!!>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> !! NEMO/OCE Configuration namelist : used to overwrite defaults values defined in SHARED/namelist_ref !!>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> ! !----------------------------------------------------------------------- &namusr_def ! LOCK_EXCHANGE user defined namelist !----------------------------------------------------------------------- rn_dx = 500. ! horizontal resolution in meters rn_dz = 1. ! vertical resolution in meters / ! !----------------------------------------------------------------------- &namrun ! parameters of the run !----------------------------------------------------------------------- nn_no = 0 ! job number (no more used...) cn_exp = "LOCK_FCT4_vect_een" ! experience name nn_it000 = 1 ! first time step nn_itend = 61200 ! for 17h of simulation (=61200 time-step) nn_istate = 0 ! output the initial state (1) or not (0) nn_stock = 61200 ! frequency of creation of a restart file (modulo referenced to 1) nn_write = 61200 ! frequency of write in the output file (modulo referenced to nn_it000) / !----------------------------------------------------------------------- &namcfg ! parameters of the configuration !----------------------------------------------------------------------- ln_read_cfg = .false. ! (=T) read the domain configuration file ! ! (=F) user defined configuration ==>>> see usrdef(_...) modules ln_write_cfg = .false. ! (=T) create the domain configuration file / !----------------------------------------------------------------------- &namdom ! space and time domain (bathymetry, mesh, timestep) !----------------------------------------------------------------------- ln_linssh = .false. ! =T linear free surface ==>> model level are fixed in time ! rn_Dt = 1. ! time step for the dynamics (and tracer if nn_acc=0) rn_atfp = 0.1 ! asselin time filter parameter ! ln_crs = .false. ! Logical switch for coarsening module ! ln_meshmask = .false. ! =T create a mesh file / !----------------------------------------------------------------------- &namtsd ! data : Temperature & Salinity !----------------------------------------------------------------------- / !----------------------------------------------------------------------- &namsbc ! Surface Boundary Condition (surface module) !----------------------------------------------------------------------- nn_fsbc = 1 ! frequency of surface boundary condition computation ! (also = the frequency of sea-ice & iceberg model call) ln_usr = .true. ! user defined formulation (T => check usrdef_sbc) ln_blk = .false. ! Bulk formulation (T => fill namsbc_blk ) nn_ice = 0 ! =0 no ice boundary condition ln_traqsr = .false. ! Light penetration in the ocean (T => fill namtra_qsr ) ln_rnf = .false. ! runoffs (T => fill namsbc_rnf) ln_ssr = .false. ! Sea Surface Restoring on T and/or S (T => fill namsbc_ssr) nn_fwb = 0 ! FreshWater Budget: =0 unchecked / !----------------------------------------------------------------------- &namlbc ! lateral momentum boundary condition (default: NO selection) !----------------------------------------------------------------------- rn_shlat = 0. ! free slip / !----------------------------------------------------------------------- &namdrg ! top/bottom drag coefficient (default: NO selection) !----------------------------------------------------------------------- ln_drg_OFF = .true. ! free-slip : Cd = 0 (F => fill namdrg_bot / !----------------------------------------------------------------------- &nameos ! ocean physical parameters !----------------------------------------------------------------------- ln_seos = .true. ! = Use simplified equation of state (S-EOS) ! ! S-EOS coefficients (nn_eos=1): ! ! rd(T,S,Z)*rho0 = -a0*(1+.5*lambda*dT+mu*Z+nu*dS)*dT+b0*dS rn_a0 = 0.2 ! thermal expension coefficient (nn_eos= 1) rn_b0 = 0. ! saline expension coefficient (nn_eos= 1) rn_lambda1 = 0. ! cabbeling coeff in T^2 (=0 for linear eos) rn_lambda2 = 0. ! cabbeling coeff in S^2 (=0 for linear eos) rn_mu1 = 0. ! thermobaric coeff. in T (=0 for linear eos) rn_mu2 = 0. ! thermobaric coeff. in S (=0 for linear eos) rn_nu = 0. ! cabbeling coeff in T*S (=0 for linear eos) / !----------------------------------------------------------------------- &namtra_adv ! advection scheme for tracer !----------------------------------------------------------------------- ln_traadv_cen = .false. ! 2nd order centered scheme nn_cen_h = 4 ! =2/4, horizontal 2nd order CEN / 4th order CEN nn_cen_v = 4 ! =2/4, vertical 2nd order CEN / 4th order COMPACT ln_traadv_fct = .true. ! FCT scheme nn_fct_h = 4 ! =2/4, horizontal 2nd / 4th order nn_fct_v = 4 ! =2/4, vertical 2nd / COMPACT 4th order ln_traadv_mus = .false. ! MUSCL scheme ln_mus_ups = .false. ! use upstream scheme near river mouths ln_traadv_ubs = .false. ! UBS scheme nn_ubs_v = 2 ! =2 , vertical 2nd order FCT / COMPACT 4th order ln_traadv_qck = .false. ! QUICKEST scheme / !----------------------------------------------------------------------- &namtra_ldf ! lateral diffusion scheme for tracers !----------------------------------------------------------------------- ! ! Operator type: ln_traldf_OFF = .true. ! No explicit diffusion ln_traldf_lap = .false. ! laplacian operator ln_traldf_blp = .false. ! bilaplacian operator / !!====================================================================== !! *** Dynamics namelists *** !! !!====================================================================== ! !----------------------------------------------------------------------- &namdyn_adv ! formulation of the momentum advection !----------------------------------------------------------------------- ln_dynadv_vec = .true. ! vector form (T) or flux form (F) nn_dynkeg = 0 ! scheme for grad(KE): =0 C2 ; =1 Hollingsworth correction ln_dynadv_cen2 = .false. ! flux form - 2nd order centered scheme ln_dynadv_ubs = .false. ! flux form - 3rd order UBS scheme / !----------------------------------------------------------------------- &nam_vvl ! vertical coordinate options (default: zstar) !----------------------------------------------------------------------- ln_vvl_zstar = .true. ! zstar vertical coordinate / !----------------------------------------------------------------------- &namdyn_vor ! option of physics/algorithm !----------------------------------------------------------------------- ln_dynvor_ene = .false. ! enstrophy conserving scheme ln_dynvor_ens = .false. ! energy conserving scheme ln_dynvor_mix = .false. ! mixed scheme ln_dynvor_een = .true. ! energy & enstrophy scheme nn_een_e3f = 0 ! e3f = masked averaging of e3t divided by 4 (=0) or by the sum of mask (=1) / !----------------------------------------------------------------------- &namdyn_hpg ! Hydrostatic pressure gradient option !----------------------------------------------------------------------- ln_hpg_zps = .false. ! z-coordinate - partial steps (interpolation) ln_hpg_sco = .true. ! s-coordinate (standard jacobian formulation) / !----------------------------------------------------------------------- &namdyn_spg ! Surface pressure gradient !----------------------------------------------------------------------- ln_dynspg_ts = .true. ! explicit free surface ln_bt_fw = .true. ! Forward integration of barotropic Eqs. ln_bt_av = .true. ! Time filtering of barotropic variables nn_bt_flt = 1 ! Time filter choice = 0 None ! ! = 1 Boxcar over nn_e sub-steps ! ! = 2 Boxcar over 2*nn_e " " ln_bt_auto = .true. ! Number of sub-step defined from: nn_e = 1 ! =F : the number of sub-step in rn_Dt seconds / !----------------------------------------------------------------------- &namdyn_ldf ! lateral diffusion on momentum !----------------------------------------------------------------------- ! ! Type of the operator : ! ! no diffusion: set ln_dynldf_lap=..._blp=F ln_dynldf_lap = .true. ! laplacian operator ln_dynldf_blp = .false. ! bilaplacian operator ! ! Direction of action : ln_dynldf_lev = .false. ! iso-level ln_dynldf_hor = .true. ! horizontal (geopotential) ln_dynldf_iso = .false. ! iso-neutral ! ! Coefficient nn_ahm_ijk_t = 0 ! space/time variation of eddy coef ! ! = 0 constant ! ! time invariant coefficients : ahm = 1/2 Uv*Lv (lap case) ! ! bhm = 1/12 Uv*Lv^3 (blp case) rn_Uv = 4.e-5 ! lateral viscous velocity [m/s] (nn_ahm_ijk_t= 0, 10, 20, 30) rn_Lv = 500. ! lateral viscous length [m] (nn_ahm_ijk_t= 0, 10) / !!====================================================================== !! vertical physics namelists !! !!====================================================================== !----------------------------------------------------------------------- &namzdf ! vertical physics (default: NO selection) !----------------------------------------------------------------------- ! ! type of vertical closure ln_zdfcst = .true. ! constant mixing ! ! ! convection ln_zdfevd = .false. ! enhanced vertical diffusion ln_zdfnpc = .false. ! Non-Penetrative Convective algorithm ! ! ! coefficients rn_avm0 = 1.e-4 ! vertical eddy viscosity [m2/s] (background Kz if ln_zdfcst=F) rn_avt0 = 0.e0 ! vertical eddy diffusivity [m2/s] (background Kz if ln_zdfcst=F) nn_avb = 0 ! profile for background avt & avm (=1) or not (=0) nn_havtb = 0 ! horizontal shape for avtb (=1) or not (=0) / !----------------------------------------------------------------------- &nammpp ! Massively Parallel Processing ("key_mpp_mpi) !----------------------------------------------------------------------- / !----------------------------------------------------------------------- &namctl ! Control prints & Benchmark !----------------------------------------------------------------------- /