MODULE agrif_ice_interp !!===================================================================================== !! *** MODULE agrif_ice_interp *** !! Nesting module : interp surface ice boundary condition from a parent grid !!===================================================================================== !! History : 2.0 ! 04-2008 (F. Dupont) initial version !! 3.4 ! 09-2012 (R. Benshila, C. Herbaut) update and EVP !! 4.0 ! 2018 (C. Rousset) SI3 compatibility !!---------------------------------------------------------------------- #if defined key_agrif && defined key_si3 !!---------------------------------------------------------------------- !! 'key_si3' SI3 sea-ice model !! 'key_agrif' AGRIF library !!---------------------------------------------------------------------- !! agrif_interp_ice : interpolation of ice at "after" sea-ice time step !! agrif_interp_u_ice : atomic routine to interpolate u_ice !! agrif_interp_v_ice : atomic routine to interpolate v_ice !! agrif_interp_tra_ice : atomic routine to interpolate ice properties !!---------------------------------------------------------------------- USE par_oce USE dom_oce USE sbc_oce USE ice USE agrif_ice USE phycst , ONLY: rt0 IMPLICIT NONE PRIVATE PUBLIC agrif_interp_ice ! called by agrif_user.F90 !!---------------------------------------------------------------------- !! NEMO/NST 4.0 , NEMO Consortium (2018) !! $Id: agrif_ice_interp.F90 6204 2016-01-04 13:47:06Z cetlod $ !! Software governed by the CeCILL license (see ./LICENSE) !!---------------------------------------------------------------------- CONTAINS SUBROUTINE agrif_interp_ice( cd_type, kiter, kitermax ) !!----------------------------------------------------------------------- !! *** ROUTINE agrif_interp_ice *** !! !! ** Method : simple call to atomic routines using stored values to !! fill the boundaries depending of the position of the point and !! computing factor for time interpolation !!----------------------------------------------------------------------- CHARACTER(len=1), INTENT(in ) :: cd_type INTEGER , INTENT(in ), OPTIONAL :: kiter, kitermax !! REAL(wp) :: zbeta ! local scalar !!----------------------------------------------------------------------- ! IF( Agrif_Root() .OR. nn_ice==0 ) RETURN ! do not interpolate if inside Parent Grid or if child domain does not have ice ! SELECT CASE( cd_type ) CASE('U','V') IF( PRESENT( kiter ) ) THEN ! interpolation at the child ice sub-time step (only for ice rheology) zbeta = ( REAL(nbstep_ice) - REAL(kitermax - kiter) / REAL(kitermax) ) / & & ( Agrif_Rhot() * REAL(Agrif_Parent(nn_fsbc)) / REAL(nn_fsbc) ) ELSE ! interpolation at the child ice time step zbeta = REAL(nbstep_ice) / ( Agrif_Rhot() * REAL(Agrif_Parent(nn_fsbc)) / REAL(nn_fsbc) ) ENDIF CASE('T') zbeta = REAL(nbstep_ice) / ( Agrif_Rhot() * REAL(Agrif_Parent(nn_fsbc)) / REAL(nn_fsbc) ) END SELECT ! Agrif_SpecialValue = -9999. Agrif_UseSpecialValue = .TRUE. SELECT CASE( cd_type ) CASE('U') ; CALL Agrif_Bc_variable( u_ice_id , procname=interp_u_ice , calledweight=zbeta ) CASE('V') ; CALL Agrif_Bc_variable( v_ice_id , procname=interp_v_ice , calledweight=zbeta ) CASE('T') ; CALL Agrif_Bc_variable( tra_ice_id, procname=interp_tra_ice, calledweight=zbeta ) END SELECT Agrif_SpecialValue = 0._wp Agrif_UseSpecialValue = .FALSE. ! END SUBROUTINE agrif_interp_ice SUBROUTINE interp_u_ice( ptab, i1, i2, j1, j2, before ) !!----------------------------------------------------------------------- !! *** ROUTINE interp_u_ice *** !! !! i1 i2 j1 j2 are the index of the boundaries parent(when before) and child (when after) !! To solve issues when parent grid is "land" masked but not all the corresponding child !! grid points, put Agrif_SpecialValue WHERE the parent grid is masked. !! The child solution will be found in the 9(?) points around !!----------------------------------------------------------------------- INTEGER , INTENT(in ) :: i1, i2, j1, j2 REAL(wp), DIMENSION(i1:i2,j1:j2), INTENT(inout) :: ptab LOGICAL , INTENT(in ) :: before !! REAL(wp) :: zrhoy ! local scalar !!----------------------------------------------------------------------- ! IF( before ) THEN ! parent grid ptab(:,:) = e2u(i1:i2,j1:j2) * u_ice(i1:i2,j1:j2) WHERE( umask(i1:i2,j1:j2,1) == 0. ) ptab(i1:i2,j1:j2) = Agrif_SpecialValue ELSE ! child grid zrhoy = Agrif_Rhoy() u_ice(i1:i2,j1:j2) = ptab(i1:i2,j1:j2) / ( e2u(i1:i2,j1:j2) * zrhoy ) * umask(i1:i2,j1:j2,1) ENDIF ! END SUBROUTINE interp_u_ice SUBROUTINE interp_v_ice( ptab, i1, i2, j1, j2, before ) !!----------------------------------------------------------------------- !! *** ROUTINE interp_v_ice *** !! !! i1 i2 j1 j2 are the index of the boundaries parent(when before) and child (when after) !! To solve issues when parent grid is "land" masked but not all the corresponding child !! grid points, put Agrif_SpecialValue WHERE the parent grid is masked. !! The child solution will be found in the 9(?) points around !!----------------------------------------------------------------------- INTEGER , INTENT(in ) :: i1, i2, j1, j2 REAL(wp), DIMENSION(i1:i2,j1:j2), INTENT(inout) :: ptab LOGICAL , INTENT(in ) :: before !! REAL(wp) :: zrhox ! local scalar !!----------------------------------------------------------------------- ! IF( before ) THEN ! parent grid ptab(:,:) = e1v(i1:i2,j1:j2) * v_ice(i1:i2,j1:j2) WHERE( vmask(i1:i2,j1:j2,1) == 0. ) ptab(i1:i2,j1:j2) = Agrif_SpecialValue ELSE ! child grid zrhox = Agrif_Rhox() v_ice(i1:i2,j1:j2) = ptab(i1:i2,j1:j2) / ( e1v(i1:i2,j1:j2) * zrhox ) * vmask(i1:i2,j1:j2,1) ENDIF ! END SUBROUTINE interp_v_ice SUBROUTINE interp_tra_ice( ptab, i1, i2, j1, j2, k1, k2, before, nb, ndir ) !!----------------------------------------------------------------------- !! *** ROUTINE interp_tra_ice *** !! !! i1 i2 j1 j2 are the index of the boundaries parent(when before) and child (when after) !! To solve issues when parent grid is "land" masked but not all the corresponding child !! grid points, put Agrif_SpecialValue WHERE the parent grid is masked. !! The child solution will be found in the 9(?) points around !!----------------------------------------------------------------------- REAL(wp), DIMENSION(i1:i2,j1:j2,k1:k2), INTENT(inout) :: ptab INTEGER , INTENT(in ) :: i1, i2, j1, j2, k1, k2 LOGICAL , INTENT(in ) :: before INTEGER , INTENT(in ) :: nb, ndir !! INTEGER :: ji, jj, jk, jl, jm INTEGER :: imin, imax, jmin, jmax LOGICAL :: western_side, eastern_side, northern_side, southern_side REAL(wp) :: zrhox, z1, z2, z3, z4, z5, z6, z7 REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: ztab !!----------------------------------------------------------------------- ! tracers are not multiplied by grid cell here => before: * e1e2t ; after: * r1_e1e2t / rhox / rhoy ! and it is ok since we conserve tracers (same as in the ocean). ALLOCATE( ztab(SIZE(a_i,1),SIZE(a_i,2),SIZE(ptab,3)) ) IF( before ) THEN ! parent grid jm = 1 DO jl = 1, jpl ptab(i1:i2,j1:j2,jm ) = a_i (i1:i2,j1:j2,jl) ptab(i1:i2,j1:j2,jm+1) = v_i (i1:i2,j1:j2,jl) ptab(i1:i2,j1:j2,jm+2) = v_s (i1:i2,j1:j2,jl) ptab(i1:i2,j1:j2,jm+3) = sv_i(i1:i2,j1:j2,jl) ptab(i1:i2,j1:j2,jm+4) = oa_i(i1:i2,j1:j2,jl) ptab(i1:i2,j1:j2,jm+5) = a_ip(i1:i2,j1:j2,jl) ptab(i1:i2,j1:j2,jm+6) = v_ip(i1:i2,j1:j2,jl) ptab(i1:i2,j1:j2,jm+7) = t_su(i1:i2,j1:j2,jl) jm = jm + 8 DO jk = 1, nlay_s ptab(i1:i2,j1:j2,jm) = e_s(i1:i2,j1:j2,jk,jl) ; jm = jm + 1 END DO DO jk = 1, nlay_i ptab(i1:i2,j1:j2,jm) = e_i(i1:i2,j1:j2,jk,jl) ; jm = jm + 1 END DO END DO DO jk = k1, k2 WHERE( tmask(i1:i2,j1:j2,1) == 0._wp ) ptab(i1:i2,j1:j2,jk) = Agrif_SpecialValue END DO ! ELSE ! child grid ! ! IF( nbghostcells > 1 ) THEN ! ==> The easiest interpolation is used ! jm = 1 DO jl = 1, jpl ! DO jj = j1, j2 DO ji = i1, i2 a_i (ji,jj,jl) = ptab(ji,jj,jm ) * tmask(ji,jj,1) v_i (ji,jj,jl) = ptab(ji,jj,jm+1) * tmask(ji,jj,1) v_s (ji,jj,jl) = ptab(ji,jj,jm+2) * tmask(ji,jj,1) sv_i(ji,jj,jl) = ptab(ji,jj,jm+3) * tmask(ji,jj,1) oa_i(ji,jj,jl) = ptab(ji,jj,jm+4) * tmask(ji,jj,1) a_ip(ji,jj,jl) = ptab(ji,jj,jm+5) * tmask(ji,jj,1) v_ip(ji,jj,jl) = ptab(ji,jj,jm+6) * tmask(ji,jj,1) t_su(ji,jj,jl) = ptab(ji,jj,jm+7) * tmask(ji,jj,1) END DO END DO jm = jm + 8 ! DO jk = 1, nlay_s e_s(i1:i2,j1:j2,jk,jl) = ptab(i1:i2,j1:j2,jm) * tmask(i1:i2,j1:j2,1) jm = jm + 1 END DO ! DO jk = 1, nlay_i e_i(i1:i2,j1:j2,jk,jl) = ptab(i1:i2,j1:j2,jm) * tmask(i1:i2,j1:j2,1) jm = jm + 1 END DO ! END DO ! !!==> clem: this interpolation does not work because it creates negative values, due !! to negative coefficients when mixing points (for ex. z7) !! ! ELSE ! ==> complex interpolation (only one ghost cell available) ! !! Use a more complex interpolation since we mix solutions over a couple of grid points ! !! it is advised to use it for fields modified by high order schemes (e.g. advection UM5...) ! ! record ztab ! jm = 1 ! DO jl = 1, jpl ! ztab(:,:,jm ) = a_i (:,:,jl) ! ztab(:,:,jm+1) = v_i (:,:,jl) ! ztab(:,:,jm+2) = v_s (:,:,jl) ! ztab(:,:,jm+3) = sv_i(:,:,jl) ! ztab(:,:,jm+4) = oa_i(:,:,jl) ! ztab(:,:,jm+5) = a_ip(:,:,jl) ! ztab(:,:,jm+6) = v_ip(:,:,jl) ! ztab(:,:,jm+7) = t_su(:,:,jl) ! jm = jm + 8 ! DO jk = 1, nlay_s ! ztab(:,:,jm) = e_s(:,:,jk,jl) ! jm = jm + 1 ! END DO ! DO jk = 1, nlay_i ! ztab(:,:,jm) = e_i(:,:,jk,jl) ! jm = jm + 1 ! END DO ! ! ! END DO ! ! ! ! borders of the domain ! western_side = (nb == 1).AND.(ndir == 1) ; eastern_side = (nb == 1).AND.(ndir == 2) ! southern_side = (nb == 2).AND.(ndir == 1) ; northern_side = (nb == 2).AND.(ndir == 2) ! ! ! ! spatial smoothing ! zrhox = Agrif_Rhox() ! z1 = ( zrhox - 1. ) * 0.5 ! z3 = ( zrhox - 1. ) / ( zrhox + 1. ) ! z6 = 2. * ( zrhox - 1. ) / ( zrhox + 1. ) ! z7 = - ( zrhox - 1. ) / ( zrhox + 3. ) ! z2 = 1. - z1 ! z4 = 1. - z3 ! z5 = 1. - z6 - z7 ! ! ! ! Remove corners ! imin = i1 ; imax = i2 ; jmin = j1 ; jmax = j2 ! IF( (nbondj == -1) .OR. (nbondj == 2) ) jmin = 3 ! IF( (nbondj == +1) .OR. (nbondj == 2) ) jmax = nlcj-2 ! IF( (nbondi == -1) .OR. (nbondi == 2) ) imin = 3 ! IF( (nbondi == +1) .OR. (nbondi == 2) ) imax = nlci-2 ! ! ! smoothed fields ! IF( eastern_side ) THEN ! ztab(nlci,j1:j2,:) = z1 * ptab(nlci,j1:j2,:) + z2 * ptab(nlci-1,j1:j2,:) ! DO jj = jmin, jmax ! rswitch = 0. ! IF( u_ice(nlci-2,jj) > 0._wp ) rswitch = 1. ! ztab(nlci-1,jj,:) = ( 1. - umask(nlci-2,jj,1) ) * ztab(nlci,jj,:) & ! & + umask(nlci-2,jj,1) * & ! & ( ( 1. - rswitch ) * ( z4 * ztab(nlci,jj,:) + z3 * ztab(nlci-2,jj,:) ) & ! & + rswitch * ( z6 * ztab(nlci-2,jj,:) + z5 * ztab(nlci,jj,:) + z7 * ztab(nlci-3,jj,:) ) ) ! ztab(nlci-1,jj,:) = ztab(nlci-1,jj,:) * tmask(nlci-1,jj,1) ! END DO ! ENDIF ! ! ! IF( northern_side ) THEN ! ztab(i1:i2,nlcj,:) = z1 * ptab(i1:i2,nlcj,:) + z2 * ptab(i1:i2,nlcj-1,:) ! DO ji = imin, imax ! rswitch = 0. ! IF( v_ice(ji,nlcj-2) > 0._wp ) rswitch = 1. ! ztab(ji,nlcj-1,:) = ( 1. - vmask(ji,nlcj-2,1) ) * ztab(ji,nlcj,:) & ! & + vmask(ji,nlcj-2,1) * & ! & ( ( 1. - rswitch ) * ( z4 * ztab(ji,nlcj,:) + z3 * ztab(ji,nlcj-2,:) ) & ! & + rswitch * ( z6 * ztab(ji,nlcj-2,:) + z5 * ztab(ji,nlcj,:) + z7 * ztab(ji,nlcj-3,:) ) ) ! ztab(ji,nlcj-1,:) = ztab(ji,nlcj-1,:) * tmask(ji,nlcj-1,1) ! END DO ! END IF ! ! ! IF( western_side) THEN ! ztab(1,j1:j2,:) = z1 * ptab(1,j1:j2,:) + z2 * ptab(2,j1:j2,:) ! DO jj = jmin, jmax ! rswitch = 0. ! IF( u_ice(2,jj) < 0._wp ) rswitch = 1. ! ztab(2,jj,:) = ( 1. - umask(2,jj,1) ) * ztab(1,jj,:) & ! & + umask(2,jj,1) * & ! & ( ( 1. - rswitch ) * ( z4 * ztab(1,jj,:) + z3 * ztab(3,jj,:) ) & ! & + rswitch * ( z6 * ztab(3,jj,:) + z5 * ztab(1,jj,:) + z7 * ztab(4,jj,:) ) ) ! ztab(2,jj,:) = ztab(2,jj,:) * tmask(2,jj,1) ! END DO ! ENDIF ! ! ! IF( southern_side ) THEN ! ztab(i1:i2,1,:) = z1 * ptab(i1:i2,1,:) + z2 * ptab(i1:i2,2,:) ! DO ji = imin, imax ! rswitch = 0. ! IF( v_ice(ji,2) < 0._wp ) rswitch = 1. ! ztab(ji,2,:) = ( 1. - vmask(ji,2,1) ) * ztab(ji,1,:) & ! & + vmask(ji,2,1) * & ! & ( ( 1. - rswitch ) * ( z4 * ztab(ji,1,:) + z3 * ztab(ji,3,:) ) & ! & + rswitch * ( z6 * ztab(ji,3,:) + z5 * ztab(ji,1,:) + z7 * ztab(ji,4,:) ) ) ! ztab(ji,2,:) = ztab(ji,2,:) * tmask(ji,2,1) ! END DO ! END IF ! ! ! ! Treatment of corners ! IF( (eastern_side) .AND. ((nbondj == -1).OR.(nbondj == 2)) ) ztab(nlci-1,2,:) = ptab(nlci-1,2,:) ! East south ! IF( (eastern_side) .AND. ((nbondj == 1).OR.(nbondj == 2)) ) ztab(nlci-1,nlcj-1,:) = ptab(nlci-1,nlcj-1,:) ! East north ! IF( (western_side) .AND. ((nbondj == -1).OR.(nbondj == 2)) ) ztab(2,2,:) = ptab(2,2,:) ! West south ! IF( (western_side) .AND. ((nbondj == 1).OR.(nbondj == 2)) ) ztab(2,nlcj-1,:) = ptab(2,nlcj-1,:) ! West north ! ! ! retrieve ice tracers ! jm = 1 ! DO jl = 1, jpl ! ! ! DO jj = j1, j2 ! DO ji = i1, i2 ! a_i (ji,jj,jl) = ztab(ji,jj,jm ) * tmask(ji,jj,1) ! v_i (ji,jj,jl) = ztab(ji,jj,jm+1) * tmask(ji,jj,1) ! v_s (ji,jj,jl) = ztab(ji,jj,jm+2) * tmask(ji,jj,1) ! sv_i(ji,jj,jl) = ztab(ji,jj,jm+3) * tmask(ji,jj,1) ! oa_i(ji,jj,jl) = ztab(ji,jj,jm+4) * tmask(ji,jj,1) ! a_ip(ji,jj,jl) = ztab(ji,jj,jm+5) * tmask(ji,jj,1) ! v_ip(ji,jj,jl) = ztab(ji,jj,jm+6) * tmask(ji,jj,1) ! t_su(ji,jj,jl) = ztab(ji,jj,jm+7) * tmask(ji,jj,1) ! END DO ! END DO ! jm = jm + 8 ! ! ! DO jk = 1, nlay_s ! e_s(i1:i2,j1:j2,jk,jl) = ztab(i1:i2,j1:j2,jm) * tmask(i1:i2,j1:j2,1) ! jm = jm + 1 ! END DO ! ! ! DO jk = 1, nlay_i ! e_i(i1:i2,j1:j2,jk,jl) = ztab(i1:i2,j1:j2,jm) * tmask(i1:i2,j1:j2,1) ! jm = jm + 1 ! END DO ! ! ! END DO ! ! ENDIF ! nbghostcells=1 DO jl = 1, jpl WHERE( tmask(i1:i2,j1:j2,1) == 0._wp ) t_su(i1:i2,j1:j2,jl) = rt0 ! to avoid a division by 0 in sbcblk.F90 END DO ! ENDIF DEALLOCATE( ztab ) ! END SUBROUTINE interp_tra_ice #else !!---------------------------------------------------------------------- !! Empty module no sea-ice !!---------------------------------------------------------------------- CONTAINS SUBROUTINE agrif_ice_interp_empty WRITE(*,*) 'agrif_ice_interp : You should not have seen this print! error?' END SUBROUTINE agrif_ice_interp_empty #endif !!====================================================================== END MODULE agrif_ice_interp