New URL for NEMO forge!   http://forge.nemo-ocean.eu

Since March 2022 along with NEMO 4.2 release, the code development moved to a self-hosted GitLab.
This present forge is now archived and remained online for history.
chap_model_basics_zstar.tex in NEMO/trunk/doc/latex/NEMO/subfiles – NEMO

source: NEMO/trunk/doc/latex/NEMO/subfiles/chap_model_basics_zstar.tex @ 11582

Last change on this file since 11582 was 11582, checked in by nicolasmartin, 5 years ago

New LaTeX commands \nam and \np to mention namelist content (step 2)
Finally convert \forcode{...} following \np{}{} into optional arg of the new command \np[]{}{}

File size: 16.6 KB
Line 
1\documentclass[../main/NEMO_manual]{subfiles}
2
3\onlyinsubfile{\makeindex}
4
5\begin{document}
6% ================================================================
7% Chapter 1 Model Basics
8% ================================================================
9% ================================================================
10% Curvilinear \zstar- \sstar-coordinate System
11% ================================================================
12\chapter{ essai \zstar \sstar}
13\section{Curvilinear \zstar- or \sstar coordinate system}
14
15% -------------------------------------------------------------------------------------------------------------
16% ????
17% -------------------------------------------------------------------------------------------------------------
18
19\colorbox{yellow}{ to be updated }
20
21In that case, the free surface equation is nonlinear, and the variations of volume are fully taken into account.
22These coordinates systems is presented in a report \citep{levier.treguier.ea_rpt07} available on the \NEMO\ web site.
23
24\colorbox{yellow}{  end of to be updated}
25
26% from MOM4p1 documentation
27
28To overcome problems with vanishing surface and/or bottom cells, we consider the zstar coordinate
29\[
30  % \label{eq:MBZ_PE_}
31  z^\star = H \left( \frac{z-\eta}{H+\eta} \right)
32\]
33
34This coordinate is closely related to the "eta" coordinate used in many atmospheric models
35(see Black (1994) for a review of eta coordinate atmospheric models).
36It was originally used in ocean models by Stacey et al. (1995) for studies of tides next to shelves,
37and it has been recently promoted by Adcroft and Campin (2004) for global climate modelling.
38
39The surfaces of constant $z^\star$ are quasi-horizontal.
40Indeed, the $z^\star$ coordinate reduces to $z$ when $\eta$ is zero.
41In general, when noting the large differences between undulations of the bottom topography versus undulations in
42the surface height, it is clear that surfaces constant $z^\star$ are very similar to the depth surfaces.
43These properties greatly reduce difficulties of computing the horizontal pressure gradient relative to
44terrain following sigma models discussed in \autoref{subsec:MB_sco}.
45Additionally, since $z^\star$ when $\eta = 0$, no flow is spontaneously generated in
46an unforced ocean starting from rest, regardless the bottom topography.
47This behaviour is in contrast to the case with "s"-models, where pressure gradient errors in the presence of
48nontrivial topographic variations can generate nontrivial spontaneous flow from a resting state,
49depending on the sophistication of the pressure gradient solver.
50The quasi-horizontal nature of the coordinate surfaces also facilitates the implementation of
51neutral physics parameterizations in $z^\star$ models using the same techniques as in $z$-models
52(see Chapters 13-16 of Griffies (2004) for a discussion of neutral physics in $z$-models,
53as well as  \autoref{sec:LDF_slp} in this document for treatment in \NEMO).
54
55The range over which $z^\star$ varies is time independent $-H \leq z^\star \leq 0$.
56Hence, all cells remain nonvanishing, so long as the surface height maintains $\eta > ?H$.
57This is a minor constraint relative to that encountered on the surface height when using $s = z$ or $s = z - \eta$.
58
59Because $z^\star$ has a time independent range, all grid cells have static increments ds,
60and the sum of the ver tical increments yields the time independent ocean depth %�k ds = H.
61The $z^\star$ coordinate is therefore invisible to undulations of the free surface,
62since it moves along with the free surface.
63This proper ty means that no spurious ver tical transpor t is induced across surfaces of
64constant $z^\star$ by the motion of external gravity waves.
65Such spurious transpor t can be a problem in z-models, especially those with tidal forcing.
66Quite generally, the time independent range for the $z^\star$ coordinate is a very convenient property that
67allows for a nearly arbitrary vertical resolution even in the presence of large amplitude fluctuations of
68the surface height, again so long as $\eta > -H$.
69
70%%%
71%  essai update time splitting...
72%%%
73
74% ================================================================
75% Surface Pressure Gradient and Sea Surface Height
76% ================================================================
77\section[Surface pressure gradient and sea surface heigth (\textit{dynspg.F90})]{Surface pressure gradient and sea surface heigth (\protect\mdl{dynspg})}
78\label{sec:MBZ_dyn_hpg_spg}
79%-----------------------------------------nam_dynspg----------------------------------------------------
80
81%\nlst{nam_dynspg}
82%------------------------------------------------------------------------------------------------------------
83Options are defined through the \nam{_dynspg}{\_dynspg} namelist variables.
84The surface pressure gradient term is related to the representation of the free surface (\autoref{sec:MB_hor_pg}).
85The main distinction is between the fixed volume case (linear free surface or rigid lid) and
86the variable volume case (nonlinear free surface, \key{vvl} is active).
87In the linear free surface case (\autoref{subsec:MB_free_surface}) and rigid lid (\autoref{PE_rigid_lid}),
88the vertical scale factors $e_{3}$ are fixed in time,
89while in the nonlinear case (\autoref{subsec:MB_free_surface}) they are time-dependent.
90With both linear and nonlinear free surface, external gravity waves are allowed in the equations,
91which imposes a very small time step when an explicit time stepping is used.
92Two methods are proposed to allow a longer time step for the three-dimensional equations:
93the filtered free surface, which is a modification of the continuous equations %(see \autoref{eq:MB_flt?}),
94and the split-explicit free surface described below.
95The extra term introduced in the filtered method is calculated implicitly,
96so that the update of the next velocities is done in module \mdl{dynspg\_flt} and not in \mdl{dynnxt}.
97
98%-------------------------------------------------------------
99% Explicit
100%-------------------------------------------------------------
101\subsubsection[Explicit (\texttt{\textbf{key\_dynspg\_exp}})]{Explicit (\protect\key{dynspg\_exp})}
102\label{subsec:MBZ_dyn_spg_exp}
103
104In the explicit free surface formulation, the model time step is chosen small enough to
105describe the external gravity waves (typically a few ten seconds).
106The sea surface height is given by:
107\begin{equation}
108  \label{eq:MBZ_dynspg_ssh}
109  \frac{\partial \eta }{\partial t}\equiv \frac{\text{EMP}}{\rho_w }+\frac{1}{e_{1T}
110    e_{2T} }\sum\limits_k {\left( {\delta_i \left[ {e_{2u} e_{3u} u}
111        \right]+\delta_j \left[ {e_{1v} e_{3v} v} \right]} \right)}
112\end{equation}
113
114where EMP is the surface freshwater budget (evaporation minus precipitation, and minus river runoffs
115(if the later are introduced as a surface freshwater flux, see \autoref{chap:SBC}) expressed in $Kg.m^{-2}.s^{-1}$,
116and $\rho_w =1,000\,Kg.m^{-3}$ is the volumic mass of pure water.
117The sea-surface height is evaluated using a leapfrog scheme in combination with an Asselin time filter,
118(\ie\ the velocity appearing in (\autoref{eq:DYN_spg_ssh}) is centred in time (\textit{now} velocity).
119
120The surface pressure gradient, also evaluated using a leap-frog scheme, is then simply given by:
121\begin{equation}
122  \label{eq:MBZ_dynspg_exp}
123  \left\{
124    \begin{aligned}
125      - \frac{1}                    {e_{1u}} \; \delta_{i+1/2} \left[  \,\eta\,  \right] \\ \\
126      - \frac{1}                    {e_{2v}} \; \delta_{j+1/2} \left[  \,\eta\,  \right]
127    \end{aligned}
128  \right.
129\end{equation}
130
131Consistent with the linearization, a $\left. \rho \right|_{k=1} / \rho_o$ factor is omitted in
132(\autoref{eq:DYN_spg_exp}).
133
134%-------------------------------------------------------------
135% Split-explicit time-stepping
136%-------------------------------------------------------------
137\subsubsection[Split-explicit time-stepping (\texttt{\textbf{key\_dynspg\_ts}})]{Split-explicit time-stepping (\protect\key{dynspg\_ts})}
138\label{subsec:MBZ_dyn_spg_ts}
139%--------------------------------------------namdom----------------------------------------------------
140
141%--------------------------------------------------------------------------------------------------------------
142The split-explicit free surface formulation used in OPA follows the one proposed by \citet{Griffies2004?}.
143The general idea is to solve the free surface equation with a small time step,
144while the three dimensional prognostic variables are solved with a longer time step that
145is a multiple of \np{rdtbt}{rdtbt} in the \nam{dom}{dom} namelist (Figure III.3).
146
147%>   >   >   >   >   >   >   >   >   >   >   >   >   >   >   >   >   >   >   >   >   >   >   >   >   >   >   >
148\begin{figure}[!t]
149  \centering
150  \includegraphics[width=0.66\textwidth]{Fig_DYN_dynspg_ts}
151  \caption[Schematic of the split-explicit time stepping scheme for
152  the barotropic and baroclinic modes, after \citet{Griffies2004?}]{
153    Schematic of the split-explicit time stepping scheme for the barotropic and baroclinic modes,
154    after \citet{Griffies2004?}.
155    Time increases to the right.
156    Baroclinic time steps are denoted by $t-\Delta t$, $t, t+\Delta t$, and $t+2\Delta t$.
157    The curved line represents a leap-frog time step,
158    and the smaller barotropic time steps $N \Delta t=2\Delta t$ are denoted by the zig-zag line.
159    The vertically integrated forcing \textbf{M}(t) computed at
160    baroclinic time step t represents the interaction between the barotropic and baroclinic motions.
161    While keeping the total depth, tracer, and freshwater forcing fields fixed,
162    a leap-frog integration carries the surface height and vertically integrated velocity from
163    t to $t+2 \Delta t$ using N barotropic time steps of length $\Delta t$.
164    Time averaging the barotropic fields over the N+1 time steps (endpoints included)
165    centers the vertically integrated velocity at the baroclinic timestep $t+\Delta t$.
166    A baroclinic leap-frog time step carries the surface height to $t+\Delta t$ using
167    the convergence of the time averaged vertically integrated velocity taken from
168    baroclinic time step t.}
169  \label{fig:MBZ_dyn_dynspg_ts}
170\end{figure}
171%>   >   >   >   >   >   >   >   >   >   >   >   >   >   >   >   >   >   >   >   >   >   >   >   >   >   >   >
172
173The split-explicit formulation has a damping effect on external gravity waves,
174which is weaker than the filtered free surface but still significant as shown by \citet{levier.treguier.ea_rpt07} in
175the case of an analytical barotropic Kelvin wave.
176
177%from griffies book: .....   copy past !
178
179\textbf{title: Time stepping the barotropic system }
180
181Assume knowledge of the full velocity and tracer fields at baroclinic time $\tau$.
182Hence, we can update the surface height and vertically integrated velocity with a leap-frog scheme using
183the small barotropic time step $\Delta t$.
184We have
185\[
186  % \label{eq:MBZ_dyn_spg_ts_eta}
187  \eta^{(b)}(\tau,t_{n+1}) - \eta^{(b)}(\tau,t_{n+1}) (\tau,t_{n-1})
188  = 2 \Delta t \left[-\nabla \cdot \textbf{U}^{(b)}(\tau,t_n) + \text{EMP}_w(\tau) \right]
189\]
190\begin{multline*}
191  % \label{eq:MBZ_dyn_spg_ts_u}
192  \textbf{U}^{(b)}(\tau,t_{n+1}) - \textbf{U}^{(b)}(\tau,t_{n-1}\\
193  = 2\Delta t \left[ - f \textbf{k} \times \textbf{U}^{(b)}(\tau,t_{n})
194    - H(\tau) \nabla p_s^{(b)}(\tau,t_{n}) +\textbf{M}(\tau) \right]
195\end{multline*}
196\
197
198In these equations, araised (b) denotes values of surface height and
199vertically integrated velocity updated with the barotropic time steps.
200The $\tau$ time label on $\eta^{(b)}$ and $U^{(b)}$ denotes the baroclinic time at which
201the vertically integrated forcing $\textbf{M}(\tau)$
202(note that this forcing includes the surface freshwater forcing), the tracer fields,
203the freshwater flux $\text{EMP}_w(\tau)$, and total depth of the ocean $H(\tau)$ are held for
204the duration of the barotropic time stepping over a single cycle.
205This is also the time that sets the barotropic time steps via
206\[
207  % \label{eq:MBZ_dyn_spg_ts_t}
208  t_n=\tau+n\Delta t
209\]
210with $n$ an integer.
211The density scaled surface pressure is evaluated via
212\[
213  % \label{eq:MBZ_dyn_spg_ts_ps}
214  p_s^{(b)}(\tau,t_{n}) =
215  \begin{cases}
216    g \;\eta_s^{(b)}(\tau,t_{n}) \;\rho(\tau)_{k=1}) / \rho_o  &      \text{non-linear case} \\
217    g \;\eta_s^{(b)}(\tau,t_{n})  &      \text{linear case}
218  \end{cases}
219\]
220To get started, we assume the following initial conditions
221\[
222  % \label{eq:MBZ_dyn_spg_ts_eta}
223  \begin{split}
224    \eta^{(b)}(\tau,t_{n=0}) &= \overline{\eta^{(b)}(\tau)} \\
225    \eta^{(b)}(\tau,t_{n=1}) &= \eta^{(b)}(\tau,t_{n=0}) + \Delta t \ \text{RHS}_{n=0}
226  \end{split}
227\]
228with
229\[
230  % \label{eq:MBZ_dyn_spg_ts_etaF}
231  \overline{\eta^{(b)}(\tau)} = \frac{1}{N+1} \sum\limits_{n=0}^N \eta^{(b)}(\tau-\Delta t,t_{n})
232\]
233the time averaged surface height taken from the previous barotropic cycle.
234Likewise,
235\[
236  % \label{eq:MBZ_dyn_spg_ts_u}
237  \textbf{U}^{(b)}(\tau,t_{n=0}) = \overline{\textbf{U}^{(b)}(\tau)} \\ \\
238  \textbf{U}(\tau,t_{n=1}) = \textbf{U}^{(b)}(\tau,t_{n=0}) + \Delta t \ \text{RHS}_{n=0}
239\]
240with
241\[
242  % \label{eq:MBZ_dyn_spg_ts_u}
243  \overline{\textbf{U}^{(b)}(\tau)} = \frac{1}{N+1} \sum\limits_{n=0}^N\textbf{U}^{(b)}(\tau-\Delta t,t_{n})
244\]
245the time averaged vertically integrated transport.
246Notably, there is no Robert-Asselin time filter used in the barotropic portion of the integration.
247
248Upon reaching $t_{n=N} = \tau + 2\Delta \tau$ , the vertically integrated velocity is time averaged to
249produce the updated vertically integrated velocity at baroclinic time $\tau + \Delta \tau$
250\[
251  % \label{eq:MBZ_dyn_spg_ts_u}
252  \textbf{U}(\tau+\Delta t) = \overline{\textbf{U}^{(b)}(\tau+\Delta t)}
253  = \frac{1}{N+1} \sum\limits_{n=0}^N\textbf{U}^{(b)}(\tau,t_{n})
254\]
255The surface height on the new baroclinic time step is then determined via
256a baroclinic leap-frog using the following form
257\begin{equation}
258  \label{eq:MBZ_dyn_spg_ts_ssh}
259  \eta(\tau+\Delta) - \eta^{F}(\tau-\Delta) = 2\Delta t \ \left[ - \nabla \cdot \textbf{U}(\tau) + \text{EMP}_w \right]
260\end{equation}
261
262The use of this "big-leap-frog" scheme for the surface height ensures compatibility between
263the mass/volume budgets and the tracer budgets.
264More discussion of this point is provided in Chapter 10 (see in particular Section 10.2).
265
266In general, some form of time filter is needed to maintain integrity of the surface height field due to
267the leap-frog splitting mode in equation \autoref{eq:MBZ_dyn_spg_ts_ssh}.
268We have tried various forms of such filtering,
269with the following method discussed in Griffies et al. (2001) chosen due to its stability and
270reasonably good maintenance of tracer conservation properties (see ??)
271
272\begin{equation}
273  \label{eq:MBZ_dyn_spg_ts_sshf}
274  \eta^{F}(\tau-\Delta) =  \overline{\eta^{(b)}(\tau)}
275\end{equation}
276Another approach tried was
277
278\[
279  % \label{eq:MBZ_dyn_spg_ts_sshf2}
280  \eta^{F}(\tau-\Delta) = \eta(\tau)
281  + (\alpha/2) \left[\overline{\eta^{(b)}}(\tau+\Delta t)
282    + \overline{\eta^{(b)}}(\tau-\Delta t) -2 \;\eta(\tau) \right]
283\]
284
285which is useful since it isolates all the time filtering aspects into the term multiplied by $\alpha$.
286This isolation allows for an easy check that tracer conservation is exact when eliminating tracer and
287surface height time filtering (see ?? for more complete discussion).
288However, in the general case with a non-zero $\alpha$, the filter \autoref{eq:MBZ_dyn_spg_ts_sshf} was found to
289be more conservative, and so is recommended.
290
291%-------------------------------------------------------------
292% Filtered formulation
293%-------------------------------------------------------------
294\subsubsection[Filtered formulation (\texttt{\textbf{key\_dynspg\_flt}})]{Filtered formulation (\protect\key{dynspg\_flt})}
295\label{subsec:MBZ_dyn_spg_flt}
296
297The filtered formulation follows the \citet{Roullet2000?} implementation.
298The extra term introduced in the equations (see {\S}I.2.2) is solved implicitly.
299The elliptic solvers available in the code are documented in \autoref{chap:MISC}.
300The amplitude of the extra term is given by the namelist variable \np{rnu}{rnu}.
301The default value is 1, as recommended by \citet{Roullet2000?}
302
303\colorbox{red}{\np[=1]{rnu}{rnu} to be suppressed from namelist !}
304
305%-------------------------------------------------------------
306% Non-linear free surface formulation
307%-------------------------------------------------------------
308\subsection[Non-linear free surface formulation (\texttt{\textbf{key\_vvl}})]{Non-linear free surface formulation (\protect\key{vvl})}
309\label{subsec:MBZ_dyn_spg_vvl}
310
311In the non-linear free surface formulation, the variations of volume are fully taken into account.
312This option is presented in a report \citep{levier.treguier.ea_rpt07} available on the \NEMO\ web site.
313The three time-stepping methods (explicit, split-explicit and filtered) are the same as in
314\autoref{?:DYN_spg_linear?} except that the ocean depth is now time-dependent.
315In particular, this means that in filtered case, the matrix to be inverted has to be recomputed at each time-step.
316
317\onlyinsubfile{\bibliography{../main/bibliography}}
318
319\onlyinsubfile{\printindex}
320
321\end{document}
Note: See TracBrowser for help on using the repository browser.