MODULE zdftmx !!======================================================================== !! *** MODULE zdftmx *** !! Ocean physics: vertical tidal mixing coefficient !!======================================================================== !! History : 1.0 ! 2004-04 (L. Bessieres, G. Madec) Original code !! - ! 2006-08 (A. Koch-Larrouy) Indonesian strait !! 3.3 ! 2010-10 (C. Ethe, G. Madec) reorganisation of initialisation phase !!---------------------------------------------------------------------- #if defined key_zdftmx || defined key_esopa !!---------------------------------------------------------------------- !! 'key_zdftmx' Tidal vertical mixing !!---------------------------------------------------------------------- !! zdf_tmx : global momentum & tracer Kz with tidal induced Kz !! tmx_itf : Indonesian momentum & tracer Kz with tidal induced Kz !!---------------------------------------------------------------------- USE oce ! ocean dynamics and tracers variables USE dom_oce ! ocean space and time domain variables USE zdf_oce ! ocean vertical physics variables USE lbclnk ! ocean lateral boundary conditions (or mpp link) USE eosbn2 ! ocean equation of state USE phycst ! physical constants USE prtctl ! Print control USE in_out_manager ! I/O manager USE iom ! I/O Manager USE lib_mpp ! MPP library USE wrk_nemo, ONLY: wrk_in_use, wrk_not_released IMPLICIT NONE PRIVATE PUBLIC zdf_tmx ! called in step module PUBLIC zdf_tmx_init ! called in opa module PUBLIC zdf_tmx_alloc ! called in nemogcm module LOGICAL, PUBLIC, PARAMETER :: lk_zdftmx = .TRUE. !: tidal mixing flag ! !!* Namelist namzdf_tmx : tidal mixing * REAL(wp) :: rn_htmx = 500. ! vertical decay scale for turbulence (meters) REAL(wp) :: rn_n2min = 1.e-8 ! threshold of the Brunt-Vaisala frequency (s-1) REAL(wp) :: rn_tfe = 1./3. ! tidal dissipation efficiency (St Laurent et al. 2002) REAL(wp) :: rn_me = 0.2 ! mixing efficiency (Osborn 1980) LOGICAL :: ln_tmx_itf = .TRUE. ! Indonesian Through Flow (ITF): Koch-Larrouy et al. (2007) parameterization REAL(wp) :: rn_tfe_itf = 1. ! ITF tidal dissipation efficiency (St Laurent et al. 2002) REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:) :: en_tmx ! energy available for tidal mixing (W/m2) REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:) :: mask_itf ! mask to use over Indonesian area REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: az_tmx ! coefficient used to evaluate the tidal induced Kz !! * Control permutation of array indices # include "oce_ftrans.h90" # include "dom_oce_ftrans.h90" # include "zdf_oce_ftrans.h90" !FTRANS az_tmx :I :I :z !! * Substitutions # include "domzgr_substitute.h90" # include "vectopt_loop_substitute.h90" !!---------------------------------------------------------------------- !! NEMO/OPA 4.0 , NEMO Consortium (2011) !! $Id$ !! Software governed by the CeCILL licence (NEMOGCM/NEMO_CeCILL.txt) !!---------------------------------------------------------------------- CONTAINS INTEGER FUNCTION zdf_tmx_alloc() !!---------------------------------------------------------------------- !! *** FUNCTION zdf_tmx_alloc *** !!---------------------------------------------------------------------- ALLOCATE(en_tmx(jpi,jpj), mask_itf(jpi,jpj), az_tmx(jpi,jpj,jpk), STAT=zdf_tmx_alloc ) ! IF( lk_mpp ) CALL mpp_sum ( zdf_tmx_alloc ) IF( zdf_tmx_alloc /= 0 ) CALL ctl_warn('zdf_tmx_alloc: failed to allocate arrays') END FUNCTION zdf_tmx_alloc SUBROUTINE zdf_tmx( kt ) !!---------------------------------------------------------------------- !! *** ROUTINE zdf_tmx *** !! !! ** Purpose : add to the vertical mixing coefficients the effect of !! tidal mixing (Simmons et al 2004). !! !! ** Method : - tidal-induced vertical mixing is given by: !! Kz_tides = az_tmx / max( rn_n2min, N^2 ) !! where az_tmx is a coefficient that specified the 3D space !! distribution of the faction of tidal energy taht is used !! for mixing. Its expression is set in zdf_tmx_init routine, !! following Simmons et al. 2004. !! NB: a specific bounding procedure is performed on av_tide !! so that the input tidal energy is actually almost used. The !! basic maximum value is 60 cm2/s, but values of 300 cm2/s !! can be reached in area where bottom stratification is too !! weak. !! !! - update av_tide in the Indonesian Through Flow area !! following Koch-Larrouy et al. (2007) parameterisation !! (see tmx_itf routine). !! !! - update the model vertical eddy viscosity and diffusivity: !! avt = avt + av_tides !! avm = avm + av_tides !! avmu = avmu + mi(av_tides) !! avmv = avmv + mj(av_tides) !! !! ** Action : avt, avm, avmu, avmv increased by tidal mixing !! !! References : Simmons et al. 2004, Ocean Modelling, 6, 3-4, 245-263. !! Koch-Larrouy et al. 2007, GRL. !!---------------------------------------------------------------------- USE oce, zav_tide => ua ! use ua as workspace USE wrk_nemo, ONLY: zkz => wrk_2d_1 !! INTEGER, INTENT(in) :: kt ! ocean time-step !! INTEGER :: ji, jj, jk ! dummy loop indices REAL(wp) :: ztpc ! scalar workspace #if defined key_z_first REAL(wp) :: ztpc ! scalar workspace #endif !!---------------------------------------------------------------------- IF(wrk_in_use(2, 1))THEN CALL ctl_stop('zdf_tmx : requested workspace array unavailable.') ; RETURN END IF ! ! ----------------------- ! ! ! Standard tidal mixing ! (compute zav_tide) ! ! ----------------------- ! ! !* First estimation (with n2 bound by rn_n2min) bounded by 60 cm2/s zav_tide(:,:,:) = MIN( 60.e-4, az_tmx(:,:,:) / MAX( rn_n2min, rn2(:,:,:) ) ) zkz(:,:) = 0.e0 !* Associated potential energy consummed over the whole water column DO jk = 2, jpkm1 zkz(:,:) = zkz(:,:) + fse3w(:,:,jk) * MAX( 0.e0, rn2(:,:,jk) ) * rau0 * zav_tide(:,:,jk)* tmask(:,:,jk) END DO DO jj = 1, jpj !* Here zkz should be equal to en_tmx ==> multiply by en_tmx/zkz to recover en_tmx DO ji = 1, jpi IF( zkz(ji,jj) /= 0.e0 ) zkz(ji,jj) = en_tmx(ji,jj) / zkz(ji,jj) END DO END DO #if defined key_z_first DO jj = 1, jpj DO ji = 1, jpi zscal = MIN( zkz(ji,jj), 30./6. ) !kz max = 300 cm2/s DO jk = 2, jpkm1 !* Mutiply by zkz to recover en_tmx, BUT bound by 30/6 ==> zav_tide bound by 300 cm2/s zav_tide(ji,jj,jk) = zav_tide(ji,jj,jk) * zscal END DO END DO END DO #else DO jk = 2, jpkm1 !* Mutiply by zkz to recover en_tmx, BUT bound by 30/6 ==> zav_tide bound by 300 cm2/s zav_tide(:,:,jk) = zav_tide(:,:,jk) * MIN( zkz(:,:), 30./6. ) !kz max = 300 cm2/s END DO #endif IF( kt == nit000 ) THEN !* check at first time-step: diagnose the energy consumed by zav_tide ztpc = 0.e0 #if defined key_z_first DO jj = 1, jpj DO ji = 1, jpi DO jk = 1, jpk #else DO jk= 1, jpk DO jj= 1, jpj DO ji= 1, jpi #endif ztpc = ztpc + fse3w(ji,jj,jk) * e1t(ji,jj) * e2t(ji,jj) & & * MAX( 0.e0, rn2(ji,jj,jk) ) * zav_tide(ji,jj,jk) * tmask(ji,jj,jk) * tmask_i(ji,jj) END DO END DO END DO ztpc= rau0 / ( rn_tfe * rn_me ) * ztpc IF(lwp) WRITE(numout,*) IF(lwp) WRITE(numout,*) ' N Total power consumption by av_tide : ztpc = ', ztpc * 1.e-12 ,'TW' ENDIF ! ! ----------------------- ! ! ! ITF tidal mixing ! (update zav_tide) ! ! ----------------------- ! IF( ln_tmx_itf ) CALL tmx_itf( kt, zav_tide ) ! ! ----------------------- ! ! ! Update mixing coefs ! ! ! ----------------------- ! #if defined key_z_first !* update momentum & tracer diffusivity with tidal mixing DO jj = 1, jpj DO ji = 1, jpi DO jk = 2, jpkm1 avt(ji,jj,jk) = avt(ji,jj,jk) + zav_tide(ji,jj,jk) avm(ji,jj,jk) = avm(ji,jj,jk) + zav_tide(ji,jj,jk) END DO END DO END DO DO jj = 2, jpjm1 DO ji = 2, fpim1 DO jk = 2, jpkm1 avmu(ji,jj,jk) = avmu(ji,jj,jk) + 0.5 * ( zav_tide(ji,jj,jk) + zav_tide(ji+1,jj ,jk) ) * umask(ji,jj,jk) avmv(ji,jj,jk) = avmv(ji,jj,jk) + 0.5 * ( zav_tide(ji,jj,jk) + zav_tide(ji ,jj+1,jk) ) * vmask(ji,jj,jk) END DO END DO END DO #else DO jk = 2, jpkm1 !* update momentum & tracer diffusivity with tidal mixing avt(:,:,jk) = avt(:,:,jk) + zav_tide(:,:,jk) avm(:,:,jk) = avm(:,:,jk) + zav_tide(:,:,jk) DO jj = 2, jpjm1 DO ji = fs_2, fs_jpim1 ! vector opt. avmu(ji,jj,jk) = avmu(ji,jj,jk) + 0.5 * ( zav_tide(ji,jj,jk) + zav_tide(ji+1,jj ,jk) ) * umask(ji,jj,jk) avmv(ji,jj,jk) = avmv(ji,jj,jk) + 0.5 * ( zav_tide(ji,jj,jk) + zav_tide(ji ,jj+1,jk) ) * vmask(ji,jj,jk) END DO END DO END DO #endif CALL lbc_lnk( avmu, 'U', 1. ) ; CALL lbc_lnk( avmv, 'V', 1. ) ! lateral boundary condition ! !* output tidal mixing coefficient CALL iom_put( "av_tide", zav_tide ) IF(ln_ctl) CALL prt_ctl(tab3d_1=zav_tide , clinfo1=' tmx - av_tide: ', tab3d_2=avt, clinfo2=' avt: ', ovlap=1, kdim=jpk) ! IF(wrk_not_released(2, 1))THEN CALL ctl_stop('zdf_tmx : failed to release workspace array.') END IF ! END SUBROUTINE zdf_tmx SUBROUTINE tmx_itf( kt, pav ) !!---------------------------------------------------------------------- !! *** ROUTINE tmx_itf *** !! !! ** Purpose : modify the vertical eddy diffusivity coefficients !! (pav) in the Indonesian Through Flow area (ITF). !! !! ** Method : - Following Koch-Larrouy et al. (2007), in the ITF defined !! by msk_itf (read in a file, see tmx_init), the tidal !! mixing coefficient is computed with : !! * q=1 (i.e. all the tidal energy remains trapped in !! the area and thus is used for mixing) !! * the vertical distribution of the tifal energy is a !! proportional to N above the thermocline (d(N^2)/dz > 0) !! and to N^2 below the thermocline (d(N^2)/dz < 0) !! !! ** Action : av_tide updated in the ITF area (msk_itf) !! !! References : Koch-Larrouy et al. 2007, GRL !!---------------------------------------------------------------------- USE wrk_nemo, ONLY: zkz => wrk_2d_5 USE wrk_nemo, ONLY: zsum1 => wrk_2d_2, zsum2 => wrk_2d_3, zsum => wrk_2d_4 USE wrk_nemo, ONLY: zempba_3d_1 => wrk_3d_1, zempba_3d_2 => wrk_3d_2 USE wrk_nemo, ONLY: zempba_3d => wrk_3d_3, zdn2dz => wrk_3d_4 USE wrk_nemo, ONLY: zavt_itf => wrk_3d_5 !! DCSE_NEMO: need additional directives for renamed module variables !FTRANS zempba_3d_1 zempba_3d_2 zempba_3d zdn2dz zavt_itf :I :I :z !! INTEGER , INTENT(in ) :: kt ! ocean time-step !! DCSE_NEMO: This style defeats ftrans ! REAL(wp), INTENT(inout), DIMENSION(jpi,jpj,jpk) :: pav ! Tidal mixing coef. !FTRANS pav :I :I :z REAL(wp), INTENT(inout) :: pav(jpi,jpj,jpk) ! Tidal mixing coef. !! INTEGER :: ji, jj, jk ! dummy loop indices REAL(wp) :: zcoef, ztpc ! temporary scalar !!---------------------------------------------------------------------- ! IF( wrk_in_use(2, 2,3,4,5) .OR. wrk_in_use(3, 1,2,3,4,5) )THEN CALL ctl_stop('tmx_itf : requested workspace arrays unavailable.') RETURN END IF ! ! compute the form function using N2 at each time step #if defined key_z_first DO jj = 1, jpj DO ji = 1, jpi DO jk = 1, jpkm1 zdn2dz (ji,jj,jk) = rn2(ji,jj,jk) - rn2(ji,jj,jk+1) ! Vertical profile of dN2/dz zempba_3d_1(ji,jj,jk) = SQRT( MAX( 0.e0, rn2(ji,jj,jk) ) ) ! - - of N zempba_3d_2(ji,jj,jk) = MAX( 0.e0, rn2(ji,jj,jk) ) ! - - of N^2 END DO zempba_3d_1(ji,jj,jpk) = 0.e0 zempba_3d_2(ji,jj,jpk) = 0.e0 END DO END DO #else zempba_3d_1(:,:,jpk) = 0.e0 zempba_3d_2(:,:,jpk) = 0.e0 DO jk = 1, jpkm1 zdn2dz (:,:,jk) = rn2(:,:,jk) - rn2(:,:,jk+1) ! Vertical profile of dN2/dz !CDIR NOVERRCHK zempba_3d_1(:,:,jk) = SQRT( MAX( 0.e0, rn2(:,:,jk) ) ) ! - - of N zempba_3d_2(:,:,jk) = MAX( 0.e0, rn2(:,:,jk) ) ! - - of N^2 END DO #endif ! #if defined key_z_first DO jj = 1, jpj DO ji = 1, jpj zsum1(ji,jj) = 0.e0 zsum2(ji,jj) = 0.e0 DO jk= 2, jpk zsum1(ji,jj) = zsum1(ji,jj) + zempba_3d_1(ji,jj,jk) * fse3w(ji,jj,jk) zsum2(ji,jj) = zsum2(ji,jj) + zempba_3d_2(ji,jj,jk) * fse3w(ji,jj,jk) END DO IF( zsum1(ji,jj) /= 0.e0 ) zsum1(ji,jj) = 1.e0 / zsum1(ji,jj) IF( zsum2(ji,jj) /= 0.e0 ) zsum2(ji,jj) = 1.e0 / zsum2(ji,jj) END DO END DO #else zsum1(:,:) = 0.e0 zsum2(:,:) = 0.e0 DO jk= 2, jpk zsum1(:,:) = zsum1(:,:) + zempba_3d_1(:,:,jk) * fse3w(:,:,jk) zsum2(:,:) = zsum2(:,:) + zempba_3d_2(:,:,jk) * fse3w(:,:,jk) END DO DO jj = 1, jpj DO ji = 1, jpi IF( zsum1(ji,jj) /= 0.e0 ) zsum1(ji,jj) = 1.e0 / zsum1(ji,jj) IF( zsum2(ji,jj) /= 0.e0 ) zsum2(ji,jj) = 1.e0 / zsum2(ji,jj) END DO END DO #endif zsum (:,:) = 0.e0 #if defined key_z_first DO jj = 1, jpj DO ji = 1, jpi DO jk = 1, jpk #else DO jk = 1, jpk DO jj = 1, jpj DO ji = 1, jpi #endif zcoef = 0.5 - SIGN( 0.5, zdn2dz(ji,jj,jk) ) ! =0 if dN2/dz > 0, =1 otherwise ztpc = zempba_3d_1(ji,jj,jk) * zsum1(ji,jj) * zcoef & & + zempba_3d_2(ji,jj,jk) * zsum2(ji,jj) * ( 1. - zcoef ) ! zempba_3d(ji,jj,jk) = ztpc zsum (ji,jj) = zsum(ji,jj) + ztpc * fse3w(ji,jj,jk) END DO #if !defined key_z_first END DO END DO DO jj = 1, jpj DO ji = 1, jpi #endif IF( zsum(ji,jj) > 0.e0 ) zsum(ji,jj) = 1.e0 / zsum(ji,jj) END DO END DO ! ! first estimation bounded by 10 cm2/s (with n2 bounded by rn_n2min) zcoef = rn_tfe_itf / ( rn_tfe * rau0 ) #if defined key_z_first DO jj = 1, jpj DO ji = 1, jpi DO jk = 1, jpk zavt_itf(ji,jj,jk) = MIN( 10.e-4, zcoef * en_tmx(ji,jj) * zsum(ji,jj) * zempba_3d(ji,jj,jk) & & / MAX( rn_n2min, rn2(ji,jj,jk) ) * tmask(ji,jj,jk) ) END DO END DO END DO #else DO jk = 1, jpk zavt_itf(:,:,jk) = MIN( 10.e-4, zcoef * en_tmx(:,:) * zsum(:,:) * zempba_3d(:,:,jk) & & / MAX( rn_n2min, rn2(:,:,jk) ) * tmask(:,:,jk) ) END DO #endif #if defined key_z_first DO jj = 1, jpj DO ji = 1, jpi zkz(ji,jj) = 0.e0 ! Associated potential energy consummed over the whole water column DO jk = 2, jpkm1 zkz(ji,jj) = zkz(ji,jj) + fse3w(ji,jj,jk) & & * MAX( 0.e0, rn2(ji,jj,jk) ) * rau0 * zavt_itf(ji,jj,jk) * tmask(ji,jj,jk) END DO END DO END DO #else zkz(:,:) = 0.e0 ! Associated potential energy consummed over the whole water column DO jk = 2, jpkm1 zkz(:,:) = zkz(:,:) + fse3w(:,:,jk) * MAX( 0.e0, rn2(:,:,jk) ) * rau0 * zavt_itf(:,:,jk) * tmask(:,:,jk) END DO #endif DO jj = 1, jpj ! Here zkz should be equal to en_tmx ==> multiply by en_tmx/zkz to recover en_tmx DO ji = 1, jpi IF( zkz(ji,jj) /= 0.e0 ) zkz(ji,jj) = en_tmx(ji,jj) * rn_tfe_itf / rn_tfe / zkz(ji,jj) END DO END DO #if defined key_z_first DO jj = 1, jpj DO ji = 1, jpi zcoef = MIN( zkz(:,:), 120./10. ) ! kz max = 120 cm2/s DO jk = 2, jpkm1 ! Mutiply by zkz to recover en_tmx, BUT bound by 30/6 ==> zavt_itf bound by 300 cm2/s zavt_itf(ji,jj,jk) = zavt_itf(ji,jj,jk) * zcoef END DO END DO END DO #else DO jk = 2, jpkm1 ! Mutiply by zkz to recover en_tmx, BUT bound by 30/6 ==> zavt_itf bound by 300 cm2/s zavt_itf(:,:,jk) = zavt_itf(:,:,jk) * MIN( zkz(:,:), 120./10. ) ! kz max = 120 cm2/s END DO #endif IF( kt == nit000 ) THEN ! diagnose the energy consumed by zavt_itf ztpc = 0.e0 #if defined key_z_first DO jj = 1, jpj DO ji = 1, jpi DO jk = 1, jpk #else DO jk = 1, jpk DO jj = 1, jpj DO ji = 1, jpi #endif ztpc = ztpc + e1t(ji,jj) * e2t(ji,jj) * fse3w(ji,jj,jk) * MAX( 0.e0, rn2(ji,jj,jk) ) & & * zavt_itf(ji,jj,jk) * tmask(ji,jj,jk) * tmask_i(ji,jj) END DO END DO END DO ztpc= rau0 * ztpc / ( rn_me * rn_tfe_itf ) IF(lwp) WRITE(numout,*) ' N Total power consumption by zavt_itf: ztpc = ', ztpc * 1.e-12 ,'TW' ENDIF ! ! Update pav with the ITF mixing coefficient #if defined key_z_first DO jj = 1, jpj DO ji = 1, jpi DO jk = 2, jpkm1 pav(ji,jj,jk) = pav (ji,jj,jk) * ( 1.e0 - mask_itf(ji,jj) ) & & + zavt_itf(ji,jj,jk) * mask_itf(ji,jj) END DO END DO END DO #else DO jk = 2, jpkm1 pav(:,:,jk) = pav (:,:,jk) * ( 1.e0 - mask_itf(:,:) ) & & + zavt_itf(:,:,jk) * mask_itf(:,:) END DO #endif ! IF( wrk_not_released(2, 2,3,4,5) .OR. & wrk_not_released(3, 1,2,3,4,5) )THEN CALL ctl_stop('tmx_itf : failed to release workspace arrays.') END IF ! END SUBROUTINE tmx_itf !! * Reset control of array index permutation # include "oce_ftrans.h90" # include "dom_oce_ftrans.h90" # include "zdf_oce_ftrans.h90" !FTRANS az_tmx :I :I :z SUBROUTINE zdf_tmx_init !!---------------------------------------------------------------------- !! *** ROUTINE zdf_tmx_init *** !! !! ** Purpose : Initialization of the vertical tidal mixing, Reading !! of M2 and K1 tidal energy in nc files !! !! ** Method : - Read the namtmx namelist and check the parameters !! !! - Read the input data in NetCDF files : !! M2 and K1 tidal energy. The total tidal energy, en_tmx, !! is the sum of M2, K1 and S2 energy where S2 is assumed !! to be: S2=(1/2)^2 * M2 !! mask_itf, a mask array that determine where substituing !! the standard Simmons et al. (2005) formulation with the !! one of Koch_Larrouy et al. (2007). !! !! - Compute az_tmx, a 3D coefficient that allows to compute !! the standard tidal-induced vertical mixing as follows: !! Kz_tides = az_tmx / max( rn_n2min, N^2 ) !! with az_tmx a bottom intensified coefficient is given by: !! az_tmx(z) = en_tmx / ( rau0 * rn_htmx ) * EXP( -(H-z)/rn_htmx ) !! / ( 1. - EXP( - H /rn_htmx ) ) !! where rn_htmx the characteristic length scale of the bottom !! intensification, en_tmx the tidal energy, and H the ocean depth !! !! ** input : - Namlist namtmx !! - NetCDF file : M2_ORCA2.nc, K1_ORCA2.nc, and mask_itf.nc !! !! ** Action : - Increase by 1 the nstop flag is setting problem encounter !! - defined az_tmx used to compute tidal-induced mixing !! !! References : Simmons et al. 2004, Ocean Modelling, 6, 3-4, 245-263. !! Koch-Larrouy et al. 2007, GRL. !!---------------------------------------------------------------------- USE oce , zav_tide => ua ! ua used as workspace USE wrk_nemo, ONLY: zem2 => wrk_2d_1 ! read M2 and USE wrk_nemo, ONLY: zek1 => wrk_2d_2 ! K1 tidal energy USE wrk_nemo, ONLY: zkz => wrk_2d_3 ! total M2, K1 and S2 tidal energy USE wrk_nemo, ONLY: zfact => wrk_2d_4 ! used for vertical structure function USE wrk_nemo, ONLY: zhdep => wrk_2d_5 ! Ocean depth USE wrk_nemo, ONLY: zpc => wrk_3d_1 ! power consumption !! DCSE_NEMO: need additional directives for renamed module variables !FTRANS zpc :I :I :z !! INTEGER :: ji, jj, jk ! dummy loop indices INTEGER :: inum ! local integer REAL(wp) :: ztpc, ze_z ! local scalars #if defined key_z_first REAL(wp) :: zcoef ! local scalar #endif !! NAMELIST/namzdf_tmx/ rn_htmx, rn_n2min, rn_tfe, rn_me, ln_tmx_itf, rn_tfe_itf !!---------------------------------------------------------------------- IF( wrk_in_use(2, 1,2,3,4,5) .OR. wrk_in_use(3, 1) ) THEN CALL ctl_stop('zdf_tmx_init : requested workspace arrays unavailable.') ; RETURN END IF REWIND( numnam ) ! Read Namelist namtmx : Tidal Mixing READ ( numnam, namzdf_tmx ) IF(lwp) THEN ! Control print WRITE(numout,*) WRITE(numout,*) 'zdf_tmx_init : tidal mixing' WRITE(numout,*) '~~~~~~~~~~~~' WRITE(numout,*) ' Namelist namzdf_tmx : set tidal mixing parameters' WRITE(numout,*) ' Vertical decay scale for turbulence = ', rn_htmx WRITE(numout,*) ' Brunt-Vaisala frequency threshold = ', rn_n2min WRITE(numout,*) ' Tidal dissipation efficiency = ', rn_tfe WRITE(numout,*) ' Mixing efficiency = ', rn_me WRITE(numout,*) ' ITF specific parameterisation = ', ln_tmx_itf WRITE(numout,*) ' ITF tidal dissipation efficiency = ', rn_tfe_itf ENDIF ! ! allocate tmx arrays IF( zdf_tmx_alloc() /= 0 ) CALL ctl_stop( 'STOP', 'zdf_tmx_init : unable to allocate tmx arrays' ) IF( ln_tmx_itf ) THEN ! read the Indonesian Through Flow mask CALL iom_open('mask_itf',inum) CALL iom_get (inum, jpdom_data, 'tmaskitf',mask_itf,1) ! CALL iom_close(inum) ENDIF ! read M2 tidal energy flux : W/m2 ( zem2 < 0 ) CALL iom_open('M2rowdrg',inum) CALL iom_get (inum, jpdom_data, 'field',zem2,1) ! CALL iom_close(inum) ! read K1 tidal energy flux : W/m2 ( zek1 < 0 ) CALL iom_open('K1rowdrg',inum) CALL iom_get (inum, jpdom_data, 'field',zek1,1) ! CALL iom_close(inum) ! Total tidal energy ( M2, S2 and K1 with S2=(1/2)^2 * M2 ) ! only the energy available for mixing is taken into account, ! (mixing efficiency tidal dissipation efficiency) en_tmx(:,:) = - rn_tfe * rn_me * ( zem2(:,:) * 1.25 + zek1(:,:) ) * tmask(:,:,1) ! Vertical structure (az_tmx) DO jj = 1, jpj ! part independent of the level DO ji = 1, jpi zhdep(ji,jj) = fsdepw(ji,jj,mbkt(ji,jj)+1) ! depth of the ocean zfact(ji,jj) = rau0 * rn_htmx * ( 1. - EXP( -zhdep(ji,jj) / rn_htmx ) ) IF( zfact(ji,jj) /= 0 ) zfact(ji,jj) = en_tmx(ji,jj) / zfact(ji,jj) END DO END DO #if defined key_z_first DO jj = 1, jpj DO ji = 1, jpi DO jk= 1, jpk ! complete with the level-dependent part #else DO jk= 1, jpk ! complete with the level-dependent part DO jj = 1, jpj DO ji = 1, jpi #endif az_tmx(ji,jj,jk) = zfact(ji,jj) * EXP( -( zhdep(ji,jj)-fsdepw(ji,jj,jk) ) / rn_htmx ) * tmask(ji,jj,jk) END DO END DO END DO IF( nprint == 1 .AND. lwp ) THEN ! Control print ! Total power consumption due to vertical mixing ! zpc = rau0 * 1/rn_me * rn2 * zav_tide #if defined key_z_first DO jj = 1, jpj DO ji = 1, jpi zav_tide(ji,jj,1) = 0.e0 DO jk = 2, jpkm1 zav_tide(:,:,jk) = az_tmx(:,:,jk) / MAX( rn_n2min, rn2(:,:,jk) ) END DO zav_tide(ji,jj,jpk) = 0.e0 END DO END DO #else zav_tide(:,:,:) = 0.e0 DO jk = 2, jpkm1 zav_tide(:,:,jk) = az_tmx(:,:,jk) / MAX( rn_n2min, rn2(:,:,jk) ) END DO #endif ztpc = 0.e0 zpc(:,:,:) = MAX(rn_n2min,rn2(:,:,:)) * zav_tide(:,:,:) #if defined key_z_first DO jj = 1, jpj DO ji = 1, jpi DO jk= 2, jpkm1 #else DO jk= 2, jpkm1 DO jj = 1, jpj DO ji = 1, jpi #endif ztpc = ztpc + fse3w(ji,jj,jk) * e1t(ji,jj) * e2t(ji,jj) * zpc(ji,jj,jk) * tmask(ji,jj,jk) * tmask_i(ji,jj) END DO END DO END DO ztpc= rau0 * 1/(rn_tfe * rn_me) * ztpc WRITE(numout,*) WRITE(numout,*) ' Total power consumption of the tidally driven part of Kz : ztpc = ', ztpc * 1.e-12 ,'TW' ! control print 2 zav_tide(:,:,:) = MIN( zav_tide(:,:,:), 60.e-4 ) #if defined key_z_first DO jj = 1, jpj DO ji = 1, jpi zkz(ji,jj) = 0.e0 DO jk = 2, jpkm1 #else zkz(:,:) = 0.e0 DO jk = 2, jpkm1 DO jj = 1, jpj DO ji = 1, jpi #endif zkz(ji,jj) = zkz(ji,jj) + fse3w(ji,jj,jk) & & * MAX( 0.e0, rn2(ji,jj,jk) ) * rau0 * zav_tide(ji,jj,jk)* tmask(ji,jj,jk) END DO END DO END DO ! Here zkz should be equal to en_tmx ==> multiply by en_tmx/zkz DO jj = 1, jpj DO ji = 1, jpi IF( zkz(ji,jj) /= 0.e0 ) THEN zkz(ji,jj) = en_tmx(ji,jj) / zkz(ji,jj) ENDIF END DO END DO ztpc = 1.e50 DO jj = 1, jpj DO ji = 1, jpi IF( zkz(ji,jj) /= 0.e0 ) THEN ztpc = MIN( zkz(ji,jj), ztpc) ENDIF END DO END DO WRITE(numout,*) ' Min de zkz ', ztpc, ' Max = ', MAXVAL(zkz(:,:) ) #if defined key_z_first DO jj = 1, jpj DO ji = 1, jpi zcoef = MIN( zkz(ji,jj), 30./6. ) !kz max = 300 cm2/s DO jk = 2, jpkm1 zav_tide(ji,jj,jk) = zav_tide(ji,jj,jk) * zcoef END DO END DO END DO #else DO jk = 2, jpkm1 zav_tide(:,:,jk) = zav_tide(:,:,jk) * MIN( zkz(:,:), 30./6. ) !kz max = 300 cm2/s END DO #endif ztpc = 0.e0 zpc(:,:,:) = MAX(0.e0,rn2(:,:,:)) * zav_tide(:,:,:) #if defined key_z_first DO jj = 1, jpj DO ji = 1, jpi DO jk= 1, jpk #else DO jk= 1, jpk DO jj = 1, jpj DO ji = 1, jpi #endif ztpc = ztpc + fse3w(ji,jj,jk) * e1t(ji,jj) * e2t(ji,jj) * zpc(ji,jj,jk) * tmask(ji,jj,jk) * tmask_i(ji,jj) END DO END DO END DO ztpc= rau0 * 1/(rn_tfe * rn_me) * ztpc WRITE(numout,*) ' 2 Total power consumption of the tidally driven part of Kz : ztpc = ', ztpc * 1.e-12 ,'TW' DO jk = 1, jpk ze_z = SUM( e1t(:,:) * e2t(:,:) * zav_tide(:,:,jk) * tmask_i(:,:) ) & & / MAX( 1.e-20, SUM( e1t(:,:) * e2t(:,:) * tmask (:,:,jk) * tmask_i(:,:) ) ) ztpc = 1.E50 DO jj = 1, jpj DO ji = 1, jpi IF( zav_tide(ji,jj,jk) /= 0.e0 ) ztpc =Min( ztpc, zav_tide(ji,jj,jk) ) END DO END DO WRITE(numout,*) ' N2 min - jk= ', jk,' ', ze_z * 1.e4,' cm2/s min= ',ztpc*1.e4, & & 'max= ', MAXVAL(zav_tide(:,:,jk) )*1.e4, ' cm2/s' END DO WRITE(numout,*) ' e_tide : ', SUM( e1t*e2t*en_tmx ) / ( rn_tfe * rn_me ) * 1.e-12, 'TW' WRITE(numout,*) WRITE(numout,*) ' Initial profile of tidal vertical mixing' DO jk = 1, jpk DO jj = 1,jpj DO ji = 1,jpi zkz(ji,jj) = az_tmx(ji,jj,jk) /MAX( rn_n2min, rn2(ji,jj,jk) ) END DO END DO ze_z = SUM( e1t(:,:) * e2t(:,:) * zkz(:,:) * tmask_i(:,:) ) & & / MAX( 1.e-20, SUM( e1t(:,:) * e2t(:,:) * tmask (:,:,jk) * tmask_i(:,:) ) ) WRITE(numout,*) ' jk= ', jk,' ', ze_z * 1.e4,' cm2/s' END DO DO jk = 1, jpk zkz(:,:) = az_tmx(:,:,jk) /rn_n2min ze_z = SUM( e1t(:,:) * e2t(:,:) * zkz(:,:) * tmask_i(:,:) ) & & / MAX( 1.e-20, SUM( e1t(:,:) * e2t(:,:) * tmask (:,:,jk) * tmask_i(:,:) ) ) WRITE(numout,*) WRITE(numout,*) ' N2 min - jk= ', jk,' ', ze_z * 1.e4,' cm2/s min= ',MINVAL(zkz)*1.e4, & & 'max= ', MAXVAL(zkz)*1.e4, ' cm2/s' END DO ! ENDIF ! IF(wrk_not_released(2, 1,2,3,4,5) .OR. & wrk_not_released(3, 1) ) CALL ctl_stop( 'zdf_tmx_init : failed to release workspace arrays' ) ! END SUBROUTINE zdf_tmx_init #else !!---------------------------------------------------------------------- !! Default option Dummy module NO Tidal MiXing !!---------------------------------------------------------------------- LOGICAL, PUBLIC, PARAMETER :: lk_zdftmx = .FALSE. !: tidal mixing flag CONTAINS SUBROUTINE zdf_tmx_init ! Dummy routine WRITE(*,*) 'zdf_tmx: You should not have seen this print! error?' END SUBROUTINE zdf_tmx_init SUBROUTINE zdf_tmx( kt ) ! Dummy routine WRITE(*,*) 'zdf_tmx: You should not have seen this print! error?', kt END SUBROUTINE zdf_tmx #endif !!====================================================================== END MODULE zdftmx