MODULE domain !!============================================================================== !! *** MODULE domain *** !! Ocean initialization : domain initialization !!============================================================================== !! History : OPA ! 1990-10 (C. Levy - G. Madec) Original code !! ! 1992-01 (M. Imbard) insert time step initialization !! ! 1996-06 (G. Madec) generalized vertical coordinate !! ! 1997-02 (G. Madec) creation of domwri.F !! ! 2001-05 (E.Durand - G. Madec) insert closed sea !! NEMO 1.0 ! 2002-08 (G. Madec) F90: Free form and module !! 2.0 ! 2005-11 (V. Garnier) Surface pressure gradient organization !! 3.3 ! 2010-11 (G. Madec) initialisation in C1D configuration !! 3.6 ! 2013 ( J. Simeon, C. Calone, G. Madec, C. Ethe ) Online coarsening of outputs !! 3.7 ! 2015-11 (G. Madec, A. Coward) time varying zgr by default !! 4.0 ! 2016-10 (G. Madec, S. Flavoni) domain configuration / user defined interface !! 4.1 ! 2020-02 (G. Madec, S. Techene) introduce ssh to h0 ratio !!---------------------------------------------------------------------- !!---------------------------------------------------------------------- !! dom_init : initialize the space and time domain !! dom_glo : initialize global domain <--> local domain indices !! dom_nam : read and contral domain namelists !! dom_ctl : control print for the ocean domain !! domain_cfg : read the global domain size in domain configuration file !! cfg_write : create the domain configuration file !!---------------------------------------------------------------------- USE oce ! ocean variables USE dom_oce ! domain: ocean USE domtile ! tiling utilities #if defined key_qco USE domqco ! quasi-eulerian coord. #elif defined key_linssh ! ! fix in time coord. #else USE domvvl ! variable volume coord. #endif #if defined key_agrif USE agrif_oce_interp, ONLY : Agrif_istate_ssh ! ssh interpolated from parent #endif USE sbc_oce ! surface boundary condition: ocean USE trc_oce ! shared ocean & passive tracers variab USE phycst ! physical constants USE domhgr ! domain: set the horizontal mesh USE domzgr ! domain: set the vertical mesh USE dommsk ! domain: set the mask system USE domwri ! domain: write the meshmask file USE c1d ! 1D configuration USE dyncor_c1d ! 1D configuration: Coriolis term (cor_c1d routine) USE wet_dry , ONLY : ll_wd ! wet & drying flag USE closea , ONLY : dom_clo ! closed seas routine ! USE in_out_manager ! I/O manager USE iom ! I/O library USE lbclnk ! ocean lateral boundary condition (or mpp link) USE lib_mpp ! distributed memory computing library USE restart ! only for lrst_oce and rst_read_ssh IMPLICIT NONE PRIVATE PUBLIC dom_init ! called by nemogcm.F90 PUBLIC domain_cfg ! called by nemogcm.F90 !! * Substitutions # include "do_loop_substitute.h90" !!------------------------------------------------------------------------- !! NEMO/OCE 4.0 , NEMO Consortium (2018) !! $Id$ !! Software governed by the CeCILL license (see ./LICENSE) !!------------------------------------------------------------------------- CONTAINS SUBROUTINE dom_init( Kbb, Kmm, Kaa ) !!---------------------------------------------------------------------- !! *** ROUTINE dom_init *** !! !! ** Purpose : Domain initialization. Call the routines that are !! required to create the arrays which define the space !! and time domain of the ocean model. !! !! ** Method : - dom_msk: compute the masks from the bathymetry file !! - dom_hgr: compute or read the horizontal grid-point position !! and scale factors, and the coriolis factor !! - dom_zgr: define the vertical coordinate and the bathymetry !! - dom_wri: create the meshmask file (ln_meshmask=T) !! - 1D configuration, move Coriolis, u and v at T-point !!---------------------------------------------------------------------- INTEGER , INTENT(in) :: Kbb, Kmm, Kaa ! ocean time level indices ! INTEGER :: ji, jj, jk, jt ! dummy loop indices INTEGER :: iconf = 0 ! local integers REAL(wp):: zrdt CHARACTER (len=64) :: cform = "(A12, 3(A13, I7))" INTEGER , DIMENSION(jpi,jpj) :: ik_top , ik_bot ! top and bottom ocean level REAL(wp), DIMENSION(jpi,jpj) :: z1_hu_0, z1_hv_0 !!---------------------------------------------------------------------- ! IF(lwp) THEN ! Ocean domain Parameters (control print) WRITE(numout,*) WRITE(numout,*) 'dom_init : domain initialization' WRITE(numout,*) '~~~~~~~~' ! WRITE(numout,*) ' Domain info' WRITE(numout,*) ' dimension of model:' WRITE(numout,*) ' Local domain Global domain Data domain ' WRITE(numout,cform) ' ',' jpi : ', jpi, ' jpiglo : ', jpiglo WRITE(numout,cform) ' ',' jpj : ', jpj, ' jpjglo : ', jpjglo WRITE(numout,cform) ' ',' jpk : ', jpk, ' jpkglo : ', jpkglo WRITE(numout,cform) ' ' ,' jpij : ', jpij WRITE(numout,*) ' mpp local domain info (mpp):' WRITE(numout,*) ' jpni : ', jpni, ' nn_hls : ', nn_hls WRITE(numout,*) ' jpnj : ', jpnj, ' nn_hls : ', nn_hls WRITE(numout,*) ' jpnij : ', jpnij WRITE(numout,*) ' lateral boundary of the Global domain : jperio = ', jperio SELECT CASE ( jperio ) CASE( 0 ) ; WRITE(numout,*) ' (i.e. closed)' CASE( 1 ) ; WRITE(numout,*) ' (i.e. cyclic east-west)' CASE( 2 ) ; WRITE(numout,*) ' (i.e. cyclic north-south)' CASE( 3 ) ; WRITE(numout,*) ' (i.e. north fold with T-point pivot)' CASE( 4 ) ; WRITE(numout,*) ' (i.e. cyclic east-west and north fold with T-point pivot)' CASE( 5 ) ; WRITE(numout,*) ' (i.e. north fold with F-point pivot)' CASE( 6 ) ; WRITE(numout,*) ' (i.e. cyclic east-west and north fold with F-point pivot)' CASE( 7 ) ; WRITE(numout,*) ' (i.e. cyclic east-west and north-south)' CASE DEFAULT CALL ctl_stop( 'dom_init: jperio is out of range' ) END SELECT WRITE(numout,*) ' Ocean model configuration used:' WRITE(numout,*) ' cn_cfg = ', TRIM( cn_cfg ), ' nn_cfg = ', nn_cfg ENDIF ! ! !== Reference coordinate system ==! ! CALL dom_glo ! global domain versus local domain CALL dom_nam ! read namelist ( namrun, namdom ) CALL dom_tile( ntsi, ntsj, ntei, ntej ) ! Tile domain ! CALL dom_hgr ! Horizontal mesh IF( ln_closea ) CALL dom_clo ! Read in masks to define closed seas and lakes CALL dom_zgr( ik_top, ik_bot ) ! Vertical mesh and bathymetry (return top and bottom ocean t-level indices) CALL dom_msk( ik_top, ik_bot ) ! Masks ! ht_0(:,:) = 0._wp ! Reference ocean thickness hu_0(:,:) = 0._wp hv_0(:,:) = 0._wp hf_0(:,:) = 0._wp DO jk = 1, jpkm1 ht_0(:,:) = ht_0(:,:) + e3t_0(:,:,jk) * tmask(:,:,jk) hu_0(:,:) = hu_0(:,:) + e3u_0(:,:,jk) * umask(:,:,jk) hv_0(:,:) = hv_0(:,:) + e3v_0(:,:,jk) * vmask(:,:,jk) END DO ! DO jk = 1, jpkm1 hf_0(1:jpim1,:) = hf_0(1:jpim1,:) + e3f_0(1:jpim1,:,jk)*vmask(1:jpim1,:,jk)*vmask(2:jpi,:,jk) END DO CALL lbc_lnk('domain', hf_0, 'F', 1._wp) ! IF( lk_SWE ) THEN ! SWE case redefine hf_0 hf_0(:,:) = hf_0(:,:) + e3f_0(:,:,1) * ssfmask(:,:) ENDIF ! r1_ht_0(:,:) = ssmask (:,:) / ( ht_0(:,:) + 1._wp - ssmask (:,:) ) r1_hu_0(:,:) = ssumask(:,:) / ( hu_0(:,:) + 1._wp - ssumask(:,:) ) r1_hv_0(:,:) = ssvmask(:,:) / ( hv_0(:,:) + 1._wp - ssvmask(:,:) ) r1_hf_0(:,:) = ssfmask(:,:) / ( hf_0(:,:) + 1._wp - ssfmask(:,:) ) ! IF( ll_wd ) THEN ! wet and drying (check ht_0 >= 0) DO_2D( 1, 1, 1, 1 ) IF( ht_0(ji,jj) < 0._wp .AND. ssmask(ji,jj) == 1._wp ) THEN CALL ctl_stop( 'dom_init : ht_0 must be positive at potentially wet points' ) ENDIF END_2D ENDIF ! ! !== initialisation of time varying coordinate ==! ! ! != ssh initialization ! IF( l_SAS ) THEN !* No ocean dynamics calculation : set to 0 ssh(:,:,:) = 0._wp #if defined key_agrif ELSEIF( .NOT.Agrif_root() .AND. & & ln_init_chfrpar ) THEN !* Interpolate initial ssh from parent CALL Agrif_istate_ssh( Kbb, Kmm, Kaa ) #endif ELSE !* Read in restart file or set by user CALL rst_read_ssh( Kbb, Kmm, Kaa ) ENDIF ! #if defined key_qco ! != Quasi-Euerian coordinate case ! IF( .NOT.l_offline ) CALL dom_qco_init( Kbb, Kmm, Kaa ) #elif defined key_linssh ! != Fix in time : key_linssh case, set through domzgr_substitute.h90 #else ! IF( ln_linssh ) THEN != Fix in time : set to the reference one for all ! DO jt = 1, jpt ! depth of t- and w-grid-points gdept(:,:,:,jt) = gdept_0(:,:,:) gdepw(:,:,:,jt) = gdepw_0(:,:,:) END DO gde3w(:,:,:) = gde3w_0(:,:,:) ! = gdept as the sum of e3t ! DO jt = 1, jpt ! vertical scale factors e3t (:,:,:,jt) = e3t_0(:,:,:) e3u (:,:,:,jt) = e3u_0(:,:,:) e3v (:,:,:,jt) = e3v_0(:,:,:) e3w (:,:,:,jt) = e3w_0(:,:,:) e3uw(:,:,:,jt) = e3uw_0(:,:,:) e3vw(:,:,:,jt) = e3vw_0(:,:,:) END DO e3f (:,:,:) = e3f_0(:,:,:) ! DO jt = 1, jpt ! water column thickness and its inverse hu(:,:,jt) = hu_0(:,:) hv(:,:,jt) = hv_0(:,:) r1_hu(:,:,jt) = r1_hu_0(:,:) r1_hv(:,:,jt) = r1_hv_0(:,:) END DO ht (:,:) = ht_0(:,:) ! ELSE != Time varying : initialize before/now/after variables ! IF( .NOT.l_offline ) CALL dom_vvl_init( Kbb, Kmm, Kaa ) ! ENDIF #endif ! IF( lk_c1d ) CALL cor_c1d ! 1D configuration: Coriolis set at T-point ! #if defined key_agrif IF( .NOT. Agrif_Root() ) CALL Agrif_Init_Domain( Kbb, Kmm, Kaa ) #endif IF( ln_meshmask ) CALL dom_wri ! Create a domain file IF( .NOT.ln_rstart ) CALL dom_ctl ! Domain control ! IF( ln_write_cfg ) CALL cfg_write ! create the configuration file ! IF(lwp) THEN WRITE(numout,*) WRITE(numout,*) 'dom_init : ==>>> END of domain initialization' WRITE(numout,*) '~~~~~~~~' WRITE(numout,*) ENDIF ! END SUBROUTINE dom_init SUBROUTINE dom_glo !!---------------------------------------------------------------------- !! *** ROUTINE dom_glo *** !! !! ** Purpose : initialization of global domain <--> local domain indices !! !! ** Method : !! !! ** Action : - mig , mjg : local domain indices ==> global domain, including halos, indices !! - mig0, mjg0: local domain indices ==> global domain, excluding halos, indices !! - mi0 , mi1 : global domain indices ==> local domain indices !! - mj0 , mj1 (if global point not in the local domain ==> mi0>mi1 and/or mj0>mj1) !!---------------------------------------------------------------------- INTEGER :: ji, jj ! dummy loop argument !!---------------------------------------------------------------------- ! DO ji = 1, jpi ! local domain indices ==> global domain indices, including halos mig(ji) = ji + nimpp - 1 END DO DO jj = 1, jpj mjg(jj) = jj + njmpp - 1 END DO ! ! local domain indices ==> global domain indices, excluding halos ! mig0(:) = mig(:) - nn_hls mjg0(:) = mjg(:) - nn_hls ! ! global domain, including halos, indices ==> local domain indices ! ! (return (m.0,m.1)=(1,0) if data domain gridpoint is to the west/south of the ! ! local domain, or (m.0,m.1)=(jp.+1,jp.) to the east/north of local domain. DO ji = 1, jpiglo mi0(ji) = MAX( 1 , MIN( ji - nimpp + 1, jpi+1 ) ) mi1(ji) = MAX( 0 , MIN( ji - nimpp + 1, jpi ) ) END DO DO jj = 1, jpjglo mj0(jj) = MAX( 1 , MIN( jj - njmpp + 1, jpj+1 ) ) mj1(jj) = MAX( 0 , MIN( jj - njmpp + 1, jpj ) ) END DO IF(lwp) THEN ! control print WRITE(numout,*) WRITE(numout,*) 'dom_glo : domain: global <<==>> local ' WRITE(numout,*) '~~~~~~~ ' WRITE(numout,*) ' global domain: jpiglo = ', jpiglo, ' jpjglo = ', jpjglo, ' jpkglo = ', jpkglo WRITE(numout,*) ' local domain: jpi = ', jpi , ' jpj = ', jpj , ' jpk = ', jpk WRITE(numout,*) ENDIF ! END SUBROUTINE dom_glo SUBROUTINE dom_nam !!---------------------------------------------------------------------- !! *** ROUTINE dom_nam *** !! !! ** Purpose : read domaine namelists and print the variables. !! !! ** input : - namrun namelist !! - namdom namelist !! - namtile namelist !! - namnc4 namelist ! "key_netcdf4" only !!---------------------------------------------------------------------- USE ioipsl !! INTEGER :: ios ! Local integer REAL(wp):: zrdt !!---------------------------------------------------------------------- ! NAMELIST/namrun/ cn_ocerst_indir, cn_ocerst_outdir, nn_stocklist, ln_rst_list, & & nn_no , cn_exp , cn_ocerst_in, cn_ocerst_out, ln_rstart , nn_rstctl , & & nn_it000, nn_itend , nn_date0 , nn_time0 , nn_leapy , nn_istate , & & nn_stock, nn_write , ln_mskland , ln_clobber , nn_chunksz, ln_1st_euler , & & ln_cfmeta, ln_xios_read, nn_wxios NAMELIST/namdom/ ln_linssh, rn_Dt, rn_atfp, ln_crs, ln_meshmask NAMELIST/namtile/ ln_tile, nn_ltile_i, nn_ltile_j #if defined key_netcdf4 NAMELIST/namnc4/ nn_nchunks_i, nn_nchunks_j, nn_nchunks_k, ln_nc4zip #endif !!---------------------------------------------------------------------- ! IF(lwp) THEN WRITE(numout,*) WRITE(numout,*) 'dom_nam : domain initialization through namelist read' WRITE(numout,*) '~~~~~~~ ' ENDIF ! ! !=======================! ! !== namelist namdom ==! ! !=======================! ! READ ( numnam_ref, namdom, IOSTAT = ios, ERR = 903) 903 IF( ios /= 0 ) CALL ctl_nam ( ios , 'namdom in reference namelist' ) READ ( numnam_cfg, namdom, IOSTAT = ios, ERR = 904 ) 904 IF( ios > 0 ) CALL ctl_nam ( ios , 'namdom in configuration namelist' ) IF(lwm) WRITE( numond, namdom ) ! #if defined key_linssh ln_linssh = lk_linssh ! overwrite ln_linssh with the logical associated with key_linssh #endif ! #if defined key_agrif IF( .NOT. Agrif_Root() ) THEN ! AGRIF child, subdivide the Parent timestep rn_Dt = Agrif_Parent (rn_Dt ) / Agrif_Rhot() ENDIF #endif ! IF(lwp) THEN WRITE(numout,*) WRITE(numout,*) ' Namelist : namdom --- space & time domain' WRITE(numout,*) ' linear free surface (=T) ln_linssh = ', ln_linssh WRITE(numout,*) ' create mesh/mask file ln_meshmask = ', ln_meshmask WRITE(numout,*) ' ocean time step rn_Dt = ', rn_Dt WRITE(numout,*) ' asselin time filter parameter rn_atfp = ', rn_atfp WRITE(numout,*) ' online coarsening of dynamical fields ln_crs = ', ln_crs ENDIF ! ! set current model timestep rDt = 2*rn_Dt if MLF or rDt = rn_Dt if RK3 rDt = 2._wp * rn_Dt r1_Dt = 1._wp / rDt ! IF( l_SAS .AND. .NOT.ln_linssh ) THEN CALL ctl_warn( 'SAS requires linear ssh : force ln_linssh = T' ) ln_linssh = .TRUE. ENDIF ! #if defined key_qco IF( ln_linssh ) CALL ctl_stop( 'STOP','domain: key_qco and ln_linssh=T or key_linssh are incompatible' ) #endif ! ! !=======================! ! !== namelist namrun ==! ! !=======================! ! READ ( numnam_ref, namrun, IOSTAT = ios, ERR = 901) 901 IF( ios /= 0 ) CALL ctl_nam ( ios , 'namrun in reference namelist' ) READ ( numnam_cfg, namrun, IOSTAT = ios, ERR = 902 ) 902 IF( ios > 0 ) CALL ctl_nam ( ios , 'namrun in configuration namelist' ) IF(lwm) WRITE ( numond, namrun ) #if defined key_agrif IF( .NOT. Agrif_Root() ) THEN nn_it000 = (Agrif_Parent(nn_it000)-1)*Agrif_IRhot() + 1 nn_itend = Agrif_Parent(nn_itend) *Agrif_IRhot() ENDIF #endif ! IF(lwp) THEN ! control print WRITE(numout,*) ' Namelist : namrun --- run parameters' WRITE(numout,*) ' Assimilation cycle nn_no = ', nn_no WRITE(numout,*) ' experiment name for output cn_exp = ', TRIM( cn_exp ) WRITE(numout,*) ' file prefix restart input cn_ocerst_in = ', TRIM( cn_ocerst_in ) WRITE(numout,*) ' restart input directory cn_ocerst_indir = ', TRIM( cn_ocerst_indir ) WRITE(numout,*) ' file prefix restart output cn_ocerst_out = ', TRIM( cn_ocerst_out ) WRITE(numout,*) ' restart output directory cn_ocerst_outdir= ', TRIM( cn_ocerst_outdir ) WRITE(numout,*) ' restart logical ln_rstart = ', ln_rstart WRITE(numout,*) ' start with forward time step ln_1st_euler = ', ln_1st_euler WRITE(numout,*) ' control of time step nn_rstctl = ', nn_rstctl WRITE(numout,*) ' number of the first time step nn_it000 = ', nn_it000 WRITE(numout,*) ' number of the last time step nn_itend = ', nn_itend WRITE(numout,*) ' initial calendar date aammjj nn_date0 = ', nn_date0 WRITE(numout,*) ' initial time of day in hhmm nn_time0 = ', nn_time0 WRITE(numout,*) ' leap year calendar (0/1) nn_leapy = ', nn_leapy WRITE(numout,*) ' initial state output nn_istate = ', nn_istate IF( ln_rst_list ) THEN WRITE(numout,*) ' list of restart dump times nn_stocklist =', nn_stocklist ELSE WRITE(numout,*) ' frequency of restart file nn_stock = ', nn_stock ENDIF #if ! defined key_xios WRITE(numout,*) ' frequency of output file nn_write = ', nn_write #endif WRITE(numout,*) ' mask land points ln_mskland = ', ln_mskland WRITE(numout,*) ' additional CF standard metadata ln_cfmeta = ', ln_cfmeta WRITE(numout,*) ' overwrite an existing file ln_clobber = ', ln_clobber WRITE(numout,*) ' NetCDF chunksize (bytes) nn_chunksz = ', nn_chunksz IF( TRIM(Agrif_CFixed()) == '0' ) THEN WRITE(numout,*) ' READ restart for a single file using XIOS ln_xios_read =', ln_xios_read WRITE(numout,*) ' Write restart using XIOS nn_wxios = ', nn_wxios ELSE WRITE(numout,*) " AGRIF: nn_wxios will be ingored. See setting for parent" WRITE(numout,*) " AGRIF: ln_xios_read will be ingored. See setting for parent" ENDIF ENDIF cexper = cn_exp ! conversion DOCTOR names into model names (this should disappear soon) nrstdt = nn_rstctl nit000 = nn_it000 nitend = nn_itend ndate0 = nn_date0 nleapy = nn_leapy ninist = nn_istate ! ! !== Set parameters for restart reading using xIOS ==! ! IF( TRIM(Agrif_CFixed()) == '0' ) THEN lrxios = ln_xios_read .AND. ln_rstart IF( nn_wxios > 0 ) lwxios = .TRUE. !* set output file type for XIOS based on NEMO namelist nxioso = nn_wxios ENDIF ! !== Check consistency between ln_rstart and ln_1st_euler ==! (i.e. set l_1st_euler) l_1st_euler = ln_1st_euler ! IF( ln_rstart ) THEN !* Restart case ! IF(lwp) WRITE(numout,*) IF(lwp) WRITE(numout,*) ' open the restart file' CALL rst_read_open !- Open the restart file ! IF( iom_varid( numror, 'rdt', ldstop = .FALSE. ) > 0 ) THEN !- Check time-step consistency and force Euler restart if changed CALL iom_get( numror, 'rdt', zrdt ) IF( zrdt /= rn_Dt ) THEN IF(lwp) WRITE( numout,*) IF(lwp) WRITE( numout,*) ' rn_Dt = ', rn_Dt,' not equal to the READ one rdt = ', zrdt IF(lwp) WRITE( numout,*) IF(lwp) WRITE( numout,*) ' ==>>> forced euler first time-step' l_1st_euler = .TRUE. ENDIF ENDIF ! IF( .NOT.l_SAS .AND. iom_varid( numror, 'sshb', ldstop = .FALSE. ) <= 0 ) THEN !- Check absence of one of the Kbb field (here sshb) ! ! (any Kbb field is missing ==> all Kbb fields are missing) IF( .NOT.l_1st_euler ) THEN CALL ctl_warn('dom_nam : ssh at Kbb not found in restart files ', & & 'l_1st_euler forced to .true. and ' , & & 'ssh(Kbb) = ssh(Kmm) ' ) l_1st_euler = .TRUE. ENDIF ENDIF ELSEIF( .NOT.l_1st_euler ) THEN !* Initialization case IF(lwp) WRITE(numout,*) IF(lwp) WRITE(numout,*)' ==>>> Start from rest (ln_rstart=F)' IF(lwp) WRITE(numout,*)' an Euler initial time step is used : l_1st_euler is forced to .true. ' l_1st_euler = .TRUE. ENDIF ! ! !== control of output frequency ==! ! IF( .NOT. ln_rst_list ) THEN ! we use nn_stock IF( nn_stock == -1 ) CALL ctl_warn( 'nn_stock = -1 --> no restart will be done' ) IF( nn_stock == 0 .OR. nn_stock > nitend ) THEN WRITE(ctmp1,*) 'nn_stock = ', nn_stock, ' it is forced to ', nitend CALL ctl_warn( ctmp1 ) nn_stock = nitend ENDIF ENDIF #if ! defined key_xios IF( nn_write == -1 ) CALL ctl_warn( 'nn_write = -1 --> no output files will be done' ) IF ( nn_write == 0 ) THEN WRITE(ctmp1,*) 'nn_write = ', nn_write, ' it is forced to ', nitend CALL ctl_warn( ctmp1 ) nn_write = nitend ENDIF #endif IF( Agrif_Root() ) THEN IF(lwp) WRITE(numout,*) SELECT CASE ( nleapy ) !== Choose calendar for IOIPSL ==! CASE ( 1 ) CALL ioconf_calendar('gregorian') IF(lwp) WRITE(numout,*) ' ==>>> The IOIPSL calendar is "gregorian", i.e. leap year' CASE ( 0 ) CALL ioconf_calendar('noleap') IF(lwp) WRITE(numout,*) ' ==>>> The IOIPSL calendar is "noleap", i.e. no leap year' CASE ( 30 ) CALL ioconf_calendar('360d') IF(lwp) WRITE(numout,*) ' ==>>> The IOIPSL calendar is "360d", i.e. 360 days in a year' END SELECT ENDIF ! ! !========================! ! !== namelist namtile ==! ! !========================! ! READ ( numnam_ref, namtile, IOSTAT = ios, ERR = 905 ) 905 IF( ios /= 0 ) CALL ctl_nam ( ios , 'namtile in reference namelist' ) READ ( numnam_cfg, namtile, IOSTAT = ios, ERR = 906 ) 906 IF( ios > 0 ) CALL ctl_nam ( ios , 'namtile in configuration namelist' ) IF(lwm) WRITE( numond, namtile ) IF(lwp) THEN WRITE(numout,*) WRITE(numout,*) ' Namelist : namtile --- Domain tiling decomposition' WRITE(numout,*) ' Tiling (T) or not (F) ln_tile = ', ln_tile WRITE(numout,*) ' Length of tile in i nn_ltile_i = ', nn_ltile_i WRITE(numout,*) ' Length of tile in j nn_ltile_j = ', nn_ltile_j WRITE(numout,*) IF( ln_tile ) THEN WRITE(numout,*) ' The domain will be decomposed into tiles of size', nn_ltile_i, 'x', nn_ltile_j ELSE WRITE(numout,*) ' Domain tiling will NOT be used' ENDIF ENDIF ! #if defined key_netcdf4 ! !=======================! ! !== namelist namnc4 ==! NetCDF 4 case ("key_netcdf4" defined) ! !=======================! ! READ ( numnam_ref, namnc4, IOSTAT = ios, ERR = 907) 907 IF( ios /= 0 ) CALL ctl_nam ( ios , 'namnc4 in reference namelist' ) READ ( numnam_cfg, namnc4, IOSTAT = ios, ERR = 908 ) 908 IF( ios > 0 ) CALL ctl_nam ( ios , 'namnc4 in configuration namelist' ) IF(lwm) WRITE( numond, namnc4 ) IF(lwp) THEN ! control print WRITE(numout,*) WRITE(numout,*) ' Namelist namnc4 - Netcdf4 chunking parameters ("key_netcdf4" defined)' WRITE(numout,*) ' number of chunks in i-dimension nn_nchunks_i = ', nn_nchunks_i WRITE(numout,*) ' number of chunks in j-dimension nn_nchunks_j = ', nn_nchunks_j WRITE(numout,*) ' number of chunks in k-dimension nn_nchunks_k = ', nn_nchunks_k WRITE(numout,*) ' apply netcdf4/hdf5 chunking & compression ln_nc4zip = ', ln_nc4zip ENDIF ! Put the netcdf4 settings into a simple structure (snc4set, defined in in_out_manager module) ! Note the chunk size in the unlimited (time) dimension will be fixed at 1 snc4set%ni = nn_nchunks_i snc4set%nj = nn_nchunks_j snc4set%nk = nn_nchunks_k snc4set%luse = ln_nc4zip #else snc4set%luse = .FALSE. ! No NetCDF 4 case #endif ! END SUBROUTINE dom_nam SUBROUTINE dom_ctl !!---------------------------------------------------------------------- !! *** ROUTINE dom_ctl *** !! !! ** Purpose : Domain control. !! !! ** Method : compute and print extrema of masked scale factors !!---------------------------------------------------------------------- LOGICAL, DIMENSION(jpi,jpj) :: llmsk INTEGER, DIMENSION(2) :: imil, imip, imi1, imi2, imal, imap, ima1, ima2 REAL(wp) :: zglmin, zglmax, zgpmin, zgpmax, ze1min, ze1max, ze2min, ze2max !!---------------------------------------------------------------------- ! llmsk = tmask_h(:,:) == 1._wp ! CALL mpp_minloc( 'domain', glamt(:,:), llmsk, zglmin, imil ) CALL mpp_minloc( 'domain', gphit(:,:), llmsk, zgpmin, imip ) CALL mpp_minloc( 'domain', e1t(:,:), llmsk, ze1min, imi1 ) CALL mpp_minloc( 'domain', e2t(:,:), llmsk, ze2min, imi2 ) CALL mpp_maxloc( 'domain', glamt(:,:), llmsk, zglmax, imal ) CALL mpp_maxloc( 'domain', gphit(:,:), llmsk, zgpmax, imap ) CALL mpp_maxloc( 'domain', e1t(:,:), llmsk, ze1max, ima1 ) CALL mpp_maxloc( 'domain', e2t(:,:), llmsk, ze2max, ima2 ) ! IF(lwp) THEN WRITE(numout,*) WRITE(numout,*) 'dom_ctl : extrema of the masked scale factors' WRITE(numout,*) '~~~~~~~' WRITE(numout,"(14x,'glamt mini: ',1f10.2,' at i = ',i5,' j= ',i5)") zglmin, imil(1), imil(2) WRITE(numout,"(14x,'glamt maxi: ',1f10.2,' at i = ',i5,' j= ',i5)") zglmax, imal(1), imal(2) WRITE(numout,"(14x,'gphit mini: ',1f10.2,' at i = ',i5,' j= ',i5)") zgpmin, imip(1), imip(2) WRITE(numout,"(14x,'gphit maxi: ',1f10.2,' at i = ',i5,' j= ',i5)") zgpmax, imap(1), imap(2) WRITE(numout,"(14x,' e1t mini: ',1f10.2,' at i = ',i5,' j= ',i5)") ze1min, imi1(1), imi1(2) WRITE(numout,"(14x,' e1t maxi: ',1f10.2,' at i = ',i5,' j= ',i5)") ze1max, ima1(1), ima1(2) WRITE(numout,"(14x,' e2t mini: ',1f10.2,' at i = ',i5,' j= ',i5)") ze2min, imi2(1), imi2(2) WRITE(numout,"(14x,' e2t maxi: ',1f10.2,' at i = ',i5,' j= ',i5)") ze2max, ima2(1), ima2(2) ENDIF ! END SUBROUTINE dom_ctl SUBROUTINE domain_cfg( cd_cfg, kk_cfg, kpi, kpj, kpk, kperio ) !!---------------------------------------------------------------------- !! *** ROUTINE domain_cfg *** !! !! ** Purpose : read the domain size in domain configuration file !! !! ** Method : read the cn_domcfg NetCDF file !!---------------------------------------------------------------------- CHARACTER(len=*) , INTENT(out) :: cd_cfg ! configuration name INTEGER , INTENT(out) :: kk_cfg ! configuration resolution INTEGER , INTENT(out) :: kpi, kpj, kpk ! global domain sizes INTEGER , INTENT(out) :: kperio ! lateral global domain b.c. ! INTEGER :: inum ! local integer REAL(wp) :: zorca_res ! local scalars REAL(wp) :: zperio ! - - INTEGER, DIMENSION(4) :: idvar, idimsz ! size of dimensions !!---------------------------------------------------------------------- ! IF(lwp) THEN WRITE(numout,*) ' ' WRITE(numout,*) 'domain_cfg : domain size read in ', TRIM( cn_domcfg ), ' file' WRITE(numout,*) '~~~~~~~~~~ ' ENDIF ! CALL iom_open( cn_domcfg, inum ) ! ! !- ORCA family specificity IF( iom_varid( inum, 'ORCA' , ldstop = .FALSE. ) > 0 .AND. & & iom_varid( inum, 'ORCA_index' , ldstop = .FALSE. ) > 0 ) THEN ! cd_cfg = 'ORCA' CALL iom_get( inum, 'ORCA_index', zorca_res ) ; kk_cfg = NINT( zorca_res ) ! IF(lwp) THEN WRITE(numout,*) ' .' WRITE(numout,*) ' ==>>> ORCA configuration ' WRITE(numout,*) ' .' ENDIF ! ELSE !- cd_cfg & k_cfg are not used cd_cfg = 'UNKNOWN' kk_cfg = -9999999 !- or they may be present as global attributes !- (netcdf only) CALL iom_getatt( inum, 'cn_cfg', cd_cfg ) ! returns ! if not found CALL iom_getatt( inum, 'nn_cfg', kk_cfg ) ! returns -999 if not found IF( TRIM(cd_cfg) == '!') cd_cfg = 'UNKNOWN' IF( kk_cfg == -999 ) kk_cfg = -9999999 ! ENDIF ! idvar = iom_varid( inum, 'e3t_0', kdimsz = idimsz ) ! use e3t_0, that must exist, to get jp(ijk)glo kpi = idimsz(1) kpj = idimsz(2) kpk = idimsz(3) CALL iom_get( inum, 'jperio', zperio ) ; kperio = NINT( zperio ) CALL iom_close( inum ) ! IF(lwp) THEN WRITE(numout,*) ' cn_cfg = ', TRIM(cd_cfg), ' nn_cfg = ', kk_cfg WRITE(numout,*) ' Ni0glo = ', kpi WRITE(numout,*) ' Nj0glo = ', kpj WRITE(numout,*) ' jpkglo = ', kpk WRITE(numout,*) ' type of global domain lateral boundary jperio = ', kperio ENDIF ! END SUBROUTINE domain_cfg SUBROUTINE cfg_write !!---------------------------------------------------------------------- !! *** ROUTINE cfg_write *** !! !! ** Purpose : Create the "cn_domcfg_out" file, a NetCDF file which !! contains all the ocean domain informations required to !! define an ocean configuration. !! !! ** Method : Write in a file all the arrays required to set up an !! ocean configuration. !! !! ** output file : domcfg_out.nc : domain size, characteristics, horizontal !! mesh, Coriolis parameter, and vertical scale factors !! NB: also contain ORCA family information !!---------------------------------------------------------------------- INTEGER :: ji, jj, jk ! dummy loop indices INTEGER :: inum ! local units CHARACTER(len=21) :: clnam ! filename (mesh and mask informations) REAL(wp), DIMENSION(jpi,jpj) :: z2d ! workspace !!---------------------------------------------------------------------- ! IF(lwp) WRITE(numout,*) IF(lwp) WRITE(numout,*) 'cfg_write : create the domain configuration file (', TRIM(cn_domcfg_out),'.nc)' IF(lwp) WRITE(numout,*) '~~~~~~~~~' ! ! ! ============================= ! ! ! create 'domcfg_out.nc' file ! ! ! ============================= ! ! clnam = cn_domcfg_out ! filename (configuration information) CALL iom_open( TRIM(clnam), inum, ldwrt = .TRUE. ) ! ! !== ORCA family specificities ==! IF( TRIM(cn_cfg) == "orca" .OR. TRIM(cn_cfg) == "ORCA" ) THEN CALL iom_rstput( 0, 0, inum, 'ORCA' , 1._wp , ktype = jp_i4 ) CALL iom_rstput( 0, 0, inum, 'ORCA_index', REAL( nn_cfg, wp), ktype = jp_i4 ) ENDIF ! ! !== domain characteristics ==! ! ! ! lateral boundary of the global domain CALL iom_rstput( 0, 0, inum, 'jperio', REAL( jperio, wp), ktype = jp_i4 ) ! ! ! type of vertical coordinate CALL iom_rstput( 0, 0, inum, 'ln_zco', REAL(COUNT((/ln_zco/)), wp), ktype = jp_i4 ) CALL iom_rstput( 0, 0, inum, 'ln_zps', REAL(COUNT((/ln_zps/)), wp), ktype = jp_i4 ) CALL iom_rstput( 0, 0, inum, 'ln_sco', REAL(COUNT((/ln_sco/)), wp), ktype = jp_i4 ) ! ! ! ocean cavities under iceshelves CALL iom_rstput( 0, 0, inum, 'ln_isfcav', REAL(COUNT((/ln_isfcav/)), wp), ktype = jp_i4 ) ! ! !== horizontal mesh ! ! CALL iom_rstput( 0, 0, inum, 'glamt', glamt, ktype = jp_r8 ) ! latitude CALL iom_rstput( 0, 0, inum, 'glamu', glamu, ktype = jp_r8 ) CALL iom_rstput( 0, 0, inum, 'glamv', glamv, ktype = jp_r8 ) CALL iom_rstput( 0, 0, inum, 'glamf', glamf, ktype = jp_r8 ) ! CALL iom_rstput( 0, 0, inum, 'gphit', gphit, ktype = jp_r8 ) ! longitude CALL iom_rstput( 0, 0, inum, 'gphiu', gphiu, ktype = jp_r8 ) CALL iom_rstput( 0, 0, inum, 'gphiv', gphiv, ktype = jp_r8 ) CALL iom_rstput( 0, 0, inum, 'gphif', gphif, ktype = jp_r8 ) ! CALL iom_rstput( 0, 0, inum, 'e1t' , e1t , ktype = jp_r8 ) ! i-scale factors (e1.) CALL iom_rstput( 0, 0, inum, 'e1u' , e1u , ktype = jp_r8 ) CALL iom_rstput( 0, 0, inum, 'e1v' , e1v , ktype = jp_r8 ) CALL iom_rstput( 0, 0, inum, 'e1f' , e1f , ktype = jp_r8 ) ! CALL iom_rstput( 0, 0, inum, 'e2t' , e2t , ktype = jp_r8 ) ! j-scale factors (e2.) CALL iom_rstput( 0, 0, inum, 'e2u' , e2u , ktype = jp_r8 ) CALL iom_rstput( 0, 0, inum, 'e2v' , e2v , ktype = jp_r8 ) CALL iom_rstput( 0, 0, inum, 'e2f' , e2f , ktype = jp_r8 ) ! CALL iom_rstput( 0, 0, inum, 'ff_f' , ff_f , ktype = jp_r8 ) ! coriolis factor CALL iom_rstput( 0, 0, inum, 'ff_t' , ff_t , ktype = jp_r8 ) ! ! !== vertical mesh ==! ! CALL iom_rstput( 0, 0, inum, 'e3t_1d' , e3t_1d , ktype = jp_r8 ) ! reference 1D-coordinate CALL iom_rstput( 0, 0, inum, 'e3w_1d' , e3w_1d , ktype = jp_r8 ) ! CALL iom_rstput( 0, 0, inum, 'e3t_0' , e3t_0 , ktype = jp_r8 ) ! vertical scale factors CALL iom_rstput( 0, 0, inum, 'e3u_0' , e3u_0 , ktype = jp_r8 ) CALL iom_rstput( 0, 0, inum, 'e3v_0' , e3v_0 , ktype = jp_r8 ) CALL iom_rstput( 0, 0, inum, 'e3f_0' , e3f_0 , ktype = jp_r8 ) CALL iom_rstput( 0, 0, inum, 'e3w_0' , e3w_0 , ktype = jp_r8 ) CALL iom_rstput( 0, 0, inum, 'e3uw_0' , e3uw_0 , ktype = jp_r8 ) CALL iom_rstput( 0, 0, inum, 'e3vw_0' , e3vw_0 , ktype = jp_r8 ) ! ! !== wet top and bottom level ==! (caution: multiplied by ssmask) ! CALL iom_rstput( 0, 0, inum, 'top_level' , REAL( mikt, wp )*ssmask , ktype = jp_i4 ) ! nb of ocean T-points (ISF) CALL iom_rstput( 0, 0, inum, 'bottom_level' , REAL( mbkt, wp )*ssmask , ktype = jp_i4 ) ! nb of ocean T-points ! IF( ln_sco ) THEN ! s-coordinate: store grid stiffness ratio (Not required anyway) CALL dom_stiff( z2d ) CALL iom_rstput( 0, 0, inum, 'stiffness', z2d ) ! ! Max. grid stiffness ratio ENDIF ! IF( ll_wd ) THEN ! wetting and drying domain CALL iom_rstput( 0, 0, inum, 'ht_0' , ht_0 , ktype = jp_r8 ) ENDIF ! ! Add some global attributes ( netcdf only ) CALL iom_putatt( inum, 'nn_cfg', nn_cfg ) CALL iom_putatt( inum, 'cn_cfg', TRIM(cn_cfg) ) ! ! ! ============================ ! ! close the files ! ! ============================ CALL iom_close( inum ) ! END SUBROUTINE cfg_write !!====================================================================== END MODULE domain