MODULE sshwzv !!============================================================================== !! *** MODULE sshwzv *** !! Ocean dynamics : sea surface height and vertical velocity !!============================================================================== !! History : 3.1 ! 2009-02 (G. Madec, M. Leclair) Original code !! 3.3 ! 2010-04 (M. Leclair, G. Madec) modified LF-RA !! - ! 2010-05 (K. Mogensen, A. Weaver, M. Martin, D. Lea) Assimilation interface !! - ! 2010-09 (D.Storkey and E.O'Dea) bug fixes for BDY module !! 3.3 ! 2011-10 (M. Leclair) split former ssh_wzv routine and remove all vvl related work !! 4.0 ! 2018-12 (A. Coward) add mixed implicit/explicit advection !! 4.1 ! 2019-08 (A. Coward, D. Storkey) Rename ssh_nxt -> ssh_atf. Now only does time filtering. !! - ! 2020-08 (S. Techene, G. Madec) add here ssh initiatlisation !!---------------------------------------------------------------------- !!---------------------------------------------------------------------- !! ssh_nxt : after ssh !! ssh_atf : time filter the ssh arrays !! wzv : compute now vertical velocity !!---------------------------------------------------------------------- USE oce ! ocean dynamics and tracers variables USE isf_oce ! ice shelf USE dom_oce ! ocean space and time domain variables USE sbc_oce ! surface boundary condition: ocean USE domvvl ! Variable volume USE divhor ! horizontal divergence USE phycst ! physical constants USE bdy_oce , ONLY : ln_bdy, bdytmask ! Open BounDarY USE bdydyn2d ! bdy_ssh routine USE wet_dry ! Wetting/Drying flux limiting #if defined key_agrif USE agrif_oce USE agrif_oce_interp #endif ! USE iom USE in_out_manager ! I/O manager USE restart ! only for lrst_oce USE prtctl ! Print control USE lbclnk ! ocean lateral boundary condition (or mpp link) USE lib_mpp ! MPP library USE timing ! Timing IMPLICIT NONE PRIVATE PUBLIC ssh_nxt ! called by step.F90 PUBLIC wzv ! called by step.F90 PUBLIC wAimp ! called by step.F90 PUBLIC ssh_atf ! called by step.F90 !! * Substitutions # include "do_loop_substitute.h90" # include "domzgr_substitute.h90" !!---------------------------------------------------------------------- !! NEMO/OCE 4.0 , NEMO Consortium (2018) !! $Id$ !! Software governed by the CeCILL license (see ./LICENSE) !!---------------------------------------------------------------------- CONTAINS SUBROUTINE ssh_nxt( kt, Kbb, Kmm, pssh, Kaa ) !!---------------------------------------------------------------------- !! *** ROUTINE ssh_nxt *** !! !! ** Purpose : compute the after ssh (ssh(Kaa)) !! !! ** Method : - Using the incompressibility hypothesis, the ssh increment !! is computed by integrating the horizontal divergence and multiply by !! by the time step. !! !! ** action : ssh(:,:,Kaa), after sea surface height !! !! Reference : Leclair, M., and G. Madec, 2009, Ocean Modelling. !!---------------------------------------------------------------------- INTEGER , INTENT(in ) :: kt ! time step INTEGER , INTENT(in ) :: Kbb, Kmm, Kaa ! time level index REAL(wp), DIMENSION(jpi,jpj,jpt), INTENT(inout) :: pssh ! sea-surface height ! INTEGER :: ji, jj, jk ! dummy loop index REAL(wp) :: zcoef ! local scalar REAL(wp), DIMENSION(jpi,jpj) :: zhdiv ! 2D workspace !!---------------------------------------------------------------------- ! IF( ln_timing ) CALL timing_start('ssh_nxt') ! IF( kt == nit000 ) THEN IF(lwp) WRITE(numout,*) IF(lwp) WRITE(numout,*) 'ssh_nxt : after sea surface height' IF(lwp) WRITE(numout,*) '~~~~~~~ ' ENDIF ! zcoef = 0.5_wp * r1_rho0 ! !------------------------------! ! ! After Sea Surface Height ! ! !------------------------------! IF(ln_wd_il) THEN CALL wad_lmt(pssh(:,:,Kbb), zcoef * (emp_b(:,:) + emp(:,:)), rDt, Kmm, uu, vv ) ENDIF CALL div_hor( kt, Kbb, Kmm ) ! Horizontal divergence ! zhdiv(:,:) = 0._wp DO_3D( 1, nn_hls, 1, nn_hls, 1, jpkm1 ) ! Horizontal divergence of barotropic transports zhdiv(ji,jj) = zhdiv(ji,jj) + e3t(ji,jj,jk,Kmm) * hdiv(ji,jj,jk) END_3D ! ! Sea surface elevation time stepping ! In time-split case we need a first guess of the ssh after (using the baroclinic timestep) in order to ! compute the vertical velocity which can be used to compute the non-linear terms of the momentum equations. ! DO_2D_OVR( 1, nn_hls, 1, nn_hls ) ! Loop bounds limited by hdiv definition in div_hor pssh(ji,jj,Kaa) = ( pssh(ji,jj,Kbb) - rDt * ( zcoef * ( emp_b(ji,jj) + emp(ji,jj) ) + zhdiv(ji,jj) ) ) * ssmask(ji,jj) END_2D ! pssh must be defined everywhere (true for dyn_spg_ts, not for dyn_spg_exp) IF ( .NOT. ln_dynspg_ts .AND. nn_hls == 2 ) CALL lbc_lnk( 'sshwzv', pssh(:,:,Kaa), 'T', 1.0_wp ) ! #if defined key_agrif Kbb_a = Kbb ; Kmm_a = Kmm ; Krhs_a = Kaa CALL agrif_ssh( kt ) #endif ! IF ( .NOT.ln_dynspg_ts ) THEN IF( ln_bdy ) THEN IF (nn_hls==1) CALL lbc_lnk( 'sshwzv', pssh(:,:,Kaa), 'T', 1.0_wp ) ! Not sure that's necessary CALL bdy_ssh( pssh(:,:,Kaa) ) ! Duplicate sea level across open boundaries ENDIF ENDIF ! !------------------------------! ! ! outputs ! ! !------------------------------! ! IF(sn_cfctl%l_prtctl) CALL prt_ctl( tab2d_1=pssh(:,:,Kaa), clinfo1=' pssh(:,:,Kaa) - : ', mask1=tmask ) ! IF( ln_timing ) CALL timing_stop('ssh_nxt') ! END SUBROUTINE ssh_nxt SUBROUTINE wzv( kt, Kbb, Kmm, Kaa, pww ) !!---------------------------------------------------------------------- !! *** ROUTINE wzv *** !! !! ** Purpose : compute the now vertical velocity !! !! ** Method : - Using the incompressibility hypothesis, the vertical !! velocity is computed by integrating the horizontal divergence !! from the bottom to the surface minus the scale factor evolution. !! The boundary conditions are w=0 at the bottom (no flux) and. !! !! ** action : pww : now vertical velocity !! !! Reference : Leclair, M., and G. Madec, 2009, Ocean Modelling. !!---------------------------------------------------------------------- INTEGER , INTENT(in) :: kt ! time step INTEGER , INTENT(in) :: Kbb, Kmm, Kaa ! time level indices REAL(wp), DIMENSION(jpi,jpj,jpk), INTENT(inout) :: pww ! vertical velocity at Kmm ! INTEGER :: ji, jj, jk ! dummy loop indices REAL(wp), ALLOCATABLE, DIMENSION(:,:,:) :: zhdiv !!---------------------------------------------------------------------- ! IF( ln_timing ) CALL timing_start('wzv') ! IF( kt == nit000 ) THEN IF(lwp) WRITE(numout,*) IF(lwp) WRITE(numout,*) 'wzv : now vertical velocity ' IF(lwp) WRITE(numout,*) '~~~~~ ' ! pww(:,:,jpk) = 0._wp ! bottom boundary condition: w=0 (set once for all) ENDIF ! !------------------------------! ! ! Now Vertical Velocity ! ! !------------------------------! ! ! !===============================! IF( ln_vvl_ztilde .OR. ln_vvl_layer ) THEN !== z_tilde and layer cases ==! ! !===============================! ALLOCATE( zhdiv(jpi,jpj,jpk) ) ! DO jk = 1, jpkm1 ! horizontal divergence of thickness diffusion transport ( velocity multiplied by e3t) ! - ML - note: computation already done in dom_vvl_sf_nxt. Could be optimized (not critical and clearer this way) DO_2D( nn_hls-1, nn_hls, nn_hls-1, nn_hls ) zhdiv(ji,jj,jk) = r1_e1e2t(ji,jj) * ( un_td(ji,jj,jk) - un_td(ji-1,jj,jk) + vn_td(ji,jj,jk) - vn_td(ji,jj-1,jk) ) END_2D END DO IF( nn_hls == 1) CALL lbc_lnk('sshwzv', zhdiv, 'T', 1.0_wp) ! - ML - Perhaps not necessary: not used for horizontal "connexions" ! ! Is it problematic to have a wrong vertical velocity in boundary cells? ! ! Same question holds for hdiv. Perhaps just for security ! ! clem: yes it is a problem because ww is used in many other places where we need the halos ! DO_3DS( nn_hls-1, nn_hls, nn_hls-1, nn_hls, jpkm1, 1, -1 ) ! integrate from the bottom the hor. divergence ! computation of w pww(ji,jj,jk) = pww(ji,jj,jk+1) - ( e3t(ji,jj,jk,Kmm) * hdiv(ji,jj,jk) & & + zhdiv(ji,jj,jk) & & + r1_Dt * ( e3t(ji,jj,jk,Kaa) & & - e3t(ji,jj,jk,Kbb) ) ) * tmask(ji,jj,jk) END_3D ! IF( ln_vvl_layer ) pww(:,:,:) = 0.e0 DEALLOCATE( zhdiv ) ! !=================================! ELSEIF( ln_linssh ) THEN !== linear free surface cases ==! ! !=================================! DO_3DS( nn_hls-1, nn_hls, nn_hls-1, nn_hls, jpkm1, 1, -1 ) ! integrate from the bottom the hor. divergence pww(ji,jj,jk) = pww(ji,jj,jk+1) - ( e3t(ji,jj,jk,Kmm) * hdiv(ji,jj,jk) ) * tmask(ji,jj,jk) END_3D ! !==========================================! ELSE !== Quasi-Eulerian vertical coordinate ==! ('key_qco') ! !==========================================! DO_3DS( nn_hls-1, nn_hls, nn_hls-1, nn_hls, jpkm1, 1, -1 ) ! integrate from the bottom the hor. divergence pww(ji,jj,jk) = pww(ji,jj,jk+1) - ( e3t(ji,jj,jk,Kmm) * hdiv(ji,jj,jk) & & + r1_Dt * ( e3t(ji,jj,jk,Kaa) & & - e3t(ji,jj,jk,Kbb) ) ) * tmask(ji,jj,jk) END_3D ENDIF IF( ln_bdy ) THEN DO jk = 1, jpkm1 DO_2D( nn_hls-1, nn_hls, nn_hls-1, nn_hls ) pww(ji,jj,jk) = pww(ji,jj,jk) * bdytmask(ji,jj) END_2D END DO ENDIF ! #if defined key_agrif IF( .NOT. AGRIF_Root() ) THEN ! ! Mask vertical velocity at first/last columns/row ! inside computational domain (cosmetic) DO jk = 1, jpkm1 IF( lk_west ) THEN ! --- West --- ! DO ji = mi0(2+nn_hls), mi1(2+nn_hls) DO jj = 1, jpj pww(ji,jj,jk) = 0._wp END DO END DO ENDIF IF( lk_east ) THEN ! --- East --- ! DO ji = mi0(jpiglo-1-nn_hls), mi1(jpiglo-1-nn_hls) DO jj = 1, jpj pww(ji,jj,jk) = 0._wp END DO END DO ENDIF IF( lk_south ) THEN ! --- South --- ! DO jj = mj0(2+nn_hls), mj1(2+nn_hls) DO ji = 1, jpi pww(ji,jj,jk) = 0._wp END DO END DO ENDIF IF( lk_north ) THEN ! --- North --- ! DO jj = mj0(jpjglo-1-nn_hls), mj1(jpjglo-1-nn_hls) DO ji = 1, jpi pww(ji,jj,jk) = 0._wp END DO END DO ENDIF ! END DO ! ENDIF #endif ! IF( ln_timing ) CALL timing_stop('wzv') ! END SUBROUTINE wzv SUBROUTINE ssh_atf( kt, Kbb, Kmm, Kaa, pssh ) !!---------------------------------------------------------------------- !! *** ROUTINE ssh_atf *** !! !! ** Purpose : Apply Asselin time filter to now SSH. !! !! ** Method : - apply Asselin time fiter to now ssh (excluding the forcing !! from the filter, see Leclair and Madec 2010) and swap : !! pssh(:,:,Kmm) = pssh(:,:,Kaa) + rn_atfp * ( pssh(:,:,Kbb) -2 pssh(:,:,Kmm) + pssh(:,:,Kaa) ) !! - rn_atfp * rn_Dt * ( emp_b - emp ) / rho0 !! !! ** action : - pssh(:,:,Kmm) time filtered !! !! Reference : Leclair, M., and G. Madec, 2009, Ocean Modelling. !!---------------------------------------------------------------------- INTEGER , INTENT(in ) :: kt ! ocean time-step index INTEGER , INTENT(in ) :: Kbb, Kmm, Kaa ! ocean time level indices REAL(wp), DIMENSION(jpi,jpj,jpt), INTENT(inout) :: pssh ! SSH field ! REAL(wp) :: zcoef ! local scalar !!---------------------------------------------------------------------- ! IF( ln_timing ) CALL timing_start('ssh_atf') ! IF( kt == nit000 ) THEN IF(lwp) WRITE(numout,*) IF(lwp) WRITE(numout,*) 'ssh_atf : Asselin time filter of sea surface height' IF(lwp) WRITE(numout,*) '~~~~~~~ ' ENDIF ! IF( .NOT.l_1st_euler ) THEN ! Apply Asselin time filter on Kmm field (not on euler 1st) ! IF( ln_linssh ) THEN ! filtered "now" field pssh(:,:,Kmm) = pssh(:,:,Kmm) + rn_atfp * ( pssh(:,:,Kbb) - 2 * pssh(:,:,Kmm) + pssh(:,:,Kaa) ) ! ELSE ! filtered "now" field with forcing removed zcoef = rn_atfp * rn_Dt * r1_rho0 pssh(:,:,Kmm) = pssh(:,:,Kmm) + rn_atfp * ( pssh(:,:,Kbb) - 2 * pssh(:,:,Kmm) + pssh(:,:,Kaa) ) & & - zcoef * ( emp_b(:,:) - emp(:,:) & & - rnf_b(:,:) + rnf(:,:) & & - fwfisf_cav_b(:,:) + fwfisf_cav(:,:) & & - fwfisf_par_b(:,:) + fwfisf_par(:,:) ) * ssmask(:,:) ! ice sheet coupling IF( ln_isf .AND. ln_isfcpl .AND. kt == nit000+1 ) & & pssh(:,:,Kbb) = pssh(:,:,Kbb) - rn_atfp * rn_Dt * ( risfcpl_ssh(:,:) - 0._wp ) * ssmask(:,:) ENDIF ENDIF ! IF(sn_cfctl%l_prtctl) CALL prt_ctl( tab2d_1=pssh(:,:,Kmm), clinfo1=' atf - pssh(:,:,Kmm): ', mask1=tmask ) ! IF( ln_timing ) CALL timing_stop('ssh_atf') ! END SUBROUTINE ssh_atf SUBROUTINE wAimp( kt, Kmm ) !!---------------------------------------------------------------------- !! *** ROUTINE wAimp *** !! !! ** Purpose : compute the Courant number and partition vertical velocity !! if a proportion needs to be treated implicitly !! !! ** Method : - !! !! ** action : ww : now vertical velocity (to be handled explicitly) !! : wi : now vertical velocity (for implicit treatment) !! !! Reference : Shchepetkin, A. F. (2015): An adaptive, Courant-number-dependent !! implicit scheme for vertical advection in oceanic modeling. !! Ocean Modelling, 91, 38-69. !!---------------------------------------------------------------------- INTEGER, INTENT(in) :: kt ! time step INTEGER, INTENT(in) :: Kmm ! time level index ! INTEGER :: ji, jj, jk ! dummy loop indices REAL(wp) :: zCu, zcff, z1_e3t, zdt ! local scalars REAL(wp) , PARAMETER :: Cu_min = 0.15_wp ! local parameters REAL(wp) , PARAMETER :: Cu_max = 0.30_wp ! local parameters REAL(wp) , PARAMETER :: Cu_cut = 2._wp*Cu_max - Cu_min ! local parameters REAL(wp) , PARAMETER :: Fcu = 4._wp*Cu_max*(Cu_max-Cu_min) ! local parameters !!---------------------------------------------------------------------- ! IF( ln_timing ) CALL timing_start('wAimp') ! IF( kt == nit000 ) THEN IF(lwp) WRITE(numout,*) IF(lwp) WRITE(numout,*) 'wAimp : Courant number-based partitioning of now vertical velocity ' IF(lwp) WRITE(numout,*) '~~~~~ ' ENDIF ! ! Calculate Courant numbers zdt = 2._wp * rn_Dt ! 2*rn_Dt and not rDt (for restartability) IF( ln_vvl_ztilde .OR. ln_vvl_layer ) THEN DO_3D( nn_hls-1, nn_hls, nn_hls-1, nn_hls, 1, jpkm1 ) z1_e3t = 1._wp / e3t(ji,jj,jk,Kmm) Cu_adv(ji,jj,jk) = zdt * & & ( ( MAX( ww(ji,jj,jk) , 0._wp ) - MIN( ww(ji,jj,jk+1) , 0._wp ) ) & & + ( MAX( e2u(ji ,jj) * e3u(ji ,jj,jk,Kmm) & & * uu (ji ,jj,jk,Kmm) + un_td(ji ,jj,jk), 0._wp ) - & & MIN( e2u(ji-1,jj) * e3u(ji-1,jj,jk,Kmm) & & * uu (ji-1,jj,jk,Kmm) + un_td(ji-1,jj,jk), 0._wp ) ) & & * r1_e1e2t(ji,jj) & & + ( MAX( e1v(ji,jj ) * e3v(ji,jj ,jk,Kmm) & & * vv (ji,jj ,jk,Kmm) + vn_td(ji,jj ,jk), 0._wp ) - & & MIN( e1v(ji,jj-1) * e3v(ji,jj-1,jk,Kmm) & & * vv (ji,jj-1,jk,Kmm) + vn_td(ji,jj-1,jk), 0._wp ) ) & & * r1_e1e2t(ji,jj) & & ) * z1_e3t END_3D ELSE DO_3D( nn_hls-1, nn_hls, nn_hls-1, nn_hls, 1, jpkm1 ) z1_e3t = 1._wp / e3t(ji,jj,jk,Kmm) Cu_adv(ji,jj,jk) = zdt * & & ( ( MAX( ww(ji,jj,jk) , 0._wp ) - MIN( ww(ji,jj,jk+1) , 0._wp ) ) & & + ( MAX( e2u(ji ,jj)*e3u(ji ,jj,jk,Kmm)*uu(ji ,jj,jk,Kmm), 0._wp ) - & & MIN( e2u(ji-1,jj)*e3u(ji-1,jj,jk,Kmm)*uu(ji-1,jj,jk,Kmm), 0._wp ) ) & & * r1_e1e2t(ji,jj) & & + ( MAX( e1v(ji,jj )*e3v(ji,jj ,jk,Kmm)*vv(ji,jj ,jk,Kmm), 0._wp ) - & & MIN( e1v(ji,jj-1)*e3v(ji,jj-1,jk,Kmm)*vv(ji,jj-1,jk,Kmm), 0._wp ) ) & & * r1_e1e2t(ji,jj) & & ) * z1_e3t END_3D ENDIF CALL iom_put("Courant",Cu_adv) ! IF( MAXVAL( Cu_adv(:,:,:) ) > Cu_min ) THEN ! Quick check if any breaches anywhere DO_3DS( nn_hls-1, nn_hls, nn_hls-1, nn_hls, jpkm1, 2, -1 ) ! or scan Courant criterion and partition ! w where necessary ! zCu = MAX( Cu_adv(ji,jj,jk) , Cu_adv(ji,jj,jk-1) ) ! alt: ! IF ( ww(ji,jj,jk) > 0._wp ) THEN ! zCu = Cu_adv(ji,jj,jk) ! ELSE ! zCu = Cu_adv(ji,jj,jk-1) ! ENDIF ! IF( zCu <= Cu_min ) THEN !<-- Fully explicit zcff = 0._wp ELSEIF( zCu < Cu_cut ) THEN !<-- Mixed explicit zcff = ( zCu - Cu_min )**2 zcff = zcff / ( Fcu + zcff ) ELSE !<-- Mostly implicit zcff = ( zCu - Cu_max )/ zCu ENDIF zcff = MIN(1._wp, zcff) ! wi(ji,jj,jk) = zcff * ww(ji,jj,jk) ww(ji,jj,jk) = ( 1._wp - zcff ) * ww(ji,jj,jk) ! Cu_adv(ji,jj,jk) = zcff ! Reuse array to output coefficient below and in stp_ctl END_3D Cu_adv(:,:,1) = 0._wp ELSE ! Fully explicit everywhere Cu_adv(:,:,:) = 0._wp ! Reuse array to output coefficient below and in stp_ctl wi (:,:,:) = 0._wp ENDIF CALL iom_put("wimp",wi) CALL iom_put("wi_cff",Cu_adv) CALL iom_put("wexp",ww) ! IF( ln_timing ) CALL timing_stop('wAimp') ! END SUBROUTINE wAimp !!====================================================================== END MODULE sshwzv