MODULE p4zprod !!====================================================================== !! *** MODULE p4zprod *** !! TOP : Growth Rate of the two phytoplanktons groups !!====================================================================== !! History : 1.0 ! 2004 (O. Aumont) Original code !! 2.0 ! 2007-12 (C. Ethe, G. Madec) F90 !! 3.4 ! 2011-05 (O. Aumont, C. Ethe) New parameterization of light limitation !!---------------------------------------------------------------------- #if defined key_pisces !!---------------------------------------------------------------------- !! 'key_pisces' PISCES bio-model !!---------------------------------------------------------------------- !! p4z_prod : Compute the growth Rate of the two phytoplanktons groups !! p4z_prod_init : Initialization of the parameters for growth !! p4z_prod_alloc : Allocate variables for growth !!---------------------------------------------------------------------- USE oce_trc ! shared variables between ocean and passive tracers USE trc ! passive tracers common variables USE sms_pisces ! PISCES Source Minus Sink variables USE p4zopt ! optical model USE p4zlim ! Co-limitations of differents nutrients USE prtctl_trc ! print control for debugging USE iom ! I/O manager IMPLICIT NONE PRIVATE PUBLIC p4z_prod ! called in p4zbio.F90 PUBLIC p4z_prod_init ! called in trcsms_pisces.F90 PUBLIC p4z_prod_alloc !! * Shared module variables LOGICAL , PUBLIC :: ln_newprod = .FALSE. REAL(wp), PUBLIC :: pislope = 3.0_wp !: REAL(wp), PUBLIC :: pislope2 = 3.0_wp !: REAL(wp), PUBLIC :: excret = 10.e-5_wp !: REAL(wp), PUBLIC :: excret2 = 0.05_wp !: REAL(wp), PUBLIC :: bresp = 0.00333_wp !: REAL(wp), PUBLIC :: chlcnm = 0.033_wp !: REAL(wp), PUBLIC :: chlcdm = 0.05_wp !: REAL(wp), PUBLIC :: chlcmin = 0.00333_wp !: REAL(wp), PUBLIC :: fecnm = 10.E-6_wp !: REAL(wp), PUBLIC :: fecdm = 15.E-6_wp !: REAL(wp), PUBLIC :: grosip = 0.151_wp !: REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: prmax !: optimal production = f(temperature) REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: quotan !: proxy of N quota in Nanophyto REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: quotad !: proxy of N quota in diatomee REAL(wp) :: r1_rday !: 1 / rday REAL(wp) :: texcret !: 1 - excret REAL(wp) :: texcret2 !: 1 - excret2 REAL(wp) :: tpp !: Total primary production !!* Substitution # include "top_substitute.h90" !!---------------------------------------------------------------------- !! NEMO/TOP 3.3 , NEMO Consortium (2010) !! $Id$ !! Software governed by the CeCILL licence (NEMOGCM/NEMO_CeCILL.txt) !!---------------------------------------------------------------------- CONTAINS SUBROUTINE p4z_prod( kt , jnt ) !!--------------------------------------------------------------------- !! *** ROUTINE p4z_prod *** !! !! ** Purpose : Compute the phytoplankton production depending on !! light, temperature and nutrient availability !! !! ** Method : - ??? !!--------------------------------------------------------------------- USE wrk_nemo, ONLY: wrk_in_use, wrk_not_released USE wrk_nemo, ONLY: zmixnano => wrk_2d_1 , zmixdiat => wrk_2d_2, zstrn => wrk_2d_3 USE wrk_nemo, ONLY: zpislopead => wrk_3d_2 , zpislopead2 => wrk_3d_3 USE wrk_nemo, ONLY: zprdia => wrk_3d_4 , zprbio => wrk_3d_5 USE wrk_nemo, ONLY: zprdch => wrk_3d_6 , zprnch => wrk_3d_7 USE wrk_nemo, ONLY: zprorca => wrk_3d_8 , zprorcad => wrk_3d_9 USE wrk_nemo, ONLY: zprofed => wrk_3d_10, zprofen => wrk_3d_11 USE wrk_nemo, ONLY: zprochln => wrk_3d_12, zprochld => wrk_3d_13 USE wrk_nemo, ONLY: zpronew => wrk_3d_14, zpronewd => wrk_3d_15 ! INTEGER, INTENT(in) :: kt, jnt ! INTEGER :: ji, jj, jk REAL(wp) :: zsilfac, zfact, znanotot, zdiattot, zconctemp, zconctemp2 REAL(wp) :: zratio, zmax, zsilim, ztn, zadap REAL(wp) :: zlim, zsilfac2, zsiborn, zprod, zproreg, zproreg2 REAL(wp) :: zmxltst, zmxlday, zmaxday REAL(wp) :: zpislopen , zpislope2n REAL(wp) :: zrum, zcodel, zargu, zval REAL(wp), ALLOCATABLE, DIMENSION(:,:,:) :: zysopt REAL(wp) :: zrfact2 CHARACTER (len=25) :: charout !!--------------------------------------------------------------------- IF( wrk_in_use(2, 1,2,3) .OR. & wrk_in_use(3, 2,3,4,5,6,7,8,9,10,11,12,13,14,15) ) THEN CALL ctl_stop('p4z_prod: requested workspace arrays unavailable') ; RETURN ENDIF ALLOCATE( zysopt(jpi,jpj,jpk) ) zprorca (:,:,:) = 0._wp zprorcad(:,:,:) = 0._wp zprofed (:,:,:) = 0._wp zprofen (:,:,:) = 0._wp zprochln(:,:,:) = 0._wp zprochld(:,:,:) = 0._wp zpronew (:,:,:) = 0._wp zpronewd(:,:,:) = 0._wp zprdia (:,:,:) = 0._wp zprbio (:,:,:) = 0._wp zprdch (:,:,:) = 0._wp zprnch (:,:,:) = 0._wp zysopt (:,:,:) = 0._wp ! Computation of the optimal production prmax(:,:,:) = 0.6_wp * r1_rday * tgfunc(:,:,:) IF( lk_degrad ) prmax(:,:,:) = prmax(:,:,:) * facvol(:,:,:) ! compute the day length depending on latitude and the day zrum = REAL( nday_year - 80, wp ) / REAL( nyear_len(1), wp ) zcodel = ASIN( SIN( zrum * rpi * 2._wp ) * SIN( rad * 23.5_wp ) ) ! day length in hours zstrn(:,:) = 0. DO jj = 1, jpj DO ji = 1, jpi zargu = TAN( zcodel ) * TAN( gphit(ji,jj) * rad ) zargu = MAX( -1., MIN( 1., zargu ) ) zstrn(ji,jj) = MAX( 0.0, 24. - 2. * ACOS( zargu ) / rad / 15. ) END DO END DO IF( ln_newprod ) THEN ! Impact of the day duration on phytoplankton growth DO jk = 1, jpkm1 DO jj = 1 ,jpj DO ji = 1, jpi zval = MAX( 1., zstrn(ji,jj) ) zval = 1.5 * zval / ( 12. + zval ) zprbio(ji,jj,jk) = prmax(ji,jj,jk) * zval zprdia(ji,jj,jk) = zprbio(ji,jj,jk) END DO END DO END DO ENDIF ! Maximum light intensity WHERE( zstrn(:,:) < 1.e0 ) zstrn(:,:) = 24. zstrn(:,:) = 24. / zstrn(:,:) IF( ln_newprod ) THEN !CDIR NOVERRCHK DO jk = 1, jpkm1 !CDIR NOVERRCHK DO jj = 1, jpj !CDIR NOVERRCHK DO ji = 1, jpi ! Computation of the P-I slope for nanos and diatoms IF( etot(ji,jj,jk) > 1.E-3 ) THEN ztn = MAX( 0., tsn(ji,jj,jk,jp_tem) - 15. ) zadap = ztn / ( 2.+ ztn ) zconctemp = MAX( 0.e0 , trn(ji,jj,jk,jpdia) - 5e-7 ) zconctemp2 = trn(ji,jj,jk,jpdia) - zconctemp znanotot = enano(ji,jj,jk) * zstrn(ji,jj) zdiattot = ediat(ji,jj,jk) * zstrn(ji,jj) zfact = EXP( -0.21 * znanotot ) zpislopead (ji,jj,jk) = pislope * ( 1.+ zadap * zfact ) & & * trn(ji,jj,jk,jpnch) /( trn(ji,jj,jk,jpphy) * 12. + rtrn) zpislopead2(ji,jj,jk) = (pislope * zconctemp2 + pislope2 * zconctemp) / ( trn(ji,jj,jk,jpdia) + rtrn ) & & * trn(ji,jj,jk,jpdch) /( trn(ji,jj,jk,jpdia) * 12. + rtrn) ! Computation of production function for Carbon ! --------------------------------------------- zpislopen = zpislopead (ji,jj,jk) / ( ( r1_rday + bresp * r1_rday / chlcnm ) * rday + rtrn) zpislope2n = zpislopead2(ji,jj,jk) / ( ( r1_rday + bresp * r1_rday / chlcdm ) * rday + rtrn) zprbio(ji,jj,jk) = zprbio(ji,jj,jk) * ( 1.- EXP( -zpislopen * znanotot ) ) zprdia(ji,jj,jk) = zprdia(ji,jj,jk) * ( 1.- EXP( -zpislope2n * zdiattot ) ) ! Computation of production function for Chlorophyll !-------------------------------------------------- zmaxday = 1._wp / ( prmax(ji,jj,jk) * rday + rtrn ) zprnch(ji,jj,jk) = prmax(ji,jj,jk) * ( 1.- EXP( -zpislopead (ji,jj,jk) * zmaxday * znanotot ) ) zprdch(ji,jj,jk) = prmax(ji,jj,jk) * ( 1.- EXP( -zpislopead2(ji,jj,jk) * zmaxday * zdiattot ) ) ENDIF END DO END DO END DO ELSE !CDIR NOVERRCHK DO jk = 1, jpkm1 !CDIR NOVERRCHK DO jj = 1, jpj !CDIR NOVERRCHK DO ji = 1, jpi ! Computation of the P-I slope for nanos and diatoms IF( etot(ji,jj,jk) > 1.E-3 ) THEN ztn = MAX( 0., tsn(ji,jj,jk,jp_tem) - 15. ) zadap = ztn / ( 2.+ ztn ) zfact = EXP( -0.21 * enano(ji,jj,jk) ) zpislopead (ji,jj,jk) = pislope * ( 1.+ zadap * zfact ) zpislopead2(ji,jj,jk) = pislope2 zpislopen = zpislopead(ji,jj,jk) * trn(ji,jj,jk,jpnch) & & / ( trn(ji,jj,jk,jpphy) * 12. + rtrn ) & & / ( prmax(ji,jj,jk) * rday * xlimphy(ji,jj,jk) + rtrn ) zpislope2n = zpislopead2(ji,jj,jk) * trn(ji,jj,jk,jpdch) & & / ( trn(ji,jj,jk,jpdia) * 12. + rtrn ) & & / ( prmax(ji,jj,jk) * rday * xlimdia(ji,jj,jk) + rtrn ) ! Computation of production function for Carbon ! --------------------------------------------- zprbio(ji,jj,jk) = prmax(ji,jj,jk) * ( 1.- EXP( -zpislopen * enano(ji,jj,jk) ) ) zprdia(ji,jj,jk) = prmax(ji,jj,jk) * ( 1.- EXP( -zpislope2n * ediat(ji,jj,jk) ) ) ! Computation of production function for Chlorophyll !-------------------------------------------------- zprnch(ji,jj,jk) = prmax(ji,jj,jk) * ( 1.- EXP( -zpislopen * enano(ji,jj,jk) * zstrn(ji,jj) ) ) zprdch(ji,jj,jk) = prmax(ji,jj,jk) * ( 1.- EXP( -zpislope2n * ediat(ji,jj,jk) * zstrn(ji,jj) ) ) ENDIF END DO END DO END DO ENDIF ! Computation of a proxy of the N/C ratio ! --------------------------------------- !CDIR NOVERRCHK DO jk = 1, jpkm1 !CDIR NOVERRCHK DO jj = 1, jpj !CDIR NOVERRCHK DO ji = 1, jpi zval = ( xnanonh4(ji,jj,jk) + xnanono3(ji,jj,jk) ) * prmax(ji,jj,jk) / ( zprbio(ji,jj,jk) + rtrn ) quotan(ji,jj,jk) = MIN( 1., 0.5 + 0.5 * zval ) zval = ( xdiatnh4(ji,jj,jk) + xdiatno3(ji,jj,jk) ) * prmax(ji,jj,jk) / ( zprdia(ji,jj,jk) + rtrn ) quotad(ji,jj,jk) = MIN( 1., 0.5 + 0.5 * zval ) END DO END DO END DO DO jk = 1, jpkm1 DO jj = 1, jpj DO ji = 1, jpi IF( etot(ji,jj,jk) > 1.E-3 ) THEN ! Si/C of diatoms ! ------------------------ ! Si/C increases with iron stress and silicate availability ! Si/C is arbitrariliy increased for very high Si concentrations ! to mimic the very high ratios observed in the Southern Ocean (silpot2) zlim = trn(ji,jj,jk,jpsil) / ( trn(ji,jj,jk,jpsil) + xksi1 ) zsilim = MIN( zprdia(ji,jj,jk) / ( prmax(ji,jj,jk) + rtrn ), xlimsi(ji,jj,jk) ) zsilfac = 4.4 * EXP( -4.23 * zsilim ) * MAX( 0.e0, MIN( 1., 2.2 * ( zlim - 0.5 ) ) ) + 1.e0 zsiborn = MAX( 0.e0, ( trn(ji,jj,jk,jpsil) - 15.e-6 ) ) zsilfac2 = 1.+ 2.* zsiborn / ( zsiborn + xksi2 ) zsilfac = MIN( 5.4, zsilfac * zsilfac2) zysopt(ji,jj,jk) = grosip * zlim * zsilfac ENDIF END DO END DO END DO ! Computation of the limitation term due to a mixed layer deeper than the euphotic depth DO jj = 1, jpj DO ji = 1, jpi zmxltst = MAX( 0.e0, hmld(ji,jj) - heup(ji,jj) ) zmxlday = zmxltst * zmxltst * r1_rday zmixnano(ji,jj) = 1. - zmxlday / ( 3. + zmxlday ) zmixdiat(ji,jj) = 1. - zmxlday / ( 4. + zmxlday ) END DO END DO ! Mixed-layer effect on production DO jk = 1, jpkm1 DO jj = 1, jpj DO ji = 1, jpi IF( fsdepw(ji,jj,jk+1) <= hmld(ji,jj) ) THEN zprbio(ji,jj,jk) = zprbio(ji,jj,jk) * zmixnano(ji,jj) zprdia(ji,jj,jk) = zprdia(ji,jj,jk) * zmixdiat(ji,jj) ENDIF END DO END DO END DO ! Computation of the various production terms !CDIR NOVERRCHK DO jk = 1, jpkm1 !CDIR NOVERRCHK DO jj = 1, jpj !CDIR NOVERRCHK DO ji = 1, jpi IF( etot(ji,jj,jk) > 1.E-3 ) THEN ! production terms for nanophyto. zprorca(ji,jj,jk) = zprbio(ji,jj,jk) * xlimphy(ji,jj,jk) * trn(ji,jj,jk,jpphy) * rfact2 zpronew(ji,jj,jk) = zprorca(ji,jj,jk) * xnanono3(ji,jj,jk) / ( xnanono3(ji,jj,jk) + xnanonh4(ji,jj,jk) + rtrn ) ! zratio = trn(ji,jj,jk,jpnfe) / ( trn(ji,jj,jk,jpphy) + rtrn ) zratio = zratio / fecnm zmax = MAX( 0., ( 1. - zratio ) / ABS( 1.05 - zratio ) ) zprofen(ji,jj,jk) = fecnm * prmax(ji,jj,jk) & & * ( 4. - 4.5 * xlimnfe(ji,jj,jk) / ( xlimnfe(ji,jj,jk) + 0.5 ) ) & & * trn(ji,jj,jk,jpfer) / ( trn(ji,jj,jk,jpfer) + concnfe(ji,jj,jk) ) & & * zmax * trn(ji,jj,jk,jpphy) * rfact2 ! production terms for diatomees zprorcad(ji,jj,jk) = zprdia(ji,jj,jk) * xlimdia(ji,jj,jk) * trn(ji,jj,jk,jpdia) * rfact2 zpronewd(ji,jj,jk) = zprorcad(ji,jj,jk) * xdiatno3(ji,jj,jk) / ( xdiatno3(ji,jj,jk) + xdiatnh4(ji,jj,jk) + rtrn ) ! zratio = trn(ji,jj,jk,jpdfe) / ( trn(ji,jj,jk,jpdia) + rtrn ) zratio = zratio / fecdm zmax = MAX( 0., ( 1. - zratio ) / ABS( 1.05 - zratio ) ) zprofed(ji,jj,jk) = fecdm * prmax(ji,jj,jk) & & * ( 4. - 4.5 * xlimdfe(ji,jj,jk) / ( xlimdfe(ji,jj,jk) + 0.5 ) ) & & * trn(ji,jj,jk,jpfer) / ( trn(ji,jj,jk,jpfer) + concdfe(ji,jj,jk) ) & & * zmax * trn(ji,jj,jk,jpdia) * rfact2 ENDIF END DO END DO END DO IF( ln_newprod ) THEN !CDIR NOVERRCHK DO jk = 1, jpkm1 !CDIR NOVERRCHK DO jj = 1, jpj !CDIR NOVERRCHK DO ji = 1, jpi IF( fsdepw(ji,jj,jk+1) <= hmld(ji,jj) ) THEN zprnch(ji,jj,jk) = zprnch(ji,jj,jk) * zmixnano(ji,jj) zprdch(ji,jj,jk) = zprdch(ji,jj,jk) * zmixdiat(ji,jj) ENDIF IF( etot(ji,jj,jk) > 1.E-3 ) THEN ! production terms for nanophyto. ( chlorophyll ) znanotot = enano(ji,jj,jk) * zstrn(ji,jj) zprod = rday * zprorca(ji,jj,jk) * zprnch(ji,jj,jk) * xlimphy(ji,jj,jk) zprochln(ji,jj,jk) = chlcmin * 12. * zprorca (ji,jj,jk) zprochln(ji,jj,jk) = zprochln(ji,jj,jk) + chlcnm * 12. * zprod / ( zpislopead(ji,jj,jk) * znanotot +rtrn) ! production terms for diatomees ( chlorophyll ) zdiattot = ediat(ji,jj,jk) * zstrn(ji,jj) zprod = rday * zprorcad(ji,jj,jk) * zprdch(ji,jj,jk) * xlimdia(ji,jj,jk) zprochld(ji,jj,jk) = chlcmin * 12. * zprorcad(ji,jj,jk) zprochld(ji,jj,jk) = zprochld(ji,jj,jk) + chlcdm * 12. * zprod / ( zpislopead2(ji,jj,jk) * zdiattot +rtrn ) ENDIF END DO END DO END DO ELSE !CDIR NOVERRCHK DO jk = 1, jpkm1 !CDIR NOVERRCHK DO jj = 1, jpj !CDIR NOVERRCHK DO ji = 1, jpi IF( etot(ji,jj,jk) > 1.E-3 ) THEN ! production terms for nanophyto. ( chlorophyll ) znanotot = enano(ji,jj,jk) * zstrn(ji,jj) zprod = rday * zprorca(ji,jj,jk) * zprnch(ji,jj,jk) * trn(ji,jj,jk,jpphy) * xlimphy(ji,jj,jk) zprochln(ji,jj,jk) = chlcnm * 144. * zprod / ( zpislopead(ji,jj,jk) * trn(ji,jj,jk,jpnch) * znanotot +rtrn) ! production terms for diatomees ( chlorophyll ) zdiattot = ediat(ji,jj,jk) * zstrn(ji,jj) zprod = rday * zprorcad(ji,jj,jk) * zprdch(ji,jj,jk) * trn(ji,jj,jk,jpdia) * xlimdia(ji,jj,jk) zprochld(ji,jj,jk) = chlcdm * 144. * zprod / ( zpislopead2(ji,jj,jk) * trn(ji,jj,jk,jpdch) * zdiattot +rtrn ) ENDIF END DO END DO END DO ENDIF ! Update the arrays TRA which contain the biological sources and sinks DO jk = 1, jpkm1 DO jj = 1, jpj DO ji =1 ,jpi zproreg = zprorca(ji,jj,jk) - zpronew(ji,jj,jk) zproreg2 = zprorcad(ji,jj,jk) - zpronewd(ji,jj,jk) tra(ji,jj,jk,jppo4) = tra(ji,jj,jk,jppo4) - zprorca(ji,jj,jk) - zprorcad(ji,jj,jk) tra(ji,jj,jk,jpno3) = tra(ji,jj,jk,jpno3) - zpronew(ji,jj,jk) - zpronewd(ji,jj,jk) tra(ji,jj,jk,jpnh4) = tra(ji,jj,jk,jpnh4) - zproreg - zproreg2 tra(ji,jj,jk,jpphy) = tra(ji,jj,jk,jpphy) + zprorca(ji,jj,jk) * texcret tra(ji,jj,jk,jpnch) = tra(ji,jj,jk,jpnch) + zprochln(ji,jj,jk) * texcret tra(ji,jj,jk,jpnfe) = tra(ji,jj,jk,jpnfe) + zprofen(ji,jj,jk) * texcret tra(ji,jj,jk,jpdia) = tra(ji,jj,jk,jpdia) + zprorcad(ji,jj,jk) * texcret2 tra(ji,jj,jk,jpdch) = tra(ji,jj,jk,jpdch) + zprochld(ji,jj,jk) * texcret2 tra(ji,jj,jk,jpdfe) = tra(ji,jj,jk,jpdfe) + zprofed(ji,jj,jk) * texcret2 tra(ji,jj,jk,jpbsi) = tra(ji,jj,jk,jpbsi) + zprorcad(ji,jj,jk) * zysopt(ji,jj,jk) * texcret2 tra(ji,jj,jk,jpdoc) = tra(ji,jj,jk,jpdoc) + excret2 * zprorcad(ji,jj,jk) + excret * zprorca(ji,jj,jk) tra(ji,jj,jk,jpoxy) = tra(ji,jj,jk,jpoxy) + o2ut * ( zproreg + zproreg2) & & + ( o2ut + o2nit ) * ( zpronew(ji,jj,jk) + zpronewd(ji,jj,jk) ) tra(ji,jj,jk,jpfer) = tra(ji,jj,jk,jpfer) - texcret * zprofen(ji,jj,jk) - texcret2 * zprofed(ji,jj,jk) tra(ji,jj,jk,jpsil) = tra(ji,jj,jk,jpsil) - texcret2 * zprorcad(ji,jj,jk) * zysopt(ji,jj,jk) tra(ji,jj,jk,jpdic) = tra(ji,jj,jk,jpdic) - zprorca(ji,jj,jk) - zprorcad(ji,jj,jk) tra(ji,jj,jk,jptal) = tra(ji,jj,jk,jptal) + rno3 * ( zpronew(ji,jj,jk) + zpronewd(ji,jj,jk) ) & & - rno3 * ( zproreg + zproreg2 ) END DO END DO END DO ! Total primary production per year tpp = tpp + glob_sum( ( zprorca(:,:,:) + zprorcad(:,:,:) ) * cvol(:,:,:) ) IF( kt == nitend .AND. jnt == nrdttrc ) THEN WRITE(numout,*) 'Total PP (Gtc) :' WRITE(numout,*) '-------------------- : ',tpp * 12. / 1.E12 WRITE(numout,*) ENDIF IF( ln_diatrc ) THEN ! zrfact2 = 1.e3 * rfact2r IF( lk_iomput ) THEN IF( jnt == nrdttrc ) THEN CALL iom_put( "PPPHY" , zprorca (:,:,:) * zrfact2 * tmask(:,:,:) ) ! primary production by nanophyto CALL iom_put( "PPPHY2", zprorcad(:,:,:) * zrfact2 * tmask(:,:,:) ) ! primary production by diatom CALL iom_put( "PPNEWN", zpronew (:,:,:) * zrfact2 * tmask(:,:,:) ) ! new primary production by nanophyto CALL iom_put( "PPNEWD", zpronewd(:,:,:) * zrfact2 * tmask(:,:,:) ) ! new primary production by diatom CALL iom_put( "PBSi" , zprorcad(:,:,:) * zrfact2 * tmask(:,:,:) * zysopt(:,:,:) ) ! biogenic silica production CALL iom_put( "PFeD" , zprofed (:,:,:) * zrfact2 * tmask(:,:,:) ) ! biogenic iron production by diatom CALL iom_put( "PFeN" , zprofen (:,:,:) * zrfact2 * tmask(:,:,:) ) ! biogenic iron production by nanophyto ENDIF ELSE trc3d(:,:,:,jp_pcs0_3d + 4) = zprorca (:,:,:) * zrfact2 * tmask(:,:,:) trc3d(:,:,:,jp_pcs0_3d + 5) = zprorcad(:,:,:) * zrfact2 * tmask(:,:,:) trc3d(:,:,:,jp_pcs0_3d + 6) = zpronew (:,:,:) * zrfact2 * tmask(:,:,:) trc3d(:,:,:,jp_pcs0_3d + 7) = zpronewd(:,:,:) * zrfact2 * tmask(:,:,:) trc3d(:,:,:,jp_pcs0_3d + 8) = zprorcad(:,:,:) * zrfact2 * tmask(:,:,:) * zysopt(:,:,:) trc3d(:,:,:,jp_pcs0_3d + 9) = zprofed (:,:,:) * zrfact2 * tmask(:,:,:) # if ! defined key_kriest trc3d(:,:,:,jp_pcs0_3d + 10) = zprofen (:,:,:) * zrfact2 * tmask(:,:,:) # endif ENDIF ! ENDIF IF(ln_ctl) THEN ! print mean trends (used for debugging) WRITE(charout, FMT="('prod')") CALL prt_ctl_trc_info(charout) CALL prt_ctl_trc(tab4d=tra, mask=tmask, clinfo=ctrcnm) ENDIF IF( wrk_not_released(2, 1,2,3) .OR. & wrk_not_released(3, 2,3,4,5,6,7,8,9,10,11,12,13,14,15) ) & CALL ctl_stop('p4z_prod: failed to release workspace arrays') ! DEALLOCATE( zysopt ) ! END SUBROUTINE p4z_prod SUBROUTINE p4z_prod_init !!---------------------------------------------------------------------- !! *** ROUTINE p4z_prod_init *** !! !! ** Purpose : Initialization of phytoplankton production parameters !! !! ** Method : Read the nampisprod namelist and check the parameters !! called at the first timestep (nit000) !! !! ** input : Namelist nampisprod !!---------------------------------------------------------------------- ! NAMELIST/nampisprod/ pislope, pislope2, ln_newprod, bresp, excret, excret2, & & chlcnm, chlcdm, chlcmin, fecnm, fecdm, grosip !!---------------------------------------------------------------------- REWIND( numnatp ) ! read numnatp READ ( numnatp, nampisprod ) IF(lwp) THEN ! control print WRITE(numout,*) ' ' WRITE(numout,*) ' Namelist parameters for phytoplankton growth, nampisprod' WRITE(numout,*) ' ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~' WRITE(numout,*) ' Enable new parame. of production (T/F) ln_newprod =', ln_newprod WRITE(numout,*) ' mean Si/C ratio grosip =', grosip WRITE(numout,*) ' P-I slope pislope =', pislope WRITE(numout,*) ' excretion ratio of nanophytoplankton excret =', excret WRITE(numout,*) ' excretion ratio of diatoms excret2 =', excret2 IF( ln_newprod ) THEN WRITE(numout,*) ' basal respiration in phytoplankton bresp =', bresp WRITE(numout,*) ' Maximum Chl/C in phytoplankton chlcmin =', chlcmin ENDIF WRITE(numout,*) ' P-I slope for diatoms pislope2 =', pislope2 WRITE(numout,*) ' Minimum Chl/C in nanophytoplankton chlcnm =', chlcnm WRITE(numout,*) ' Minimum Chl/C in diatoms chlcdm =', chlcdm WRITE(numout,*) ' Maximum Fe/C in nanophytoplankton fecnm =', fecnm WRITE(numout,*) ' Minimum Fe/C in diatoms fecdm =', fecdm ENDIF ! r1_rday = 1._wp / rday texcret = 1._wp - excret texcret2 = 1._wp - excret2 tpp = 0._wp ! END SUBROUTINE p4z_prod_init INTEGER FUNCTION p4z_prod_alloc() !!---------------------------------------------------------------------- !! *** ROUTINE p4z_prod_alloc *** !!---------------------------------------------------------------------- ALLOCATE( prmax(jpi,jpj,jpk), quotan(jpi,jpj,jpk), quotad(jpi,jpj,jpk), STAT = p4z_prod_alloc ) ! IF( p4z_prod_alloc /= 0 ) CALL ctl_warn('p4z_prod_alloc : failed to allocate arrays.') ! END FUNCTION p4z_prod_alloc #else !!====================================================================== !! Dummy module : No PISCES bio-model !!====================================================================== CONTAINS SUBROUTINE p4z_prod ! Empty routine END SUBROUTINE p4z_prod #endif !!====================================================================== END MODULE p4zprod