MODULE lbcnfd !!====================================================================== !! *** MODULE lbcnfd *** !! Ocean : north fold boundary conditions !!====================================================================== !! History : 3.2 ! 2009-03 (R. Benshila) Original code !!---------------------------------------------------------------------- !!---------------------------------------------------------------------- !! lbc_nfd : generic interface for lbc_nfd_3d and lbc_nfd_2d routines !! lbc_nfd_3d : lateral boundary condition: North fold treatment for a 3D arrays (lbc_nfd) !! lbc_nfd_2d : lateral boundary condition: North fold treatment for a 2D arrays (lbc_nfd) !!---------------------------------------------------------------------- USE dom_oce ! ocean space and time domain USE in_out_manager ! I/O manager IMPLICIT NONE PRIVATE INTERFACE lbc_nfd MODULE PROCEDURE lbc_nfd_3d, lbc_nfd_2d END INTERFACE PUBLIC lbc_nfd ! north fold conditions !! * Control permutation of array indices # include "dom_oce_ftrans.h90" !!---------------------------------------------------------------------- !! NEMO/OPA 3.3 , NEMO Consortium (2010) !! $Id$ !! Software governed by the CeCILL licence (NEMOGCM/NEMO_CeCILL.txt) !!---------------------------------------------------------------------- CONTAINS SUBROUTINE lbc_nfd_3d( pt3d, cd_type, psgn ) !!---------------------------------------------------------------------- !! *** routine lbc_nfd_3d *** !! !! ** Purpose : 3D lateral boundary condition : North fold treatment !! without processor exchanges. !! !! ** Method : !! !! ** Action : pt3d with updated values along the north fold !!---------------------------------------------------------------------- CHARACTER(len=1) , INTENT(in ) :: cd_type ! define the nature of ptab array grid-points ! ! = T , U , V , F , W points REAL(wp) , INTENT(in ) :: psgn ! control of the sign change ! ! = -1. , the sign is changed if north fold boundary ! ! = 1. , the sign is kept if north fold boundary !FTRANS pt3d :I :I :z REAL(wp), DIMENSION(:,:,:), INTENT(inout) :: pt3d ! 3D array on which the boundary condition is applied ! INTEGER :: ji, jk INTEGER :: ijt, iju, ijpj, ijpjm1 !!---------------------------------------------------------------------- SELECT CASE ( jpni ) CASE ( 1 ) ; ijpj = nlcj ! 1 proc only along the i-direction CASE DEFAULT ; ijpj = 4 ! several proc along the i-direction END SELECT ijpjm1 = ijpj-1 #if !defined key_z_first DO jk = 1, jpk #endif ! SELECT CASE ( npolj ) ! CASE ( 3 , 4 ) ! * North fold T-point pivot ! SELECT CASE ( cd_type ) CASE ( 'T' , 'W' ) ! T-, W-point DO ji = 2, jpiglo ijt = jpiglo-ji+2 #if defined key_z_first DO jk = 1, jpk pt3d(ji,ijpj,jk) = psgn * pt3d(ijt,ijpj-2,jk) END DO #else pt3d(ji,ijpj,jk) = psgn * pt3d(ijt,ijpj-2,jk) #endif END DO DO ji = jpiglo/2+1, jpiglo ijt = jpiglo-ji+2 #if defined key_z_first DO jk = 1, jpk pt3d(ji,ijpjm1,jk) = psgn * pt3d(ijt,ijpjm1,jk) END DO #else pt3d(ji,ijpjm1,jk) = psgn * pt3d(ijt,ijpjm1,jk) #endif END DO CASE ( 'U' ) ! U-point DO ji = 1, jpiglo-1 iju = jpiglo-ji+1 #if defined key_z_first DO jk = 1, jpk pt3d(ji,ijpj,jk) = psgn * pt3d(iju,ijpj-2,jk) END DO #else pt3d(ji,ijpj,jk) = psgn * pt3d(iju,ijpj-2,jk) #endif END DO DO ji = jpiglo/2, jpiglo-1 iju = jpiglo-ji+1 #if defined key_z_first DO jk = 1, jpk pt3d(ji,ijpjm1,jk) = psgn * pt3d(iju,ijpjm1,jk) END DO #else pt3d(ji,ijpjm1,jk) = psgn * pt3d(iju,ijpjm1,jk) #endif END DO CASE ( 'V' ) ! V-point DO ji = 2, jpiglo ijt = jpiglo-ji+2 #if defined key_z_first DO jk = 1, jpk pt3d(ji,ijpj-1,jk) = psgn * pt3d(ijt,ijpj-2,jk) pt3d(ji,ijpj ,jk) = psgn * pt3d(ijt,ijpj-3,jk) END DO #else pt3d(ji,ijpj-1,jk) = psgn * pt3d(ijt,ijpj-2,jk) pt3d(ji,ijpj ,jk) = psgn * pt3d(ijt,ijpj-3,jk) #endif END DO CASE ( 'F' ) ! F-point DO ji = 1, jpiglo-1 iju = jpiglo-ji+1 #if defined key_z_first DO jk = 1, jpk pt3d(ji,ijpj-1,jk) = psgn * pt3d(iju,ijpj-2,jk) pt3d(ji,ijpj ,jk) = psgn * pt3d(iju,ijpj-3,jk) END DO #else pt3d(ji,ijpj-1,jk) = psgn * pt3d(iju,ijpj-2,jk) pt3d(ji,ijpj ,jk) = psgn * pt3d(iju,ijpj-3,jk) #endif END DO END SELECT ! CASE ( 5 , 6 ) ! * North fold F-point pivot ! SELECT CASE ( cd_type ) CASE ( 'T' , 'W' ) ! T-, W-point DO ji = 1, jpiglo ijt = jpiglo-ji+1 #if defined key_z_first DO jk = 1, jpk pt3d(ji,ijpj,jk) = psgn * pt3d(ijt,ijpj-1,jk) END DO #else pt3d(ji,ijpj,jk) = psgn * pt3d(ijt,ijpj-1,jk) #endif END DO CASE ( 'U' ) ! U-point DO ji = 1, jpiglo-1 iju = jpiglo-ji #if defined key_z_first DO jk = 1, jpk pt3d(ji,ijpj,jk) = psgn * pt3d(iju,ijpj-1,jk) END DO #else pt3d(ji,ijpj,jk) = psgn * pt3d(iju,ijpj-1,jk) #endif END DO CASE ( 'V' ) ! V-point DO ji = 1, jpiglo ijt = jpiglo-ji+1 #if defined key_z_first DO jk = 1, jpk pt3d(ji,ijpj,jk) = psgn * pt3d(ijt,ijpj-2,jk) END DO #else pt3d(ji,ijpj,jk) = psgn * pt3d(ijt,ijpj-2,jk) #endif END DO DO ji = jpiglo/2+1, jpiglo ijt = jpiglo-ji+1 #if defined key_z_first DO jk = 1, jpk pt3d(ji,ijpjm1,jk) = psgn * pt3d(ijt,ijpjm1,jk) END DO #else pt3d(ji,ijpjm1,jk) = psgn * pt3d(ijt,ijpjm1,jk) #endif END DO CASE ( 'F' ) ! F-point DO ji = 1, jpiglo-1 iju = jpiglo-ji #if defined key_z_first DO jk = 1, jpk pt3d(ji,ijpj ,jk) = psgn * pt3d(iju,ijpj-2,jk) END DO #else pt3d(ji,ijpj ,jk) = psgn * pt3d(iju,ijpj-2,jk) #endif END DO DO ji = jpiglo/2+1, jpiglo-1 iju = jpiglo-ji #if defined key_z_first DO jk = 1, jpk pt3d(ji,ijpjm1,jk) = psgn * pt3d(iju,ijpjm1,jk) END DO #else pt3d(ji,ijpjm1,jk) = psgn * pt3d(iju,ijpjm1,jk) #endif END DO END SELECT ! CASE DEFAULT ! * closed : the code probably never go through ! SELECT CASE ( cd_type) CASE ( 'T' , 'U' , 'V' , 'W' ) ! T-, U-, V-, W-points #if defined key_z_first pt3d(:, 1 ,:) = 0.e0 pt3d(:,ijpj,:) = 0.e0 #else pt3d(:, 1 ,jk) = 0.e0 pt3d(:,ijpj,jk) = 0.e0 #endif CASE ( 'F' ) ! F-point #if defined key_z_first pt3d(:,ijpj,:) = 0.e0 #else pt3d(:,ijpj,jk) = 0.e0 #endif END SELECT ! END SELECT ! npolj ! #if !defined key_z_first END DO #endif ! END SUBROUTINE lbc_nfd_3d SUBROUTINE lbc_nfd_2d( pt2d, cd_type, psgn, pr2dj ) !!---------------------------------------------------------------------- !! *** routine lbc_nfd_2d *** !! !! ** Purpose : 2D lateral boundary condition : North fold treatment !! without processor exchanges. !! !! ** Method : !! !! ** Action : pt2d with updated values along the north fold !!---------------------------------------------------------------------- CHARACTER(len=1) , INTENT(in ) :: cd_type ! define the nature of ptab array grid-points ! ! = T , U , V , F , W points REAL(wp) , INTENT(in ) :: psgn ! control of the sign change ! ! = -1. , the sign is changed if north fold boundary ! ! = 1. , the sign is kept if north fold boundary REAL(wp), DIMENSION(:,:), INTENT(inout) :: pt2d ! 2D array on which the boundary condition is applied INTEGER , OPTIONAL , INTENT(in ) :: pr2dj ! number of additional halos ! INTEGER :: ji, jl, ipr2dj INTEGER :: ijt, iju, ijpj, ijpjm1 !!---------------------------------------------------------------------- SELECT CASE ( jpni ) CASE ( 1 ) ; ijpj = nlcj ! 1 proc only along the i-direction CASE DEFAULT ; ijpj = 4 ! several proc along the i-direction END SELECT ! IF( PRESENT(pr2dj) ) THEN ! use of additional halos ipr2dj = pr2dj IF( jpni > 1 ) ijpj = ijpj + ipr2dj ELSE ipr2dj = 0 ENDIF ! ijpjm1 = ijpj-1 SELECT CASE ( npolj ) ! CASE ( 3, 4 ) ! * North fold T-point pivot ! SELECT CASE ( cd_type ) ! CASE ( 'T' , 'W' ) ! T- , W-points DO jl = 0, ipr2dj DO ji = 2, jpiglo ijt=jpiglo-ji+2 pt2d(ji,ijpj+jl) = psgn * pt2d(ijt,ijpj-2-jl) END DO END DO DO ji = jpiglo/2+1, jpiglo ijt=jpiglo-ji+2 pt2d(ji,ijpj-1) = psgn * pt2d(ijt,ijpj-1) END DO CASE ( 'U' ) ! U-point DO jl = 0, ipr2dj DO ji = 1, jpiglo-1 iju = jpiglo-ji+1 pt2d(ji,ijpj+jl) = psgn * pt2d(iju,ijpj-2-jl) END DO END DO DO ji = jpiglo/2, jpiglo-1 iju = jpiglo-ji+1 pt2d(ji,ijpjm1) = psgn * pt2d(iju,ijpjm1) END DO CASE ( 'V' ) ! V-point DO jl = -1, ipr2dj DO ji = 2, jpiglo ijt = jpiglo-ji+2 pt2d(ji,ijpj+jl) = psgn * pt2d(ijt,ijpj-3-jl) END DO END DO CASE ( 'F' ) ! F-point DO jl = -1, ipr2dj DO ji = 1, jpiglo-1 iju = jpiglo-ji+1 pt2d(ji,ijpj+jl) = psgn * pt2d(iju,ijpj-3-jl) END DO END DO CASE ( 'I' ) ! ice U-V point (I-point) DO jl = 0, ipr2dj pt2d(2,ijpj+jl) = psgn * pt2d(3,ijpj-1+jl) DO ji = 3, jpiglo iju = jpiglo - ji + 3 pt2d(ji,ijpj+jl) = psgn * pt2d(iju,ijpj-1-jl) END DO END DO END SELECT ! CASE ( 5, 6 ) ! * North fold F-point pivot ! SELECT CASE ( cd_type ) CASE ( 'T' , 'W' ) ! T-, W-point DO jl = 0, ipr2dj DO ji = 1, jpiglo ijt = jpiglo-ji+1 pt2d(ji,ijpj+jl) = psgn * pt2d(ijt,ijpj-1-jl) END DO END DO CASE ( 'U' ) ! U-point DO jl = 0, ipr2dj DO ji = 1, jpiglo-1 iju = jpiglo-ji pt2d(ji,ijpj+jl) = psgn * pt2d(iju,ijpj-1-jl) END DO END DO CASE ( 'V' ) ! V-point DO jl = 0, ipr2dj DO ji = 1, jpiglo ijt = jpiglo-ji+1 pt2d(ji,ijpj+jl) = psgn * pt2d(ijt,ijpj-2-jl) END DO END DO DO ji = jpiglo/2+1, jpiglo ijt = jpiglo-ji+1 pt2d(ji,ijpjm1) = psgn * pt2d(ijt,ijpjm1) END DO CASE ( 'F' ) ! F-point DO jl = 0, ipr2dj DO ji = 1, jpiglo-1 iju = jpiglo-ji pt2d(ji,ijpj+jl) = psgn * pt2d(iju,ijpj-2-jl) END DO END DO DO ji = jpiglo/2+1, jpiglo-1 iju = jpiglo-ji pt2d(ji,ijpjm1) = psgn * pt2d(iju,ijpjm1) END DO CASE ( 'I' ) ! ice U-V point (I-point) pt2d( 2 ,ijpj:ijpj+ipr2dj) = 0.e0 DO jl = 0, ipr2dj DO ji = 2 , jpiglo-1 ijt = jpiglo - ji + 2 pt2d(ji,ijpj+jl)= 0.5 * ( pt2d(ji,ijpj-1-jl) + psgn * pt2d(ijt,ijpj-1-jl) ) END DO END DO END SELECT ! CASE DEFAULT ! * closed : the code probably never go through ! SELECT CASE ( cd_type) CASE ( 'T' , 'U' , 'V' , 'W' ) ! T-, U-, V-, W-points pt2d(:, 1:1-ipr2dj ) = 0.e0 pt2d(:,ijpj:ijpj+ipr2dj) = 0.e0 CASE ( 'F' ) ! F-point pt2d(:,ijpj:ijpj+ipr2dj) = 0.e0 CASE ( 'I' ) ! ice U-V point pt2d(:, 1:1-ipr2dj ) = 0.e0 pt2d(:,ijpj:ijpj+ipr2dj) = 0.e0 END SELECT ! END SELECT ! END SUBROUTINE lbc_nfd_2d !!====================================================================== END MODULE lbcnfd