MODULE dynatf !!========================================================================= !! *** MODULE dynatf *** !! Ocean dynamics: time filtering !!========================================================================= !! History : OPA ! 1987-02 (P. Andrich, D. L Hostis) Original code !! ! 1990-10 (C. Levy, G. Madec) !! 7.0 ! 1993-03 (M. Guyon) symetrical conditions !! 8.0 ! 1997-02 (G. Madec & M. Imbard) opa, release 8.0 !! 8.2 ! 1997-04 (A. Weaver) Euler forward step !! - ! 1997-06 (G. Madec) lateral boudary cond., lbc routine !! NEMO 1.0 ! 2002-08 (G. Madec) F90: Free form and module !! - ! 2002-10 (C. Talandier, A-M. Treguier) Open boundary cond. !! 2.0 ! 2005-11 (V. Garnier) Surface pressure gradient organization !! 2.3 ! 2007-07 (D. Storkey) Calls to BDY routines. !! 3.2 ! 2009-06 (G. Madec, R.Benshila) re-introduce the vvl option !! 3.3 ! 2010-09 (D. Storkey, E.O'Dea) Bug fix for BDY module !! 3.3 ! 2011-03 (P. Oddo) Bug fix for time-splitting+(BDY-OBC) and not VVL !! 3.5 ! 2013-07 (J. Chanut) Compliant with time splitting changes !! 3.6 ! 2014-04 (G. Madec) add the diagnostic of the time filter trends !! 3.7 ! 2015-11 (J. Chanut) Free surface simplification !! 4.1 ! 2019-08 (A. Coward, D. Storkey) Rename dynnxt.F90 -> dynatf.F90. Now just does time filtering. !!------------------------------------------------------------------------- !!---------------------------------------------------------------------------------------------- !! dyn_atf : apply Asselin time filtering to "now" velocities and vertical scale factors !!---------------------------------------------------------------------------------------------- USE oce ! ocean dynamics and tracers USE dom_oce ! ocean space and time domain USE sbc_oce ! Surface boundary condition: ocean fields USE sbcrnf ! river runoffs USE phycst ! physical constants USE dynadv ! dynamics: vector invariant versus flux form USE dynspg_ts ! surface pressure gradient: split-explicit scheme USE domvvl ! variable volume USE bdy_oce , ONLY: ln_bdy USE bdydta ! ocean open boundary conditions USE bdydyn ! ocean open boundary conditions USE bdyvol ! ocean open boundary condition (bdy_vol routines) USE trd_oce ! trends: ocean variables USE trddyn ! trend manager: dynamics USE trdken ! trend manager: kinetic energy USE isf_oce , ONLY: ln_isf ! ice shelf USE isfdynatf , ONLY: isf_dynatf ! ice shelf volume filter correction subroutine ! USE in_out_manager ! I/O manager USE iom ! I/O manager library USE lbclnk ! lateral boundary condition (or mpp link) USE lib_mpp ! MPP library USE prtctl ! Print control USE timing ! Timing #if defined key_agrif USE agrif_oce_interp #endif IMPLICIT NONE PRIVATE PUBLIC dyn_atf ! routine called by step.F90 !! * Substitutions # include "do_loop_substitute.h90" !!---------------------------------------------------------------------- !! NEMO/OCE 4.0 , NEMO Consortium (2018) !! $Id$ !! Software governed by the CeCILL license (see ./LICENSE) !!---------------------------------------------------------------------- CONTAINS SUBROUTINE dyn_atf ( kt, Kbb, Kmm, Kaa, puu, pvv, pe3t, pe3u, pe3v ) !!---------------------------------------------------------------------- !! *** ROUTINE dyn_atf *** !! !! ** Purpose : Finalize after horizontal velocity. Apply the boundary !! condition on the after velocity and apply the Asselin time !! filter to the now fields. !! !! ** Method : * Ensure after velocities transport matches time splitting !! estimate (ln_dynspg_ts=T) !! !! * Apply lateral boundary conditions on after velocity !! at the local domain boundaries through lbc_lnk call, !! at the one-way open boundaries (ln_bdy=T), !! at the AGRIF zoom boundaries (lk_agrif=T) !! !! * Apply the Asselin time filter to the now fields !! arrays to start the next time step: !! (puu(Kmm),pvv(Kmm)) = (puu(Kmm),pvv(Kmm)) !! + atfp [ (puu(Kbb),pvv(Kbb)) + (puu(Kaa),pvv(Kaa)) - 2 (puu(Kmm),pvv(Kmm)) ] !! Note that with flux form advection and non linear free surface, !! the time filter is applied on thickness weighted velocity. !! As a result, dyn_atf MUST be called after tra_atf. !! !! ** Action : puu(Kmm),pvv(Kmm) filtered now horizontal velocity !!---------------------------------------------------------------------- INTEGER , INTENT(in ) :: kt ! ocean time-step index INTEGER , INTENT(in ) :: Kbb, Kmm, Kaa ! before and after time level indices REAL(wp), DIMENSION(jpi,jpj,jpk,jpt), INTENT(inout) :: puu, pvv ! velocities to be time filtered REAL(wp), DIMENSION(jpi,jpj,jpk,jpt), INTENT(inout) :: pe3t, pe3u, pe3v ! scale factors to be time filtered ! INTEGER :: ji, jj, jk ! dummy loop indices REAL(wp) :: zue3a, zue3n, zue3b, zcoef ! local scalars REAL(wp) :: zve3a, zve3n, zve3b, z1_2dt ! - - REAL(wp), ALLOCATABLE, DIMENSION(:,:) :: zue, zve, zwfld REAL(wp), ALLOCATABLE, DIMENSION(:,:,:) :: ze3t_f, ze3u_f, ze3v_f, zua, zva !!---------------------------------------------------------------------- ! IF( ln_timing ) CALL timing_start('dyn_atf') IF( ln_dynspg_ts ) ALLOCATE( zue(jpi,jpj) , zve(jpi,jpj) ) IF( l_trddyn ) ALLOCATE( zua(jpi,jpj,jpk) , zva(jpi,jpj,jpk) ) ! IF( kt == nit000 ) THEN IF(lwp) WRITE(numout,*) IF(lwp) WRITE(numout,*) 'dyn_atf : Asselin time filtering' IF(lwp) WRITE(numout,*) '~~~~~~~' ENDIF IF ( ln_dynspg_ts ) THEN ! Ensure below that barotropic velocities match time splitting estimate ! Compute actual transport and replace it with ts estimate at "after" time step zue(:,:) = pe3u(:,:,1,Kaa) * puu(:,:,1,Kaa) * umask(:,:,1) zve(:,:) = pe3v(:,:,1,Kaa) * pvv(:,:,1,Kaa) * vmask(:,:,1) DO jk = 2, jpkm1 zue(:,:) = zue(:,:) + pe3u(:,:,jk,Kaa) * puu(:,:,jk,Kaa) * umask(:,:,jk) zve(:,:) = zve(:,:) + pe3v(:,:,jk,Kaa) * pvv(:,:,jk,Kaa) * vmask(:,:,jk) END DO DO jk = 1, jpkm1 puu(:,:,jk,Kaa) = ( puu(:,:,jk,Kaa) - zue(:,:) * r1_hu(:,:,Kaa) + uu_b(:,:,Kaa) ) * umask(:,:,jk) pvv(:,:,jk,Kaa) = ( pvv(:,:,jk,Kaa) - zve(:,:) * r1_hv(:,:,Kaa) + vv_b(:,:,Kaa) ) * vmask(:,:,jk) END DO ! IF( .NOT.ln_bt_fw ) THEN ! Remove advective velocity from "now velocities" ! prior to asselin filtering ! In the forward case, this is done below after asselin filtering ! so that asselin contribution is removed at the same time DO jk = 1, jpkm1 puu(:,:,jk,Kmm) = ( puu(:,:,jk,Kmm) - un_adv(:,:)*r1_hu(:,:,Kmm) + uu_b(:,:,Kmm) )*umask(:,:,jk) pvv(:,:,jk,Kmm) = ( pvv(:,:,jk,Kmm) - vn_adv(:,:)*r1_hv(:,:,Kmm) + vv_b(:,:,Kmm) )*vmask(:,:,jk) END DO ENDIF ENDIF ! Update after velocity on domain lateral boundaries ! -------------------------------------------------- # if defined key_agrif CALL Agrif_dyn( kt ) !* AGRIF zoom boundaries # endif ! CALL lbc_lnk_multi( 'dynatf', puu(:,:,:,Kaa), 'U', -1., pvv(:,:,:,Kaa), 'V', -1. ) !* local domain boundaries ! ! !* BDY open boundaries IF( ln_bdy .AND. ln_dynspg_exp ) CALL bdy_dyn( kt, Kbb, puu, pvv, Kaa ) IF( ln_bdy .AND. ln_dynspg_ts ) CALL bdy_dyn( kt, Kbb, puu, pvv, Kaa, dyn3d_only=.true. ) !!$ Do we need a call to bdy_vol here?? ! IF( l_trddyn ) THEN ! prepare the atf trend computation + some diagnostics z1_2dt = 1._wp / (2. * rdt) ! Euler or leap-frog time step IF( neuler == 0 .AND. kt == nit000 ) z1_2dt = 1._wp / rdt ! ! ! Kinetic energy and Conversion IF( ln_KE_trd ) CALL trd_dyn( puu(:,:,:,Kaa), pvv(:,:,:,Kaa), jpdyn_ken, kt, Kmm ) ! IF( ln_dyn_trd ) THEN ! 3D output: total momentum trends zua(:,:,:) = ( puu(:,:,:,Kaa) - puu(:,:,:,Kbb) ) * z1_2dt zva(:,:,:) = ( pvv(:,:,:,Kaa) - pvv(:,:,:,Kbb) ) * z1_2dt CALL iom_put( "utrd_tot", zua ) ! total momentum trends, except the asselin time filter CALL iom_put( "vtrd_tot", zva ) ENDIF ! zua(:,:,:) = puu(:,:,:,Kmm) ! save the now velocity before the asselin filter zva(:,:,:) = pvv(:,:,:,Kmm) ! (caution: there will be a shift by 1 timestep in the ! ! computation of the asselin filter trends) ENDIF ! Time filter and swap of dynamics arrays ! ------------------------------------------ IF( .NOT.( neuler == 0 .AND. kt == nit000 ) ) THEN !* Leap-Frog : Asselin time filter ! ! =============! IF( ln_linssh ) THEN ! Fixed volume ! ! ! =============! DO_3D_11_11( 1, jpkm1 ) puu(ji,jj,jk,Kmm) = puu(ji,jj,jk,Kmm) + atfp * ( puu(ji,jj,jk,Kbb) - 2._wp * puu(ji,jj,jk,Kmm) + puu(ji,jj,jk,Kaa) ) pvv(ji,jj,jk,Kmm) = pvv(ji,jj,jk,Kmm) + atfp * ( pvv(ji,jj,jk,Kbb) - 2._wp * pvv(ji,jj,jk,Kmm) + pvv(ji,jj,jk,Kaa) ) END_3D ! ! ================! ELSE ! Variable volume ! ! ! ================! ! Time-filtered scale factor at t-points ! ---------------------------------------------------- ALLOCATE( ze3t_f(jpi,jpj,jpk), zwfld(jpi,jpj) ) DO jk = 1, jpkm1 ze3t_f(:,:,jk) = pe3t(:,:,jk,Kmm) + atfp * ( pe3t(:,:,jk,Kbb) - 2._wp * pe3t(:,:,jk,Kmm) + pe3t(:,:,jk,Kaa) ) END DO ! Add volume filter correction: compatibility with tracer advection scheme ! => time filter + conservation correction zcoef = atfp * rdt * r1_rau0 zwfld(:,:) = emp_b(:,:) - emp(:,:) IF ( ln_rnf ) zwfld(:,:) = zwfld(:,:) - ( rnf_b(:,:) - rnf(:,:) ) DO jk = 1, jpkm1 ze3t_f(:,:,jk) = ze3t_f(:,:,jk) - zcoef * zwfld(:,:) * tmask(:,:,jk) & & * pe3t(:,:,jk,Kmm) / ( ht(:,:) + 1._wp - ssmask(:,:) ) END DO ! ! ice shelf melting (deal separately as it can be in depth) ! PM: we could probably define a generic subroutine to do the in depth correction ! to manage rnf, isf and possibly in the futur icb, tide water glacier (...) ! ...(kt, coef, ktop, kbot, hz, fwf_b, fwf) IF ( ln_isf ) CALL isf_dynatf( kt, Kmm, ze3t_f, atfp * rdt ) ! pe3t(:,:,1:jpkm1,Kmm) = ze3t_f(:,:,1:jpkm1) ! filtered scale factor at T-points ! IF( ln_dynadv_vec ) THEN ! Asselin filter applied on velocity ! Before filtered scale factor at (u/v)-points CALL dom_vvl_interpol( pe3t(:,:,:,Kmm), pe3u(:,:,:,Kmm), 'U' ) CALL dom_vvl_interpol( pe3t(:,:,:,Kmm), pe3v(:,:,:,Kmm), 'V' ) DO_3D_11_11( 1, jpkm1 ) puu(ji,jj,jk,Kmm) = puu(ji,jj,jk,Kmm) + atfp * ( puu(ji,jj,jk,Kbb) - 2._wp * puu(ji,jj,jk,Kmm) + puu(ji,jj,jk,Kaa) ) pvv(ji,jj,jk,Kmm) = pvv(ji,jj,jk,Kmm) + atfp * ( pvv(ji,jj,jk,Kbb) - 2._wp * pvv(ji,jj,jk,Kmm) + pvv(ji,jj,jk,Kaa) ) END_3D ! ELSE ! Asselin filter applied on thickness weighted velocity ! ALLOCATE( ze3u_f(jpi,jpj,jpk) , ze3v_f(jpi,jpj,jpk) ) ! Now filtered scale factor at (u/v)-points stored in ze3u_f, ze3v_f CALL dom_vvl_interpol( pe3t(:,:,:,Kmm), ze3u_f, 'U' ) CALL dom_vvl_interpol( pe3t(:,:,:,Kmm), ze3v_f, 'V' ) DO_3D_11_11( 1, jpkm1 ) zue3a = pe3u(ji,jj,jk,Kaa) * puu(ji,jj,jk,Kaa) zve3a = pe3v(ji,jj,jk,Kaa) * pvv(ji,jj,jk,Kaa) zue3n = pe3u(ji,jj,jk,Kmm) * puu(ji,jj,jk,Kmm) zve3n = pe3v(ji,jj,jk,Kmm) * pvv(ji,jj,jk,Kmm) zue3b = pe3u(ji,jj,jk,Kbb) * puu(ji,jj,jk,Kbb) zve3b = pe3v(ji,jj,jk,Kbb) * pvv(ji,jj,jk,Kbb) ! puu(ji,jj,jk,Kmm) = ( zue3n + atfp * ( zue3b - 2._wp * zue3n + zue3a ) ) / ze3u_f(ji,jj,jk) pvv(ji,jj,jk,Kmm) = ( zve3n + atfp * ( zve3b - 2._wp * zve3n + zve3a ) ) / ze3v_f(ji,jj,jk) END_3D pe3u(:,:,1:jpkm1,Kmm) = ze3u_f(:,:,1:jpkm1) pe3v(:,:,1:jpkm1,Kmm) = ze3v_f(:,:,1:jpkm1) ! DEALLOCATE( ze3u_f , ze3v_f ) ENDIF ! DEALLOCATE( ze3t_f, zwfld ) ENDIF ! IF( ln_dynspg_ts .AND. ln_bt_fw ) THEN ! Revert filtered "now" velocities to time split estimate ! Doing it here also means that asselin filter contribution is removed zue(:,:) = pe3u(:,:,1,Kmm) * puu(:,:,1,Kmm) * umask(:,:,1) zve(:,:) = pe3v(:,:,1,Kmm) * pvv(:,:,1,Kmm) * vmask(:,:,1) DO jk = 2, jpkm1 zue(:,:) = zue(:,:) + pe3u(:,:,jk,Kmm) * puu(:,:,jk,Kmm) * umask(:,:,jk) zve(:,:) = zve(:,:) + pe3v(:,:,jk,Kmm) * pvv(:,:,jk,Kmm) * vmask(:,:,jk) END DO DO jk = 1, jpkm1 puu(:,:,jk,Kmm) = puu(:,:,jk,Kmm) - (zue(:,:) * r1_hu(:,:,Kmm) - uu_b(:,:,Kmm)) * umask(:,:,jk) pvv(:,:,jk,Kmm) = pvv(:,:,jk,Kmm) - (zve(:,:) * r1_hv(:,:,Kmm) - vv_b(:,:,Kmm)) * vmask(:,:,jk) END DO ENDIF ! ENDIF ! neuler /= 0 ! ! Set "now" and "before" barotropic velocities for next time step: ! JC: Would be more clever to swap variables than to make a full vertical ! integration ! IF(.NOT.ln_linssh ) THEN hu(:,:,Kmm) = pe3u(:,:,1,Kmm ) * umask(:,:,1) hv(:,:,Kmm) = pe3v(:,:,1,Kmm ) * vmask(:,:,1) DO jk = 2, jpkm1 hu(:,:,Kmm) = hu(:,:,Kmm) + pe3u(:,:,jk,Kmm ) * umask(:,:,jk) hv(:,:,Kmm) = hv(:,:,Kmm) + pe3v(:,:,jk,Kmm ) * vmask(:,:,jk) END DO r1_hu(:,:,Kmm) = ssumask(:,:) / ( hu(:,:,Kmm) + 1._wp - ssumask(:,:) ) r1_hv(:,:,Kmm) = ssvmask(:,:) / ( hv(:,:,Kmm) + 1._wp - ssvmask(:,:) ) ENDIF ! uu_b(:,:,Kaa) = pe3u(:,:,1,Kaa) * puu(:,:,1,Kaa) * umask(:,:,1) uu_b(:,:,Kmm) = pe3u(:,:,1,Kmm) * puu(:,:,1,Kmm) * umask(:,:,1) vv_b(:,:,Kaa) = pe3v(:,:,1,Kaa) * pvv(:,:,1,Kaa) * vmask(:,:,1) vv_b(:,:,Kmm) = pe3v(:,:,1,Kmm) * pvv(:,:,1,Kmm) * vmask(:,:,1) DO jk = 2, jpkm1 uu_b(:,:,Kaa) = uu_b(:,:,Kaa) + pe3u(:,:,jk,Kaa) * puu(:,:,jk,Kaa) * umask(:,:,jk) uu_b(:,:,Kmm) = uu_b(:,:,Kmm) + pe3u(:,:,jk,Kmm) * puu(:,:,jk,Kmm) * umask(:,:,jk) vv_b(:,:,Kaa) = vv_b(:,:,Kaa) + pe3v(:,:,jk,Kaa) * pvv(:,:,jk,Kaa) * vmask(:,:,jk) vv_b(:,:,Kmm) = vv_b(:,:,Kmm) + pe3v(:,:,jk,Kmm) * pvv(:,:,jk,Kmm) * vmask(:,:,jk) END DO uu_b(:,:,Kaa) = uu_b(:,:,Kaa) * r1_hu(:,:,Kaa) vv_b(:,:,Kaa) = vv_b(:,:,Kaa) * r1_hv(:,:,Kaa) uu_b(:,:,Kmm) = uu_b(:,:,Kmm) * r1_hu(:,:,Kmm) vv_b(:,:,Kmm) = vv_b(:,:,Kmm) * r1_hv(:,:,Kmm) ! IF( .NOT.ln_dynspg_ts ) THEN ! output the barotropic currents CALL iom_put( "ubar", uu_b(:,:,Kmm) ) CALL iom_put( "vbar", vv_b(:,:,Kmm) ) ENDIF IF( l_trddyn ) THEN ! 3D output: asselin filter trends on momentum zua(:,:,:) = ( puu(:,:,:,Kmm) - zua(:,:,:) ) * z1_2dt zva(:,:,:) = ( pvv(:,:,:,Kmm) - zva(:,:,:) ) * z1_2dt CALL trd_dyn( zua, zva, jpdyn_atf, kt, Kmm ) ENDIF ! IF(sn_cfctl%l_prtctl) CALL prt_ctl( tab3d_1=puu(:,:,:,Kaa), clinfo1=' nxt - puu(:,:,:,Kaa): ', mask1=umask, & & tab3d_2=pvv(:,:,:,Kaa), clinfo2=' pvv(:,:,:,Kaa): ' , mask2=vmask ) ! IF( ln_dynspg_ts ) DEALLOCATE( zue, zve ) IF( l_trddyn ) DEALLOCATE( zua, zva ) IF( ln_timing ) CALL timing_stop('dyn_atf') ! END SUBROUTINE dyn_atf !!========================================================================= END MODULE dynatf