New URL for NEMO forge!   http://forge.nemo-ocean.eu

Since March 2022 along with NEMO 4.2 release, the code development moved to a self-hosted GitLab.
This present forge is now archived and remained online for history.
chap_time_domain.tex in NEMO/trunk/doc/latex/NEMO/subfiles – NEMO

source: NEMO/trunk/doc/latex/NEMO/subfiles/chap_time_domain.tex

Last change on this file was 14530, checked in by nicolasmartin, 3 years ago

Revert commit 14526, can't use verbatim envs in macro

File size: 19.7 KB
Line 
1\documentclass[../main/NEMO_manual]{subfiles}
2
3\begin{document}
4
5\chapter{Time Domain}
6\label{chap:TD}
7
8\chaptertoc
9
10\paragraph{Changes record} ~\\
11
12{\footnotesize
13  \begin{tabularx}{0.5\textwidth}{l||X|X}
14    Release          & Author(s)                                       & 
15    Modifications                                                      \\
16    \hline
17    {\em        4.0} & {\em J\'{e}r\^{o}me Chanut \newline Tim Graham} & 
18    {\em Review \newline Update                                      } \\
19    {\em        3.6} & {\em Christian \'{E}th\'{e}                   } & 
20    {\em Update                                                      } \\
21    {\em $\leq$ 3.4} & {\em Gurvan Madec                             } & 
22    {\em First version                                               } \\
23  \end{tabularx}
24}
25
26\clearpage
27
28% Missing things:
29% - daymod: definition of the time domain (nit000, nitend and the calendar)
30
31\cmtgm{STEVEN :maybe a picture of the directory structure in the introduction which
32could be referred to here, would help  ==> to be added}
33
34Having defined the continuous equations in \autoref{chap:MB},
35we need now to choose a time discretization,
36a key feature of an ocean model as it exerts a strong influence on the structure of the computer code
37(\ie\ on its flowchart).
38In the present chapter, we provide a general description of the \NEMO\ time stepping strategy and
39the consequences for the order in which the equations are solved.
40
41%% =================================================================================================
42\section{Time stepping environment}
43\label{sec:TD_environment}
44
45The time stepping used in \NEMO\ is a three level scheme that can be represented as follows:
46
47\begin{equation}
48  \label{eq:TD}
49  x^{t + \rdt} = x^{t - \rdt} + 2 \, \rdt \ \text{RHS}_x^{t - \rdt, \, t, \, t + \rdt}
50\end{equation}
51
52where $x$ stands for $u$, $v$, $T$ or $S$;
53RHS is the \textbf{R}ight-\textbf{H}and-\textbf{S}ide of the corresponding time evolution equation;
54$\rdt$ is the time step;
55and the superscripts indicate the time at which a quantity is evaluated.
56Each term of the RHS is evaluated at a specific time stepping depending on
57the physics with which it is associated.
58
59The choice of the time stepping used for this evaluation is discussed below as well as
60the implications for starting or restarting a model simulation.
61Note that the time stepping calculation is generally performed in a single operation.
62With such a complex and nonlinear system of equations it would be dangerous to
63let a prognostic variable evolve in time for each term separately.
64
65The three level scheme requires three arrays for each prognostic variable.
66For each variable $x$ there is $x_b$ (before), $x_n$ (now) and $x_a$.
67The third array, although referred to as $x_a$ (after) in the code,
68is usually not the variable at the after time step;
69but rather it is used to store the time derivative (RHS in \autoref{eq:TD})
70prior to time-stepping the equation.
71The time stepping itself is performed once at each time step where
72implicit vertical diffusion is computed,
73\ie\ in the \mdl{trazdf} and \mdl{dynzdf} modules.
74
75%% =================================================================================================
76\section{Non-diffusive part --- Leapfrog scheme}
77\label{sec:TD_leap_frog}
78
79The time stepping used for processes other than diffusion is
80the well-known \textbf{L}eap\textbf{F}rog (LF) scheme \citep{mesinger.arakawa_bk76}.
81This scheme is widely used for advection processes in low-viscosity fluids.
82It is a time centred scheme, \ie\ the RHS in \autoref{eq:TD} is evaluated at
83time step $t$, the now time step.
84It may be used for momentum and tracer advection, pressure gradient, and Coriolis terms,
85but not for diffusion terms.
86It is an efficient method that achieves second-order accuracy with
87just one right hand side evaluation per time step.
88Moreover, it does not artificially damp linear oscillatory motion
89nor does it produce instability by amplifying the oscillations.
90These advantages are somewhat diminished by the large phase-speed error of the leapfrog scheme,
91and the unsuitability of leapfrog differencing for the representation of diffusion and
92Rayleigh damping processes.
93However, the scheme allows the coexistence of a numerical and a physical mode due to
94its leading third order dispersive error.
95In other words a divergence of odd and even time steps may occur.
96To prevent it, the leapfrog scheme is often used in association with
97a \textbf{R}obert-\textbf{A}sselin time filter (hereafter the LF-RA scheme).
98This filter,
99first designed by \citet{robert_JMSJ66} and more comprehensively studied by \citet{asselin_MWR72},
100is a kind of laplacian diffusion in time that mixes odd and even time steps:
101
102\begin{equation}
103  \label{eq:TD_asselin}
104  x_F^t = x^t + \gamma \, \lt[ x_F^{t - \rdt} - 2 x^t + x^{t + \rdt} \rt]
105\end{equation}
106
107where the subscript $F$ denotes filtered values and $\gamma$ is the Asselin coefficient.
108$\gamma$ is initialized as \np{rn_atfp}{rn\_atfp} (namelist parameter).
109Its default value is \np[=10.e-3]{rn_atfp}{rn\_atfp} (see \autoref{sec:TD_mLF}),
110causing only a weak dissipation of high frequency motions (\citep{farge-coulombier_phd87}).
111The addition of a time filter degrades the accuracy of the calculation from second to first order.
112However, the second order truncation error is proportional to $\gamma$, which is small compared to 1.
113Therefore, the LF-RA is a quasi second order accurate scheme.
114The LF-RA scheme is preferred to other time differencing schemes such as
115predictor corrector or trapezoidal schemes, because the user has an explicit and simple control of
116the magnitude of the time diffusion of the scheme.
117When used with the 2$^nd$ order space centred discretisation of the advection terms in
118the momentum and tracer equations, LF-RA avoids implicit numerical diffusion:
119diffusion is set explicitly by the user through the Robert-Asselin filter parameter and
120the viscosity and diffusion coefficients.
121
122%% =================================================================================================
123\section{Diffusive part --- Forward or backward scheme}
124\label{sec:TD_forward_imp}
125
126The leapfrog differencing scheme is unsuitable for
127the representation of diffusion and damping processes.
128For a tendency $D_x$, representing a diffusion term or a restoring term to a tracer climatology
129(when present, see \autoref{sec:TRA_dmp}), a forward time differencing scheme is used :
130\[
131  %\label{eq:TD_euler}
132  x^{t + \rdt} = x^{t - \rdt} + 2 \, \rdt \ D_x^{t - \rdt}
133\]
134
135This is diffusive in time and conditionally stable.
136The conditions for stability of second and fourth order horizontal diffusion schemes are
137\citep{griffies_bk04}:
138
139\begin{equation}
140  \label{eq:TD_euler_stability}
141  A^h <
142  \begin{cases}
143    \frac{e^2}{ 8 \, \rdt} & \text{laplacian diffusion} \\
144    \frac{e^4}{64 \, \rdt} & \text{bilaplacian diffusion}
145  \end{cases}
146\end{equation}
147
148where $e$ is the smallest grid size in the two horizontal directions and
149$A^h$ is the mixing coefficient.
150The linear constraint \autoref{eq:TD_euler_stability} is a necessary condition, but not sufficient.
151If it is not satisfied, even mildly, then the model soon becomes wildly unstable.
152The instability can be removed by either reducing the length of the time steps or
153reducing the mixing coefficient.
154
155For the vertical diffusion terms, a forward time differencing scheme can be used,
156but usually the numerical stability condition imposes a strong constraint on the time step.
157To overcome the stability constraint, a backward (or implicit) time differencing scheme is used.
158This scheme is unconditionally stable but diffusive and can be written as follows:
159
160\begin{equation}
161  \label{eq:TD_imp}
162  x^{t + \rdt} = x^{t - \rdt} + 2 \, \rdt \ \text{RHS}_x^{t + \rdt}
163\end{equation}
164
165\cmtgm{UPDATE the next paragraphs with time varying thickness ...}
166
167This scheme is rather time consuming since it requires a matrix inversion.
168For example, the finite difference approximation of the temperature equation is:
169\[
170  % \label{eq:TD_imp_zdf}
171  \frac{T(k)^{t + 1} - T(k)^{t - 1}}{2 \; \rdt}
172  \equiv
173  \text{RHS} + \frac{1}{e_{3t}} \delta_k \lt[ \frac{A_w^{vT}}{e_{3w} } \delta_{k + 1/2} \lt[ T^{t + 1} \rt] \rt]
174\]
175where RHS is the right hand side of the equation except for the vertical diffusion term.
176We rewrite \autoref{eq:TD_imp} as:
177
178\begin{equation}
179  \label{eq:TD_imp_mat}
180  -c(k + 1) \; T^{t + 1}(k + 1) + d(k) \; T^{t + 1}(k) - \; c(k) \; T^{t + 1}(k - 1) \equiv b(k)
181\end{equation}
182
183where
184
185\[
186  c(k) = A_w^{vT} (k) \, / \, e_{3w} (k) \text{,} \quad
187  d(k) = e_{3t}   (k)       \, / \, (2 \rdt) + c_k + c_{k + 1} \quad \text{and} \quad
188  b(k) = e_{3t}   (k) \; \lt( T^{t - 1}(k) \, / \, (2 \rdt) + \text{RHS} \rt)
189\]
190
191\autoref{eq:TD_imp_mat} is a linear system of equations with
192an associated matrix which is tridiagonal.
193Moreover, $c(k)$ and $d(k)$ are positive and
194the diagonal term is greater than the sum of the two extra-diagonal terms,
195therefore a special adaptation of the Gauss elimination procedure is used to find the solution
196(see for example \citet{richtmyer.morton_bk67}).
197
198%% =================================================================================================
199\section{Surface pressure gradient}
200\label{sec:TD_spg_ts}
201
202The leapfrog environment supports a centred in time computation of the surface pressure,
203\ie\ evaluated at \textit{now} time step.
204This refers to as the explicit free surface case in the code
205(\np[=.true.]{ln_dynspg_exp}{ln\_dynspg\_exp}).
206This choice however imposes a strong constraint on the time step which
207should be small enough to resolve the propagation of external gravity waves.
208As a matter of fact, one rather use in a realistic setup,
209a split-explicit free surface (\np[=.true.]{ln_dynspg_ts}{ln\_dynspg\_ts}) in which
210barotropic and baroclinic dynamical equations are solved separately with ad-hoc time steps.
211The use of the time-splitting (in combination with non-linear free surface) imposes
212some constraints on the design of the overall flowchart,
213in particular to ensure exact tracer conservation (see \autoref{fig:TD_TimeStep_flowchart}).
214
215Compared to the former use of the filtered free surface in \NEMO\ v3.6 (\citet{roullet.madec_JGR00}),
216the use of a split-explicit free surface is advantageous on massively parallel computers.
217Indeed, no global computations are anymore required by the elliptic solver which
218saves a substantial amount of communication time.
219Fast barotropic motions (such as tides) are also simulated with a better accuracy.
220
221%\cmtgm{
222\begin{figure}
223  \centering
224  \includegraphics[width=0.66\textwidth]{TD_TimeStepping_flowchart_v4}
225  \caption[Leapfrog time stepping sequence with split-explicit free surface]{
226    Sketch of the leapfrog time stepping sequence in \NEMO\ with split-explicit free surface.
227    The latter combined with non-linear free surface requires
228    the dynamical tendency being updated prior tracers tendency to ensure conservation.
229    Note the use of time integrated fluxes issued from the barotropic loop in
230    subsequent calculations of tracer advection and in the continuity equation.
231    Details about the time-splitting scheme can be found in \autoref{subsec:DYN_spg_ts}.}
232  \label{fig:TD_TimeStep_flowchart}
233\end{figure}
234%}
235
236%% =================================================================================================
237\section{Modified LeapFrog -- Robert Asselin filter scheme (LF-RA)}
238\label{sec:TD_mLF}
239
240Significant changes have been introduced by \cite{leclair.madec_OM09} in
241the LF-RA scheme in order to ensure tracer conservation and to
242allow the use of a much smaller value of the Asselin filter parameter.
243The modifications affect both the forcing and filtering treatments in the LF-RA scheme.
244
245In a classical LF-RA environment,
246the forcing term is centred in time, \ie\ it is time-stepped over a $2 \rdt$ period:
247$x^t = x^t + 2 \rdt Q^t$ where $Q$ is the forcing applied to $x$,
248and the time filter is given by \autoref{eq:TD_asselin} so that
249$Q$ is redistributed over several time step.
250In the modified LF-RA environment, these two formulations have been replaced by:
251
252\begin{gather}
253  \label{eq:TD_forcing}
254  x^{t + \rdt} = x^{t - \rdt} + \rdt \lt( Q^{t - \rdt / 2} + Q^{t + \rdt / 2} \rt\\
255  \label{eq:TD_RA}
256  x_F^t       = x^t + \gamma \, \lt( x_F^{t - \rdt} - 2 x^t + x^{t + \rdt} \rt)
257                    - \gamma \, \rdt \, \lt( Q^{t + \rdt / 2} - Q^{t - \rdt / 2} \rt)
258\end{gather}
259
260The change in the forcing formulation given by \autoref{eq:TD_forcing}
261(see \autoref{fig:TD_MLF_forcing}) has a significant effect:
262the forcing term no longer excites the divergence of odd and even time steps
263\citep{leclair.madec_OM09}.
264% forcing seen by the model....
265This property improves the LF-RA scheme in two aspects.
266First, the LF-RA can now ensure the local and global conservation of tracers.
267Indeed, time filtering is no longer required on the forcing part.
268The influence of the Asselin filter on the forcing is explicitly removed by
269adding a new term in the filter (last term in \autoref{eq:TD_RA} compared to \autoref{eq:TD_asselin}).
270Since the filtering of the forcing was the source of non-conservation in the classical LF-RA scheme,
271the modified formulation becomes conservative \citep{leclair.madec_OM09}.
272Second, the LF-RA becomes a truly quasi-second order scheme.
273Indeed, \autoref{eq:TD_forcing} used in combination with a careful treatment of static instability
274(\autoref{subsec:ZDF_evd}) and of the TKE physics (\autoref{subsec:ZDF_tke_ene})
275(the two other main sources of time step divergence),
276allows a reduction by two orders of magnitude of the Asselin filter parameter.
277
278Note that the forcing is now provided at the middle of a time step:
279$Q^{t + \rdt / 2}$ is the forcing applied over the $[t,t + \rdt]$ time interval.
280This and the change in the time filter, \autoref{eq:TD_RA},
281allows for an exact evaluation of the contribution due to the forcing term between any two time steps,
282even if separated by only $\rdt$ since the time filter is no longer applied to the forcing term.
283
284\begin{figure}
285  \centering
286  \includegraphics[width=0.66\textwidth]{TD_MLF_forcing}
287  \caption[Forcing integration methods for modified leapfrog (top and bottom)]{
288    Illustration of forcing integration methods.
289    (top) ''Traditional'' formulation:
290    the forcing is defined at the same time as the variable to which it is applied
291    (integer value of the time step index) and it is applied over a $2 \rdt$ period.
292    (bottom)  modified formulation:
293    the forcing is defined in the middle of the time
294    (integer and a half value of the time step index) and
295    the mean of two successive forcing values ($n - 1 / 2$, $n + 1 / 2$) is applied over
296    a $2 \rdt$ period.}
297  \label{fig:TD_MLF_forcing}
298\end{figure}
299
300%% =================================================================================================
301\section{Start/Restart strategy}
302\label{sec:TD_rst}
303
304\begin{listing}
305  \nlst{namrun}
306  \caption{\forcode{&namrun}}
307  \label{lst:namrun}
308\end{listing}
309
310The first time step of this three level scheme when starting from initial conditions is
311a forward step (Euler time integration):
312\[
313  % \label{eq:TD_DOM_euler}
314  x^1 = x^0 + \rdt \ \text{RHS}^0
315\]
316This is done simply by keeping the leapfrog environment
317(\ie\ the \autoref{eq:TD} three level time stepping) but
318setting all $x^0$ (\textit{before}) and $x^1$ (\textit{now}) fields equal at the first time step and
319using half the value of a leapfrog time step ($2 \rdt$).
320
321It is also possible to restart from a previous computation, by using a restart file.
322The restart strategy is designed to ensure perfect restartability of the code:
323the user should obtain the same results to machine precision either by
324running the model for $2N$ time steps in one go,
325or by performing two consecutive experiments of $N$ steps with a restart.
326This requires saving two time levels and many auxiliary data in
327the restart files in machine precision.
328
329Note that the time step $\rdt$, is also saved in the restart file.
330When restarting, if the time step has been changed, or
331one of the prognostic variables at \textit{before} time step is missing,
332an Euler time stepping scheme is imposed.
333A forward initial step can still be enforced by the user by
334setting the namelist variable \np[=0]{nn_euler}{nn\_euler}.
335Other options to control the time integration of the model are defined through
336the \nam{run}{run} namelist variables.
337
338\cmtgm{
339add here how to force the restart to contain only one time step for operational purposes
340
341add also the idea of writing several restart for seasonal forecast : how is it done ?
342
343verify that all namelist parameters are truly described
344
345a word on the check of restart  .....
346}
347
348\cmtgm{       % add a subsection here
349
350%% =================================================================================================
351\subsection{Time domain}
352\label{subsec:TD_time}
353
354Options are defined through the\nam{dom}{dom} namelist variables.
355 \colorbox{yellow}{add here a few word on nit000 and nitend}
356
357 \colorbox{yellow}{Write documentation on the calendar and the key variable adatrj}
358
359add a description of daymod, and the model calendar (leap-year and co)
360
361}     %% end add
362
363\cmtgm{       % add implicit in vvl case  and Crant-Nicholson scheme
364
365Implicit time stepping in case of variable volume thickness.
366
367Tracer case (NB for momentum in vector invariant form take care!)
368
369\begin{flalign*}
370  &\frac{\lt( e_{3t}\,T \rt)_k^{t+1}-\lt( e_{3t}\,T \rt)_k^{t-1}}{2\rdt}
371  \equiv \text{RHS}+ \delta_k \lt[ {\frac{A_w^{vt} }{e_{3w}^{t+1} }\delta_{k + 1/2} \lt[ {T^{t+1}} \rt]}
372  \rt]      \\
373  &\lt( e_{3t}\,T \rt)_k^{t+1}-\lt( e_{3t}\,T \rt)_k^{t-1}
374  \equiv {2\rdt} \ \text{RHS}+ {2\rdt} \ \delta_k \lt[ {\frac{A_w^{vt} }{e_{3w}^{t+1} }\delta_{k + 1/2} \lt[ {T^{t+1}} \rt]}
375  \rt]      \\
376  &\lt( e_{3t}\,T \rt)_k^{t+1}-\lt( e_{3t}\,T \rt)_k^{t-1}
377  \equiv 2\rdt \ \text{RHS}
378  + 2\rdt \ \lt\{ \lt[ \frac{A_w^{vt}}{e_{3w}^{t+1}} \rt]_{k + 1/2} [ T_{k +1}^{t+1} - T_k      ^{t+1} ]
379    - \lt[ \frac{A_w^{vt}}{e_{3w}^{t+1}} \rt]_{k - 1/2} [ T_k       ^{t+1} - T_{k -1}^{t+1} ]  \rt\}     \\
380  &\\
381  &\lt( e_{3t}\,T \rt)_k^{t+1}
382  -  {2\rdt} \           \lt[ \frac{A_w^{vt}}{e_{3w}^{t+1}} \rt]_{k + 1/2}                  T_{k +1}^{t+1}
383  + {2\rdt} \ \lt\{  \lt[ \frac{A_w^{vt}}{e_{3w}^{t+1}} \rt]_{k + 1/2}
384    +  \lt[ \frac{A_w^{vt}}{e_{3w}^{t+1}} \rt]_{k - 1/2}     \rt\}   T_{k    }^{t+1}
385  -  {2\rdt} \           \lt[ \frac{A_w^{vt}}{e_{3w}^{t+1}} \rt]_{k - 1/2}                  T_{k -1}^{t+1}      \\
386  &\equiv \lt( e_{3t}\,T \rt)_k^{t-1} + {2\rdt} \ \text{RHS}    \\
387  %
388\end{flalign*}
389
390\begin{flalign*}
391  \allowdisplaybreaks
392  \intertext{ Tracer case }
393  %
394  &  \qquad \qquad  \quad   -  {2\rdt}                  \ \lt[ \frac{A_w^{vt}}{e_{3w}^{t+1}} \rt]_{k + 1/2}
395  \qquad \qquad \qquad  \qquad  T_{k +1}^{t+1}   \\
396  &+ {2\rdt} \ \biggl\{  (e_{3t})_{k   }^{t+1}  \bigg. +    \lt[ \frac{A_w^{vt}}{e_{3w}^{t+1}} \rt]_{k + 1/2}
397  +   \lt[ \frac{A_w^{vt}}{e_{3w}^{t+1}} \rt]_{k - 1/2} \bigg. \biggr\}  \ \ \ T_{k   }^{t+1}  &&\\
398  & \qquad \qquad  \qquad \qquad \qquad \quad \ \ {2\rdt} \                          \lt[ \frac{A_w^{vt}}{e_{3w}^{t+1}} \rt]_{k - 1/2}                          \quad \ \ T_{k -1}^{t+1}
399  \ \equiv \ \lt( e_{3t}\,T \rt)_k^{t-1} + {2\rdt} \ \text{RHS}  \\
400  %
401\end{flalign*}
402
403\begin{flalign*}
404  \allowdisplaybreaks
405  \intertext{ Tracer content case }
406  %
407  & -  {2\rdt} \              & \frac{(A_w^{vt})_{k + 1/2}} {(e_{3w})_{k + 1/2}^{t+1}\;(e_{3t})_{k +1}^{t+1}}  && \  \lt( e_{3t}\,T \rt)_{k +1}^{t+1}   &\\
408  & + {2\rdt} \ \lt[ 1  \rt.+ & \frac{(A_w^{vt})_{k + 1/2}} {(e_{3w})_{k + 1/2}^{t+1}\;(e_{3t})_k^{t+1}}
409  + & \frac{(A_w^{vt})_{k - 1/2}} {(e_{3w})_{k - 1/2}^{t+1}\;(e_{3t})_k^{t+1}}  \lt\rt& \lt( e_{3t}\,T \rt)_{k   }^{t+1}  &\\
410  & -  {2\rdt} \               & \frac{(A_w^{vt})_{k - 1/2}} {(e_{3w})_{k - 1/2}^{t+1}\;(e_{3t})_{k -1}^{t+1}}     &\  \lt( e_{3t}\,T \rt)_{k -1}^{t+1}
411  \equiv \lt( e_{3t}\,T \rt)_k^{t-1} + {2\rdt} \ \text{RHS}  &
412\end{flalign*}
413
414}
415
416\subinc{\input{../../global/epilogue}}
417
418\end{document}
Note: See TracBrowser for help on using the repository browser.