravity waves,
169which is weaker than the filtered free surface but still significant as shown by \citet{Levier2007} in
170the case of an analytical barotropic Kelvin wave.
171
172%from griffies book: .....   copy past !
173
174\textbf{title: Time stepping the barotropic system }
175
176Assume knowledge of the full velocity and tracer fields at baroclinic time $\tau$.
177Hence, we can update the surface height and vertically integrated velocity with a leap-frog scheme using
178the small barotropic time step $\Delta t$.
179We have
180\begin{equation} \label{eq:DYN_spg_ts_eta}
181\eta^{(b)}(\tau,t_{n+1}) - \eta^{(b)}(\tau,t_{n+1}) (\tau,t_{n-1})
182   = 2 \Delta t \left[-\nabla \cdot \textbf{U}^{(b)}(\tau,t_n) + \text{EMP}_w(\tau) \right] 
183\end{equation}
184\begin{multline} \label{eq:DYN_spg_ts_u}
185\textbf{U}^{(b)}(\tau,t_{n+1}) - \textbf{U}^{(b)}(\tau,t_{n-1}\\
186   = 2\Delta t \left[ - f \textbf{k} \times \textbf{U}^{(b)}(\tau,t_{n})
187   - H(\tau) \nabla p_s^{(b)}(\tau,t_{n}) +\textbf{M}(\tau) \right]
188\end{multline}
189\
190
191In these equations, araised (b) denotes values of surface height and
192vertically integrated velocity updated with the barotropic time steps.
193The $\tau$ time label on $\eta^{(b)}$ and $U^{(b)}$ denotes the baroclinic time at which
194the vertically integrated forcing $\textbf{M}(\tau)$
195(note that this forcing includes the surface freshwater forcing), the tracer fields,
196the freshwater flux $\text{EMP}_w(\tau)$, and total depth of the ocean $H(\tau)$ are held for
197the duration of the barotropic time stepping over a single cycle.
198This is also the time that sets the barotropic time steps via
199\begin{equation} \label{eq:DYN_spg_ts_t}
200t_n=\tau+n\Delta t   
201\end{equation}
202with $n$ an integer.
203The density scaled surface pressure is evaluated via
204\begin{equation} \label{eq:DYN_spg_ts_ps}
205p_s^{(b)}(\tau,t_{n}) = \begin{cases}
206   g \;\eta_s^{(b)}(\tau,t_{n}) \;\rho(\tau)_{k=1}) / \rho_&      \text{non-linear case} \\
207   g \;\eta_s^{(b)}(\tau,t_{n}&      \text{linear case} 
208   \end{cases}
209\end{equation}
210To get started, we assume the following initial conditions
211\begin{equation} \label{eq:DYN_spg_ts_eta}
212\begin{split}
213\eta^{(b)}(\tau,t_{n=0}) &= \overline{\eta^{(b)}(\tau)}
214\\
215\eta^{(b)}(\tau,t_{n=1}) &= \eta^{(b)}(\tau,t_{n=0}) + \Delta t \ \text{RHS}_{n=0} 
216\end{split}
217\end{equation}
218with
219\begin{equation} \label{eq:DYN_spg_ts_etaF}
220 \overline{\eta^{(b)}(\tau)} = \frac{1}{N+1} \sum\limits_{n=0}^N \eta^{(b)}(\tau-\Delta t,t_{n})
221\end{equation}
222the time averaged surface height taken from the previous barotropic cycle.
223Likewise,
224\begin{equation} \label{eq:DYN_spg_ts_u}
225\textbf{U}^{(b)}(\tau,t_{n=0}) = \overline{\textbf{U}^{(b)}(\tau)}   \\
226\\
227\textbf{U}(\tau,t_{n=1}) = \textbf{U}^{(b)}(\tau,t_{n=0}) + \Delta t \ \text{RHS}_{n=0}   
228\end{equation}
229with
230\begin{equation} \label{eq:DYN_spg_ts_u}
231 \overline{\textbf{U}^{(b)}(\tau)} 
232   = \frac{1}{N+1} \sum\limits_{n=0}^N\textbf{U}^{(b)}(\tau-\Delta t,t_{n})
233\end{equation}
234the time averaged vertically integrated transport.
235Notably, there is no Robert-Asselin time filter used in the barotropic portion of the integration.
236
237Upon reaching $t_{n=N} = \tau + 2\Delta \tau$ , the vertically integrated velocity is time averaged to
238produce the updated vertically integrated velocity at baroclinic time $\tau + \Delta \tau$ 
239\begin{equation} \label{eq:DYN_spg_ts_u}
240\textbf{U}(\tau+\Delta t) = \overline{\textbf{U}^{(b)}(\tau+\Delta t)} 
241   = \frac{1}{N+1} \sum\limits_{n=0}^N\textbf{U}^{(b)}(\tau,t_{n})
242\end{equation}
243The surface height on the new baroclinic time step is then determined via
244a baroclinic leap-frog using the following form
245\begin{equation} \label{eq:DYN_spg_ts_ssh}
246\eta(\tau+\Delta) - \eta^{F}(\tau-\Delta) = 2\Delta t \ \left[ - \nabla \cdot \textbf{U}(\tau) + \text{EMP}_w \right] 
247\end{equation}
248
249The use of this "big-leap-frog" scheme for the surface height ensures compatibility between
250the mass/volume budgets and the tracer budgets.
251More discussion of this point is provided in Chapter 10 (see in particular Section 10.2).
252 
253In general, some form of time filter is needed to maintain integrity of the surface height field due to
254the leap-frog splitting mode in equation \autoref{eq:DYN_spg_ts_ssh}.
255We have tried various forms of such filtering,
256with the following method discussed in Griffies et al. (2001) chosen due to its stability and
257reasonably good maintenance of tracer conservation properties (see ??)
258
259\begin{equation} \label{eq:DYN_spg_ts_sshf}
260\eta^{F}(\tau-\Delta) =  \overline{\eta^{(b)}(\tau)} 
261\end{equation}
262Another approach tried was
263
264\begin{equation} \label{eq:DYN_spg_ts_sshf2}
265\eta^{F}(\tau-\Delta) = \eta(\tau)
266   + (\alpha/2) \left[\overline{\eta^{(b)}}(\tau+\Delta t)
267                + \overline{\eta^{(b)}}(\tau-\Delta t) -2 \;\eta(\tau) \right]
268\end{equation}
269
270which is useful since it isolates all the time filtering aspects into the term multiplied by $\alpha$.
271This isolation allows for an easy check that tracer conservation is exact when eliminating tracer and
272surface height time filtering (see ?? for more complete discussion).
273However, in the general case with a non-zero $\alpha$, the filter \autoref{eq:DYN_spg_ts_sshf} was found to
274be more conservative, and so is recommended.
275
276
277
278
279
280%-------------------------------------------------------------
281% Filtered formulation
282%-------------------------------------------------------------
283\subsubsection{Filtered formulation (\protect\key{dynspg\_flt})}
284\label{subsec:DYN_spg_flt}
285
286The filtered formulation follows the \citet{Roullet2000} implementation.
287The extra term introduced in the equations (see {\S}I.2.2) is solved implicitly.
288The elliptic solvers available in the code are documented in \autoref{chap:MISC}.
289The amplitude of the extra term is given by the namelist variable \np{rnu}.
290The default value is 1, as recommended by \citet{Roullet2000}
291
292\colorbox{red}{\np{rnu}\forcode{ = 1} to be suppressed from namelist !}
293
294%-------------------------------------------------------------
295% Non-linear free surface formulation
296%-------------------------------------------------------------
297\subsection{Non-linear free surface formulation (\protect\key{vvl})}
298\label{subsec:DYN_spg_vvl}
299
300In the non-linear free surface formulation, the variations of volume are fully taken into account.
301This option is presented in a report \citep{Levier2007} available on the NEMO web site.
302The three time-stepping methods (explicit, split-explicit and filtered) are the same as in
303\autoref{DYN_spg_linear} except that the ocean depth is now time-dependent.
304In particular, this means that in filtered case, the matrix to be inverted has to be recomputed at each time-step.
305
306
307\end{document}
Note: See TracBrowser for help on using the repository browser.