MODULE traadv_mus !!====================================================================== !! *** MODULE traadv_mus *** !! Ocean tracers: horizontal & vertical advective trend !!====================================================================== !! History : ! 2000-06 (A.Estublier) for passive tracers !! ! 2001-08 (E.Durand, G.Madec) adapted for T & S !! NEMO 1.0 ! 2002-06 (G. Madec) F90: Free form and module !! 3.2 ! 2010-05 (C. Ethe, G. Madec) merge TRC-TRA + switch from velocity to transport !! 3.4 ! 2012-06 (P. Oddo, M. Vichi) include the upstream where needed !! 3.7 ! 2015-09 (G. Madec) add the ice-shelf cavities boundary condition !!---------------------------------------------------------------------- !!---------------------------------------------------------------------- !! tra_adv_mus : update the tracer trend with the horizontal !! and vertical advection trends using MUSCL scheme !!---------------------------------------------------------------------- USE oce ! ocean dynamics and active tracers USE trc_oce ! share passive tracers/Ocean variables USE dom_oce ! ocean space and time domain USE trd_oce ! trends: ocean variables USE trdtra ! tracers trends manager USE sbcrnf ! river runoffs USE diaptr ! poleward transport diagnostics USE diaar5 ! AR5 diagnostics ! USE iom ! XIOS library USE in_out_manager ! I/O manager USE lib_mpp ! distribued memory computing USE lbclnk ! ocean lateral boundary condition (or mpp link) USE lib_fortran ! Fortran utilities (allows no signed zero when 'key_nosignedzero' defined) IMPLICIT NONE PRIVATE PUBLIC tra_adv_mus ! routine called by traadv.F90 REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:) :: upsmsk !: mixed upstream/centered scheme near some straits ! ! and in closed seas (orca 2 and 1 configurations) REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: xind !: mixed upstream/centered index LOGICAL :: l_trd ! flag to compute trends LOGICAL :: l_ptr ! flag to compute poleward transport LOGICAL :: l_hst ! flag to compute heat/salt transport !! * Substitutions # include "do_loop_substitute.h90" # include "domzgr_substitute.h90" !!---------------------------------------------------------------------- !! NEMO/OCE 4.0 , NEMO Consortium (2018) !! $Id$ !! Software governed by the CeCILL license (see ./LICENSE) !!---------------------------------------------------------------------- CONTAINS SUBROUTINE tra_adv_mus( kt, kit000, cdtype, p2dt, pU, pV, pW, & & Kbb, Kmm, pt, kjpt, Krhs, ld_msc_ups ) !!---------------------------------------------------------------------- !! *** ROUTINE tra_adv_mus *** !! !! ** Purpose : Compute the now trend due to total advection of tracers !! using a MUSCL scheme (Monotone Upstream-centered Scheme for !! Conservation Laws) and add it to the general tracer trend. !! !! ** Method : MUSCL scheme plus centered scheme at ocean boundaries !! ld_msc_ups=T : !! !! ** Action : - update pt(:,:,:,:,Krhs) with the now advective tracer trends !! - send trends to trdtra module for further diagnostcs (l_trdtra=T) !! - poleward advective heat and salt transport (ln_diaptr=T) !! !! References : Estubier, A., and M. Levy, Notes Techn. Pole de Modelisation !! IPSL, Sept. 2000 (http://www.lodyc.jussieu.fr/opa) !!---------------------------------------------------------------------- INTEGER , INTENT(in ) :: kt ! ocean time-step index INTEGER , INTENT(in ) :: Kbb, Kmm, Krhs ! ocean time level indices INTEGER , INTENT(in ) :: kit000 ! first time step index CHARACTER(len=3) , INTENT(in ) :: cdtype ! =TRA or TRC (tracer indicator) INTEGER , INTENT(in ) :: kjpt ! number of tracers LOGICAL , INTENT(in ) :: ld_msc_ups ! use upstream scheme within muscl REAL(wp) , INTENT(in ) :: p2dt ! tracer time-step REAL(wp), DIMENSION(jpi,jpj,jpk ), INTENT(in ) :: pU, pV, pW ! 3 ocean volume flux components REAL(wp), DIMENSION(jpi,jpj,jpk,kjpt,jpt), INTENT(inout) :: pt ! tracers and RHS of tracer equation ! INTEGER :: ji, jj, jk, jn ! dummy loop indices INTEGER :: ierr ! local integer REAL(wp) :: zu, z0u, zzwx, zw , zalpha ! local scalars REAL(wp) :: zv, z0v, zzwy, z0w ! - - REAL(wp), DIMENSION(jpi,jpj,jpk) :: zwx, zslpx ! 3D workspace REAL(wp), DIMENSION(jpi,jpj,jpk) :: zwy, zslpy ! - - !!---------------------------------------------------------------------- ! IF( kt == kit000 ) THEN IF(lwp) WRITE(numout,*) IF(lwp) WRITE(numout,*) 'tra_adv : MUSCL advection scheme on ', cdtype IF(lwp) WRITE(numout,*) ' : mixed up-stream ', ld_msc_ups IF(lwp) WRITE(numout,*) '~~~~~~~' IF(lwp) WRITE(numout,*) ! ! Upstream / MUSCL scheme indicator ! ALLOCATE( xind(jpi,jpj,jpk), STAT=ierr ) xind(:,:,:) = 1._wp ! set equal to 1 where up-stream is not needed ! IF( ld_msc_ups ) THEN ! define the upstream indicator (if asked) ALLOCATE( upsmsk(jpi,jpj), STAT=ierr ) upsmsk(:,:) = 0._wp ! not upstream by default ! DO jk = 1, jpkm1 xind(:,:,jk) = 1._wp & ! =>1 where up-stream is not needed & - MAX ( rnfmsk(:,:) * rnfmsk_z(jk), & ! =>0 near runoff mouths (& closed sea outflows) & upsmsk(:,:) ) * tmask(:,:,jk) ! =>0 in some user defined area END DO ENDIF ! ENDIF ! l_trd = .FALSE. l_hst = .FALSE. l_ptr = .FALSE. IF( ( cdtype == 'TRA' .AND. l_trdtra ) .OR. ( cdtype == 'TRC' .AND. l_trdtrc ) ) l_trd = .TRUE. IF( cdtype == 'TRA' .AND. ( iom_use( 'sophtadv' ) .OR. iom_use( 'sophtadv' ) ) ) l_ptr = .TRUE. IF( cdtype == 'TRA' .AND. ( iom_use("uadv_heattr") .OR. iom_use("vadv_heattr") .OR. & & iom_use("uadv_salttr") .OR. iom_use("vadv_salttr") ) ) l_hst = .TRUE. ! DO jn = 1, kjpt !== loop over the tracers ==! ! ! !* Horizontal advective fluxes ! ! !-- first guess of the slopes zwx(:,:,jpk) = 0._wp ! bottom values zwy(:,:,jpk) = 0._wp DO_3D( 1, 0, 1, 0, 1, jpkm1 ) zwx(ji,jj,jk) = umask(ji,jj,jk) * ( pt(ji+1,jj,jk,jn,Kbb) - pt(ji,jj,jk,jn,Kbb) ) zwy(ji,jj,jk) = vmask(ji,jj,jk) * ( pt(ji,jj+1,jk,jn,Kbb) - pt(ji,jj,jk,jn,Kbb) ) END_3D ! lateral boundary conditions (changed sign) CALL lbc_lnk_multi( 'traadv_mus', zwx, 'U', -1.0_wp , zwy, 'V', -1.0_wp ) ! !-- Slopes of tracer zslpx(:,:,jpk) = 0._wp ! bottom values zslpy(:,:,jpk) = 0._wp DO_3D( 0, 1, 0, 1, 1, jpkm1 ) zslpx(ji,jj,jk) = ( zwx(ji,jj,jk) + zwx(ji-1,jj ,jk) ) & & * ( 0.25 + SIGN( 0.25_wp, zwx(ji,jj,jk) * zwx(ji-1,jj ,jk) ) ) zslpy(ji,jj,jk) = ( zwy(ji,jj,jk) + zwy(ji ,jj-1,jk) ) & & * ( 0.25 + SIGN( 0.25_wp, zwy(ji,jj,jk) * zwy(ji ,jj-1,jk) ) ) END_3D ! DO_3D( 0, 1, 0, 1, 1, jpkm1 ) zslpx(ji,jj,jk) = SIGN( 1.0_wp, zslpx(ji,jj,jk) ) * MIN( ABS( zslpx(ji ,jj,jk) ), & & 2.*ABS( zwx (ji-1,jj,jk) ), & & 2.*ABS( zwx (ji ,jj,jk) ) ) zslpy(ji,jj,jk) = SIGN( 1.0_wp, zslpy(ji,jj,jk) ) * MIN( ABS( zslpy(ji,jj ,jk) ), & & 2.*ABS( zwy (ji,jj-1,jk) ), & & 2.*ABS( zwy (ji,jj ,jk) ) ) END_3D ! DO_3D( 0, 0, 0, 0, 1, jpkm1 ) ! MUSCL fluxes z0u = SIGN( 0.5_wp, pU(ji,jj,jk) ) zalpha = 0.5 - z0u zu = z0u - 0.5 * pU(ji,jj,jk) * p2dt * r1_e1e2u(ji,jj) / e3u(ji,jj,jk,Kmm) zzwx = pt(ji+1,jj,jk,jn,Kbb) + xind(ji,jj,jk) * zu * zslpx(ji+1,jj,jk) zzwy = pt(ji ,jj,jk,jn,Kbb) + xind(ji,jj,jk) * zu * zslpx(ji ,jj,jk) zwx(ji,jj,jk) = pU(ji,jj,jk) * ( zalpha * zzwx + (1.-zalpha) * zzwy ) ! z0v = SIGN( 0.5_wp, pV(ji,jj,jk) ) zalpha = 0.5 - z0v zv = z0v - 0.5 * pV(ji,jj,jk) * p2dt * r1_e1e2v(ji,jj) / e3v(ji,jj,jk,Kmm) zzwx = pt(ji,jj+1,jk,jn,Kbb) + xind(ji,jj,jk) * zv * zslpy(ji,jj+1,jk) zzwy = pt(ji,jj ,jk,jn,Kbb) + xind(ji,jj,jk) * zv * zslpy(ji,jj ,jk) zwy(ji,jj,jk) = pV(ji,jj,jk) * ( zalpha * zzwx + (1.-zalpha) * zzwy ) END_3D CALL lbc_lnk_multi( 'traadv_mus', zwx, 'U', -1.0_wp , zwy, 'V', -1.0_wp ) ! lateral boundary conditions (changed sign) ! DO_3D( 0, 0, 0, 0, 1, jpkm1 ) pt(ji,jj,jk,jn,Krhs) = pt(ji,jj,jk,jn,Krhs) - ( zwx(ji,jj,jk) - zwx(ji-1,jj ,jk ) & & + zwy(ji,jj,jk) - zwy(ji ,jj-1,jk ) ) & & * r1_e1e2t(ji,jj) / e3t(ji,jj,jk,Kmm) END_3D ! ! trend diagnostics IF( l_trd ) THEN CALL trd_tra( kt, Kmm, Krhs, cdtype, jn, jptra_xad, zwx, pU, pt(:,:,:,jn,Kbb) ) CALL trd_tra( kt, Kmm, Krhs, cdtype, jn, jptra_yad, zwy, pV, pt(:,:,:,jn,Kbb) ) END IF ! ! "Poleward" heat and salt transports IF( l_ptr ) CALL dia_ptr_hst( jn, 'adv', zwy(:,:,:) ) ! ! heat transport IF( l_hst ) CALL dia_ar5_hst( jn, 'adv', zwx(:,:,:), zwy(:,:,:) ) ! ! !* Vertical advective fluxes ! ! !-- first guess of the slopes zwx(:,:, 1 ) = 0._wp ! surface & bottom boundary conditions zwx(:,:,jpk) = 0._wp DO jk = 2, jpkm1 ! interior values zwx(:,:,jk) = tmask(:,:,jk) * ( pt(:,:,jk-1,jn,Kbb) - pt(:,:,jk,jn,Kbb) ) END DO ! !-- Slopes of tracer zslpx(:,:,1) = 0._wp ! surface values DO_3D( 1, 1, 1, 1, 2, jpkm1 ) zslpx(ji,jj,jk) = ( zwx(ji,jj,jk) + zwx(ji,jj,jk+1) ) & & * ( 0.25 + SIGN( 0.25_wp, zwx(ji,jj,jk) * zwx(ji,jj,jk+1) ) ) END_3D DO_3D( 1, 1, 1, 1, 2, jpkm1 ) zslpx(ji,jj,jk) = SIGN( 1.0_wp, zslpx(ji,jj,jk) ) * MIN( ABS( zslpx(ji,jj,jk ) ), & & 2.*ABS( zwx (ji,jj,jk+1) ), & & 2.*ABS( zwx (ji,jj,jk ) ) ) END_3D DO_3D( 0, 0, 0, 0, 1, jpk-2 ) z0w = SIGN( 0.5_wp, pW(ji,jj,jk+1) ) zalpha = 0.5 + z0w zw = z0w - 0.5 * pW(ji,jj,jk+1) * p2dt * r1_e1e2t(ji,jj) / e3w(ji,jj,jk+1,Kmm) zzwx = pt(ji,jj,jk+1,jn,Kbb) + xind(ji,jj,jk) * zw * zslpx(ji,jj,jk+1) zzwy = pt(ji,jj,jk ,jn,Kbb) + xind(ji,jj,jk) * zw * zslpx(ji,jj,jk ) zwx(ji,jj,jk+1) = pW(ji,jj,jk+1) * ( zalpha * zzwx + (1.-zalpha) * zzwy ) * wmask(ji,jj,jk) END_3D IF( ln_linssh ) THEN ! top values, linear free surface only IF( ln_isfcav ) THEN ! ice-shelf cavities (top of the ocean) DO_2D( 1, 1, 1, 1 ) zwx(ji,jj, mikt(ji,jj) ) = pW(ji,jj,mikt(ji,jj)) * pt(ji,jj,mikt(ji,jj),jn,Kbb) END_2D ELSE ! no cavities: only at the ocean surface zwx(:,:,1) = pW(:,:,1) * pt(:,:,1,jn,Kbb) ENDIF ENDIF ! DO_3D( 0, 0, 0, 0, 1, jpkm1 ) pt(ji,jj,jk,jn,Krhs) = pt(ji,jj,jk,jn,Krhs) - ( zwx(ji,jj,jk) - zwx(ji,jj,jk+1) ) & & * r1_e1e2t(ji,jj) / e3t(ji,jj,jk,Kmm) END_3D ! ! send trends for diagnostic IF( l_trd ) CALL trd_tra( kt, Kmm, Krhs, cdtype, jn, jptra_zad, zwx, pW, pt(:,:,:,jn,Kbb) ) ! END DO ! end of tracer loop ! END SUBROUTINE tra_adv_mus !!====================================================================== END MODULE traadv_mus