MODULE sbcwave !!====================================================================== !! *** MODULE sbcwave *** !! Wave module !!====================================================================== !! History : 3.3 ! 2011-09 (M. Adani) Original code: Drag Coefficient !! : 3.4 ! 2012-10 (M. Adani) Stokes Drift !! 3.6 ! 2014-09 (E. Clementi,P. Oddo) New Stokes Drift Computation !! - ! 2016-12 (G. Madec, E. Clementi) update Stoke drift computation !! + add sbc_wave_ini routine !! 4.2 ! 2020-12 (G. Madec, E. Clementi) updates, new Stoke drift computation !! according to Couvelard et al.,2019 !!---------------------------------------------------------------------- !!---------------------------------------------------------------------- !! sbc_stokes : calculate 3D Stokes-drift velocities !! sbc_wave : wave data from wave model: forced (netcdf files) or coupled mode !! sbc_wave_init : initialisation fo surface waves !!---------------------------------------------------------------------- USE phycst ! physical constants USE oce ! ocean variables USE dom_oce ! ocean domain variables USE sbc_oce ! Surface boundary condition: ocean fields USE bdy_oce ! open boundary condition variables USE domvvl ! domain: variable volume layers USE zdf_oce, ONLY : ln_zdfswm ! Qiao wave enhanced mixing ! USE iom ! I/O manager library USE in_out_manager ! I/O manager USE lib_mpp ! distribued memory computing library USE fldread ! read input fields IMPLICIT NONE PRIVATE PUBLIC sbc_stokes ! routine called in sbccpl PUBLIC sbc_wave ! routine called in sbcmod PUBLIC sbc_wave_init ! routine called in sbcmod ! Variables checking if the wave parameters are coupled (if not, they are read from file) LOGICAL, PUBLIC :: cpl_hsig = .FALSE. LOGICAL, PUBLIC :: cpl_phioc = .FALSE. LOGICAL, PUBLIC :: cpl_sdrftx = .FALSE. LOGICAL, PUBLIC :: cpl_sdrfty = .FALSE. LOGICAL, PUBLIC :: cpl_wper = .FALSE. LOGICAL, PUBLIC :: cpl_wnum = .FALSE. LOGICAL, PUBLIC :: cpl_wstrf = .FALSE. LOGICAL, PUBLIC :: cpl_wdrag = .FALSE. LOGICAL, PUBLIC :: cpl_charn = .FALSE. LOGICAL, PUBLIC :: cpl_taw = .FALSE. LOGICAL, PUBLIC :: cpl_bhd = .FALSE. LOGICAL, PUBLIC :: cpl_tusd = .FALSE. LOGICAL, PUBLIC :: cpl_tvsd = .FALSE. INTEGER :: jpfld ! number of files to read for stokes drift INTEGER :: jp_usd ! index of stokes drift (i-component) (m/s) at T-point INTEGER :: jp_vsd ! index of stokes drift (j-component) (m/s) at T-point INTEGER :: jp_hsw ! index of significant wave hight (m) at T-point INTEGER :: jp_wmp ! index of mean wave period (s) at T-point TYPE(FLD), ALLOCATABLE, DIMENSION(:) :: sf_cd ! structure of input fields (file informations, fields read) Drag Coefficient TYPE(FLD), ALLOCATABLE, DIMENSION(:) :: sf_sd ! structure of input fields (file informations, fields read) Stokes Drift TYPE(FLD), ALLOCATABLE, DIMENSION(:) :: sf_wn ! structure of input fields (file informations, fields read) wave number for Qiao TYPE(FLD), ALLOCATABLE, DIMENSION(:) :: sf_tauoc ! structure of input fields (file informations, fields read) normalized wave stress into the ocean REAL(wp), PUBLIC, ALLOCATABLE, DIMENSION(:,:) :: cdn_wave !: Neutral drag coefficient at t-point REAL(wp), PUBLIC, ALLOCATABLE, DIMENSION(:,:) :: hsw !: Significant Wave Height at t-point REAL(wp), PUBLIC, ALLOCATABLE, DIMENSION(:,:) :: wmp !: Wave Mean Period at t-point REAL(wp), PUBLIC, ALLOCATABLE, DIMENSION(:,:) :: wnum !: Wave Number at t-point REAL(wp), PUBLIC, ALLOCATABLE, DIMENSION(:,:) :: tauoc_wave !: stress reduction factor at t-point REAL(wp), PUBLIC, ALLOCATABLE, DIMENSION(:,:) :: tsd2d !: Surface Stokes Drift module at t-point REAL(wp), PUBLIC, ALLOCATABLE, DIMENSION(:,:) :: div_sd !: barotropic stokes drift divergence REAL(wp), PUBLIC, ALLOCATABLE, DIMENSION(:,:) :: ut0sd, vt0sd !: surface Stokes drift velocities at t-point REAL(wp), PUBLIC, ALLOCATABLE, DIMENSION(:,:,:) :: usd, vsd, wsd !: Stokes drift velocities at u-, v- & w-points, resp.u ! REAL(wp), PUBLIC, ALLOCATABLE, DIMENSION(:,:) :: charn !: charnock coefficient at t-point REAL(wp), PUBLIC, ALLOCATABLE, DIMENSION(:,:) :: tawx !: Net wave-supported stress, u REAL(wp), PUBLIC, ALLOCATABLE, DIMENSION(:,:) :: tawy !: Net wave-supported stress, v REAL(wp), PUBLIC, ALLOCATABLE, DIMENSION(:,:) :: twox !: wave-ocean momentum flux, u REAL(wp), PUBLIC, ALLOCATABLE, DIMENSION(:,:) :: twoy !: wave-ocean momentum flux, v REAL(wp), PUBLIC, ALLOCATABLE, DIMENSION(:,:) :: tauoc_wavex !: stress reduction factor at, u component REAL(wp), PUBLIC, ALLOCATABLE, DIMENSION(:,:) :: tauoc_wavey !: stress reduction factor at, v component REAL(wp), PUBLIC, ALLOCATABLE, DIMENSION(:,:) :: phioc !: tke flux from wave model REAL(wp), PUBLIC, ALLOCATABLE, DIMENSION(:,:) :: KZN2 !: Kz*N2 REAL(wp), PUBLIC, ALLOCATABLE, DIMENSION(:,:) :: bhd_wave !: Bernoulli head. wave induce pression REAL(wp), PUBLIC, ALLOCATABLE, DIMENSION(:,:) :: tusd, tvsd !: Stokes drift transport REAL(wp), PUBLIC, ALLOCATABLE, DIMENSION(:,:,:) :: ZMX !: Kz*N2 !! * Substitutions # include "do_loop_substitute.h90" # include "domzgr_substitute.h90" !!---------------------------------------------------------------------- !! NEMO/OCE 4.0 , NEMO Consortium (2018) !! $Id$ !! Software governed by the CeCILL license (see ./LICENSE) !!---------------------------------------------------------------------- CONTAINS SUBROUTINE sbc_stokes( Kmm ) !!--------------------------------------------------------------------- !! *** ROUTINE sbc_stokes *** !! !! ** Purpose : compute the 3d Stokes Drift according to Breivik et al., !! 2014 (DOI: 10.1175/JPO-D-14-0020.1) !! !! ** Method : - Calculate the horizontal Stokes drift velocity (Breivik et al. 2014) !! - Calculate its horizontal divergence !! - Calculate the vertical Stokes drift velocity !! - Calculate the barotropic Stokes drift divergence !! !! ** action : - tsd2d : module of the surface Stokes drift velocity !! - usd, vsd, wsd : 3 components of the Stokes drift velocity !! - div_sd : barotropic Stokes drift divergence !!--------------------------------------------------------------------- INTEGER, INTENT(in) :: Kmm ! ocean time level index INTEGER :: jj, ji, jk ! dummy loop argument INTEGER :: ik ! local integer REAL(wp) :: ztransp, zfac, ztemp, zsp0, zsqrt, zbreiv16_w REAL(wp) :: zdep_u, zdep_v, zkh_u, zkh_v, zda_u, zda_v, sdtrp REAL(wp), DIMENSION(:,:) , ALLOCATABLE :: zk_t, zk_u, zk_v, zu0_sd, zv0_sd ! 2D workspace REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: ze3divh, zInt_w ! 3D workspace !!--------------------------------------------------------------------- ! ALLOCATE( ze3divh(jpi,jpj,jpkm1) ) ! jpkm1 -> avoid lbc_lnk on jpk that is not defined ALLOCATE( zInt_w(jpi,jpj,jpk) ) ALLOCATE( zk_t(jpi,jpj), zk_u(jpi,jpj), zk_v(jpi,jpj), zu0_sd(jpi,jpj), zv0_sd(jpi,jpj) ) zk_t (:,:) = 0._wp zk_u (:,:) = 0._wp zk_v (:,:) = 0._wp zu0_sd (:,:) = 0._wp zv0_sd (:,:) = 0._wp ze3divh (:,:,:) = 0._wp ! ! select parameterization for the calculation of vertical Stokes drift ! exp. wave number at t-point IF( ln_breivikFV_2016 ) THEN ! Assumptions : ut0sd and vt0sd are surface Stokes drift at T-points ! sdtrp is the norm of Stokes transport ! zfac = 0.166666666667_wp DO_2D( 1, 1, 1, 1 ) ! In the deep-water limit we have ke = ||ust0||/( 6 * ||transport|| ) zsp0 = SQRT( ut0sd(ji,jj)*ut0sd(ji,jj) + vt0sd(ji,jj)*vt0sd(ji,jj) ) !<-- norm of Surface Stokes drift tsd2d(ji,jj) = zsp0 IF( cpl_tusd .AND. cpl_tvsd ) THEN !stokes transport is provided in coupled mode sdtrp = SQRT( tusd(ji,jj)*tusd(ji,jj) + tvsd(ji,jj)*tvsd(ji,jj) ) !<-- norm of Surface Stokes drift transport ELSE ! Stokes drift transport estimated from Hs and Tmean sdtrp = 2.0_wp * rpi / 16.0_wp * & & hsw(ji,jj)*hsw(ji,jj) / MAX( wmp(ji,jj), 0.0000001_wp ) ENDIF zk_t (ji,jj) = zfac * zsp0 / MAX ( sdtrp, 0.0000001_wp ) !<-- ke = ||ust0||/( 6 * ||transport|| ) END_2D !# define zInt_w ze3divh DO_3D( 1, 1, 1, 1, 1, jpk ) ! Compute the primitive of Breivik 2016 function at W-points zfac = - 2._wp * zk_t (ji,jj) * gdepw(ji,jj,jk,Kmm) !<-- zfac should be negative definite ztemp = EXP ( zfac ) zsqrt = SQRT( -zfac ) zbreiv16_w = ztemp - SQRT(rpi)*zsqrt*ERFC(zsqrt) !Eq. 16 Breivik 2016 zInt_w(ji,jj,jk) = ztemp - 4._wp * zk_t (ji,jj) * gdepw(ji,jj,jk,Kmm) * zbreiv16_w END_3D ! DO jk = 1, jpkm1 zfac = 0.166666666667_wp DO_2D( 1, 1, 1, 1 ) !++ Compute the FV Breivik 2016 function at T-points zsp0 = zfac / MAX(zk_t (ji,jj),0.0000001_wp) ztemp = zInt_w(ji,jj,jk) - zInt_w(ji,jj,jk+1) zu0_sd(ji,jj) = ut0sd(ji,jj) * zsp0 * ztemp * tmask(ji,jj,jk) zv0_sd(ji,jj) = vt0sd(ji,jj) * zsp0 * ztemp * tmask(ji,jj,jk) END_2D DO_2D( 1, 0, 1, 0 ) ! ++ Interpolate at U/V points zfac = 1.0_wp / e3u(ji ,jj,jk,Kmm) usd(ji,jj,jk) = 0.5_wp * zfac * ( zu0_sd(ji,jj)+zu0_sd(ji+1,jj) ) * umask(ji,jj,jk) zfac = 1.0_wp / e3v(ji ,jj,jk,Kmm) vsd(ji,jj,jk) = 0.5_wp * zfac * ( zv0_sd(ji,jj)+zv0_sd(ji,jj+1) ) * vmask(ji,jj,jk) END_2D ENDDO !# undef zInt_w ! ELSE zfac = 2.0_wp * rpi / 16.0_wp DO_2D( 1, 1, 1, 1 ) ! Stokes drift velocity estimated from Hs and Tmean ztransp = zfac * hsw(ji,jj)*hsw(ji,jj) / MAX( wmp(ji,jj), 0.0000001_wp ) ! Stokes surface speed tsd2d(ji,jj) = SQRT( ut0sd(ji,jj)*ut0sd(ji,jj) + vt0sd(ji,jj)*vt0sd(ji,jj)) ! Wavenumber scale zk_t(ji,jj) = ABS( tsd2d(ji,jj) ) / MAX( ABS( 5.97_wp*ztransp ), 0.0000001_wp ) END_2D DO_2D( 1, 0, 1, 0 ) ! exp. wave number & Stokes drift velocity at u- & v-points zk_u(ji,jj) = 0.5_wp * ( zk_t(ji,jj) + zk_t(ji+1,jj) ) zk_v(ji,jj) = 0.5_wp * ( zk_t(ji,jj) + zk_t(ji,jj+1) ) ! zu0_sd(ji,jj) = 0.5_wp * ( ut0sd(ji,jj) + ut0sd(ji+1,jj) ) zv0_sd(ji,jj) = 0.5_wp * ( vt0sd(ji,jj) + vt0sd(ji,jj+1) ) END_2D ! !== horizontal Stokes Drift 3D velocity ==! DO_3D( 0, 0, 0, 0, 1, jpkm1 ) zdep_u = 0.5_wp * ( gdept(ji,jj,jk,Kmm) + gdept(ji+1,jj,jk,Kmm) ) zdep_v = 0.5_wp * ( gdept(ji,jj,jk,Kmm) + gdept(ji,jj+1,jk,Kmm) ) ! zkh_u = zk_u(ji,jj) * zdep_u ! k * depth zkh_v = zk_v(ji,jj) * zdep_v ! ! Depth attenuation zda_u = EXP( -2.0_wp*zkh_u ) / ( 1.0_wp + 8.0_wp*zkh_u ) zda_v = EXP( -2.0_wp*zkh_v ) / ( 1.0_wp + 8.0_wp*zkh_v ) ! usd(ji,jj,jk) = zda_u * zu0_sd(ji,jj) * umask(ji,jj,jk) vsd(ji,jj,jk) = zda_v * zv0_sd(ji,jj) * vmask(ji,jj,jk) END_3D ENDIF CALL lbc_lnk( 'sbcwave', usd, 'U', -1.0_wp, vsd, 'V', -1.0_wp ) ! ! !== vertical Stokes Drift 3D velocity ==! ! DO_3D( 0, 1, 0, 1, 1, jpkm1 ) ! Horizontal e3*divergence ze3divh(ji,jj,jk) = ( e2u(ji ,jj) * e3u(ji ,jj,jk,Kmm) * usd(ji ,jj,jk) & & - e2u(ji-1,jj) * e3u(ji-1,jj,jk,Kmm) * usd(ji-1,jj,jk) & & + e1v(ji,jj ) * e3v(ji,jj ,jk,Kmm) * vsd(ji,jj ,jk) & & - e1v(ji,jj-1) * e3v(ji,jj-1,jk,Kmm) * vsd(ji,jj-1,jk) ) & & * r1_e1e2t(ji,jj) END_3D ! CALL lbc_lnk( 'sbcwave', ze3divh, 'T', 1.0_wp ) ! IF( ln_linssh ) THEN ; ik = 1 ! none zero velocity through the sea surface ELSE ; ik = 2 ! w=0 at the surface (set one for all in sbc_wave_init) ENDIF DO jk = jpkm1, ik, -1 ! integrate from the bottom the hor. divergence (NB: at k=jpk w is always zero) wsd(:,:,jk) = wsd(:,:,jk+1) - ze3divh(:,:,jk) END DO ! IF( ln_bdy ) THEN DO jk = 1, jpkm1 wsd(:,:,jk) = wsd(:,:,jk) * bdytmask(:,:) END DO ENDIF ! !== Horizontal divergence of barotropic Stokes transport ==! div_sd(:,:) = 0._wp DO jk = 1, jpkm1 ! div_sd(:,:) = div_sd(:,:) + ze3divh(:,:,jk) END DO ! CALL iom_put( "ustokes", usd ) CALL iom_put( "vstokes", vsd ) CALL iom_put( "wstokes", wsd ) ! ! DEALLOCATE( ze3divh, zInt_w ) DEALLOCATE( zk_t, zk_u, zk_v, zu0_sd, zv0_sd ) ! END SUBROUTINE sbc_stokes ! ! SUBROUTINE sbc_wave( kt, Kmm ) !!--------------------------------------------------------------------- !! *** ROUTINE sbc_wave *** !! !! ** Purpose : read wave parameters from wave model in netcdf files !! or from a coupled wave mdoel !! !!--------------------------------------------------------------------- INTEGER, INTENT(in ) :: kt ! ocean time step INTEGER, INTENT(in ) :: Kmm ! ocean time index !!--------------------------------------------------------------------- ! IF( kt == nit000 .AND. lwp ) THEN WRITE(numout,*) WRITE(numout,*) 'sbc_wave : update the read waves fields' WRITE(numout,*) '~~~~~~~~ ' ENDIF ! IF( ln_cdgw .AND. .NOT. cpl_wdrag ) THEN !== Neutral drag coefficient ==! CALL fld_read( kt, nn_fsbc, sf_cd ) ! read from external forcing cdn_wave(:,:) = sf_cd(1)%fnow(:,:,1) * tmask(:,:,1) ENDIF IF( ln_tauoc .AND. .NOT. cpl_wstrf ) THEN !== Wave induced stress ==! CALL fld_read( kt, nn_fsbc, sf_tauoc ) ! read stress reduction factor due to wave from external forcing tauoc_wave(:,:) = sf_tauoc(1)%fnow(:,:,1) * tmask(:,:,1) ELSEIF ( ln_taw .AND. cpl_taw ) THEN IF (kt < 1) THEN ! The first fields gave by OASIS have very high erroneous values .... twox(:,:)=0._wp twoy(:,:)=0._wp tawx(:,:)=0._wp tawy(:,:)=0._wp tauoc_wavex(:,:) = 1._wp tauoc_wavey(:,:) = 1._wp ELSE tauoc_wavex(:,:) = abs(twox(:,:)/tawx(:,:)) tauoc_wavey(:,:) = abs(twoy(:,:)/tawy(:,:)) ENDIF ENDIF IF ( ln_phioc .and. cpl_phioc .and. kt == nit000 ) THEN WRITE(numout,*) WRITE(numout,*) 'sbc_wave : PHIOC from wave model' WRITE(numout,*) '~~~~~~~~ ' ENDIF IF( ln_sdw .AND. .NOT. cpl_sdrftx) THEN !== Computation of the 3d Stokes Drift ==! ! IF( jpfld > 0 ) THEN ! Read from file only if the field is not coupled CALL fld_read( kt, nn_fsbc, sf_sd ) ! read wave parameters from external forcing ! ! NB: test case mode, not read as jpfld=0 IF( jp_hsw > 0 ) hsw (:,:) = sf_sd(jp_hsw)%fnow(:,:,1) * tmask(:,:,1) ! significant wave height IF( jp_wmp > 0 ) wmp (:,:) = sf_sd(jp_wmp)%fnow(:,:,1) * tmask(:,:,1) ! wave mean period IF( jp_usd > 0 ) ut0sd(:,:) = sf_sd(jp_usd)%fnow(:,:,1) * tmask(:,:,1) ! 2D zonal Stokes Drift at T point IF( jp_vsd > 0 ) vt0sd(:,:) = sf_sd(jp_vsd)%fnow(:,:,1) * tmask(:,:,1) ! 2D meridional Stokes Drift at T point ENDIF ! Read also wave number if needed, so that it is available in ! coupling routines IF( ln_zdfswm .AND. .NOT. cpl_wnum ) THEN !==wavenumber==! CALL fld_read( kt, nn_fsbc, sf_wn ) ! read wave parameters from external forcing wnum(:,:) = sf_wn(1)%fnow(:,:,1) * tmask(:,:,1) ENDIF ! IF( jpfld == 4 .OR. ln_wave_test ) & & CALL sbc_stokes( Kmm ) ! Calculate only if all required fields are read ! ! or in wave test case ! ! ! In coupled case the call is done after (in sbc_cpl) ENDIF ! END SUBROUTINE sbc_wave SUBROUTINE sbc_wave_init !!--------------------------------------------------------------------- !! *** ROUTINE sbc_wave_init *** !! !! ** Purpose : Initialisation fo surface waves !! !! ** Method : - Read namelist namsbc_wave !! - create the structure used to read required wave fields !! (its size depends on namelist options) !! ** action !!--------------------------------------------------------------------- INTEGER :: ierror, ios ! local integer INTEGER :: ifpr !! CHARACTER(len=100) :: cn_dir ! Root directory for location of drag coefficient files TYPE(FLD_N), ALLOCATABLE, DIMENSION(:) :: slf_i ! array of namelist informations on the fields to read TYPE(FLD_N) :: sn_cdg, sn_usd, sn_vsd, & & sn_hsw, sn_wmp, sn_wnum, sn_tauoc ! informations about the fields to be read ! NAMELIST/namsbc_wave/ cn_dir, sn_cdg, sn_usd, sn_vsd, sn_hsw, sn_wmp, sn_wnum, sn_tauoc, & & ln_cdgw, ln_sdw, ln_tauoc, ln_stcor, ln_charn, ln_taw, ln_phioc, & & ln_wave_test, ln_bern_srfc, ln_breivikFV_2016, ln_vortex_force, ln_stshear !!--------------------------------------------------------------------- IF(lwp) THEN WRITE(numout,*) WRITE(numout,*) 'sbc_wave_init : surface waves in the system' WRITE(numout,*) '~~~~~~~~~~~~~ ' ENDIF ! READ ( numnam_ref, namsbc_wave, IOSTAT = ios, ERR = 901) 901 IF( ios /= 0 ) CALL ctl_nam ( ios , 'namsbc_wave in reference namelist') READ ( numnam_cfg, namsbc_wave, IOSTAT = ios, ERR = 902 ) 902 IF( ios > 0 ) CALL ctl_nam ( ios , 'namsbc_wave in configuration namelist' ) IF(lwm) WRITE ( numond, namsbc_wave ) ! IF(lwp) THEN WRITE(numout,*) ' Namelist namsbc_wave' WRITE(numout,*) ' Stokes drift ln_sdw = ', ln_sdw WRITE(numout,*) ' Breivik 2016 ln_breivikFV_2016 = ', ln_breivikFV_2016 WRITE(numout,*) ' Stokes Coriolis & tracer advection terms ln_stcor = ', ln_stcor WRITE(numout,*) ' Vortex Force ln_vortex_force = ', ln_vortex_force WRITE(numout,*) ' Bernouilli Head Pressure ln_bern_srfc = ', ln_bern_srfc WRITE(numout,*) ' wave modified ocean stress ln_tauoc = ', ln_tauoc WRITE(numout,*) ' neutral drag coefficient (CORE bulk only) ln_cdgw = ', ln_cdgw WRITE(numout,*) ' charnock coefficient ln_charn = ', ln_charn WRITE(numout,*) ' Stress modificated by wave ln_taw = ', ln_taw WRITE(numout,*) ' TKE flux from wave ln_phioc = ', ln_phioc WRITE(numout,*) ' Surface shear with Stokes drift ln_stshear = ', ln_stshear WRITE(numout,*) ' Test with constant wave fields ln_wave_test = ', ln_wave_test ENDIF ! ! option check IF( .NOT.( ln_cdgw .OR. ln_sdw .OR. ln_tauoc .OR. ln_stcor .OR. ln_charn) ) & & CALL ctl_warn( 'Ask for wave coupling but ln_cdgw=F, ln_sdw=F, ln_tauoc=F, ln_stcor=F') IF( ln_cdgw .AND. ln_blk ) & & CALL ctl_stop( 'drag coefficient read from wave model NOT available yet with aerobulk package') IF( ln_stcor .AND. .NOT.ln_sdw ) & & CALL ctl_stop( 'Stokes-Coriolis term calculated only if activated Stokes Drift ln_sdw=T') ! !== Allocate wave arrays ==! ALLOCATE( ut0sd (jpi,jpj) , vt0sd (jpi,jpj) ) ALLOCATE( hsw (jpi,jpj) , wmp (jpi,jpj) ) ALLOCATE( wnum (jpi,jpj) ) ALLOCATE( tsd2d (jpi,jpj) , div_sd(jpi,jpj) , bhd_wave(jpi,jpj) ) ALLOCATE( usd (jpi,jpj,jpk), vsd (jpi,jpj,jpk), wsd (jpi,jpj,jpk) ) ALLOCATE( tusd (jpi,jpj) , tvsd (jpi,jpj) , ZMX (jpi,jpj,jpk) ) usd (:,:,:) = 0._wp vsd (:,:,:) = 0._wp wsd (:,:,:) = 0._wp hsw (:,:) = 0._wp wmp (:,:) = 0._wp ut0sd (:,:) = 0._wp vt0sd (:,:) = 0._wp tusd (:,:) = 0._wp tvsd (:,:) = 0._wp bhd_wave(:,:) = 0._wp ZMX (:,:,:) = 0._wp ! IF( ln_wave_test ) THEN !== Wave TEST case ==! set uniform waves fields jpfld = 0 ! No field read ln_cdgw = .FALSE. ! No neutral wave drag input ln_tauoc = .FALSE. ! No wave induced drag reduction factor ut0sd(:,:) = 0.13_wp * tmask(:,:,1) ! m/s vt0sd(:,:) = 0.00_wp ! m/s hsw (:,:) = 2.80_wp ! meters wmp (:,:) = 8.00_wp ! seconds ! ELSE !== create the structure associated with fields to be read ==! IF( ln_cdgw ) THEN ! wave drag IF( .NOT. cpl_wdrag ) THEN ALLOCATE( sf_cd(1), STAT=ierror ) !* allocate and fill sf_wave with sn_cdg IF( ierror > 0 ) CALL ctl_stop( 'STOP', 'sbc_wave_init: unable to allocate sf_wave structure' ) ! ALLOCATE( sf_cd(1)%fnow(jpi,jpj,1) ) IF( sn_cdg%ln_tint ) ALLOCATE( sf_cd(1)%fdta(jpi,jpj,1,2) ) CALL fld_fill( sf_cd, (/ sn_cdg /), cn_dir, 'sbc_wave_init', 'Wave module ', 'namsbc_wave' ) ENDIF ALLOCATE( cdn_wave(jpi,jpj) ) cdn_wave(:,:) = 0._wp ENDIF IF( ln_charn ) THEN ! wave drag IF( .NOT. cpl_charn ) THEN CALL ctl_stop( 'STOP', 'Charnock based wind stress can be used in coupled mode only' ) ENDIF ALLOCATE( charn(jpi,jpj) ) charn(:,:) = 0._wp ENDIF IF( ln_taw ) THEN ! wind stress IF( .NOT. cpl_taw ) THEN CALL ctl_stop( 'STOP', 'wind stress from wave model can be used in coupled mode only, use ln_cdgw instead' ) ENDIF ALLOCATE( tawx(jpi,jpj) ) ALLOCATE( tawy(jpi,jpj) ) ALLOCATE( twox(jpi,jpj) ) ALLOCATE( twoy(jpi,jpj) ) ALLOCATE( tauoc_wavex(jpi,jpj) ) ALLOCATE( tauoc_wavey(jpi,jpj) ) tawx(:,:) = 0._wp tawy(:,:) = 0._wp twox(:,:) = 0._wp twoy(:,:) = 0._wp tauoc_wavex(:,:) = 1._wp tauoc_wavey(:,:) = 1._wp ENDIF IF( ln_phioc ) THEN ! TKE flux IF( .NOT. cpl_phioc ) THEN CALL ctl_stop( 'STOP', 'phioc can be used in coupled mode only' ) ENDIF ALLOCATE( phioc(jpi,jpj) ) phioc(:,:) = 0._wp ENDIF IF( ln_tauoc ) THEN ! normalized wave stress into the ocean IF( .NOT. cpl_wstrf ) THEN ALLOCATE( sf_tauoc(1), STAT=ierror ) !* allocate and fill sf_wave with sn_tauoc IF( ierror > 0 ) CALL ctl_stop( 'STOP', 'sbc_wave_init: unable to allocate sf_tauoc structure' ) ! ALLOCATE( sf_tauoc(1)%fnow(jpi,jpj,1) ) IF( sn_tauoc%ln_tint ) ALLOCATE( sf_tauoc(1)%fdta(jpi,jpj,1,2) ) CALL fld_fill( sf_tauoc, (/ sn_tauoc /), cn_dir, 'sbc_wave_init', 'Wave module', 'namsbc_wave' ) ENDIF ALLOCATE( tauoc_wave(jpi,jpj) ) tauoc_wave(:,:) = 0._wp ENDIF IF( ln_sdw ) THEN ! Stokes drift ! 1. Find out how many fields have to be read from file if not coupled jpfld=0 jp_usd=0 ; jp_vsd=0 ; jp_hsw=0 ; jp_wmp=0 IF( .NOT. cpl_sdrftx ) THEN jpfld = jpfld + 1 jp_usd = jpfld ENDIF IF( .NOT. cpl_sdrfty ) THEN jpfld = jpfld + 1 jp_vsd = jpfld ENDIF IF( .NOT. cpl_hsig ) THEN jpfld = jpfld + 1 jp_hsw = jpfld ENDIF IF( .NOT. cpl_wper ) THEN jpfld = jpfld + 1 jp_wmp = jpfld ENDIF ! 2. Read from file only the non-coupled fields IF( jpfld > 0 ) THEN ALLOCATE( slf_i(jpfld) ) IF( jp_usd > 0 ) slf_i(jp_usd) = sn_usd IF( jp_vsd > 0 ) slf_i(jp_vsd) = sn_vsd IF( jp_hsw > 0 ) slf_i(jp_hsw) = sn_hsw IF( jp_wmp > 0 ) slf_i(jp_wmp) = sn_wmp ALLOCATE( sf_sd(jpfld), STAT=ierror ) !* allocate and fill sf_sd with stokes drift IF( ierror > 0 ) CALL ctl_stop( 'STOP', 'sbc_wave_init: unable to allocate sf_wave structure' ) ! DO ifpr= 1, jpfld ALLOCATE( sf_sd(ifpr)%fnow(jpi,jpj,1) ) IF( slf_i(ifpr)%ln_tint ) ALLOCATE( sf_sd(ifpr)%fdta(jpi,jpj,1,2) ) END DO ! CALL fld_fill( sf_sd, slf_i, cn_dir, 'sbc_wave_init', 'Wave module ', 'namsbc_wave' ) sf_sd(jp_usd)%zsgn = -1._wp ; sf_sd(jp_vsd)%zsgn = -1._wp ! vector field at T point: overwrite default definition of zsgn ENDIF ! ! 3. Wave number (only needed for Qiao parametrisation, ln_zdfswm=T) IF( .NOT. cpl_wnum ) THEN ALLOCATE( sf_wn(1), STAT=ierror ) !* allocate and fill sf_wave with sn_wnum IF( ierror > 0 ) CALL ctl_stop( 'STOP', 'sbc_wave_init: unable to allocate sf_wn structure' ) ALLOCATE( sf_wn(1)%fnow(jpi,jpj,1) ) IF( sn_wnum%ln_tint ) ALLOCATE( sf_wn(1)%fdta(jpi,jpj,1,2) ) CALL fld_fill( sf_wn, (/ sn_wnum /), cn_dir, 'sbc_wave', 'Wave module', 'namsbc_wave' ) ENDIF ! ENDIF ! ENDIF ! END SUBROUTINE sbc_wave_init !!====================================================================== END MODULE sbcwave