MODULE bdydyn3d !!====================================================================== !! *** MODULE bdydyn3d *** !! Unstructured Open Boundary Cond. : Flow relaxation scheme on baroclinic velocities !!====================================================================== !! History : 3.4 ! 2011 (D. Storkey) new module as part of BDY rewrite !! 3.5 ! 2012 (S. Mocavero, I. Epicoco) Optimization of BDY communications !!---------------------------------------------------------------------- #if defined key_bdy !!---------------------------------------------------------------------- !! 'key_bdy' : Unstructured Open Boundary Condition !!---------------------------------------------------------------------- !! bdy_dyn3d : apply open boundary conditions to baroclinic velocities !! bdy_dyn3d_frs : apply Flow Relaxation Scheme !!---------------------------------------------------------------------- USE timing ! Timing USE wrk_nemo ! Memory Allocation USE oce ! ocean dynamics and tracers USE dom_oce ! ocean space and time domain USE bdy_oce ! ocean open boundary conditions USE lbclnk ! ocean lateral boundary conditions (or mpp link) USE in_out_manager ! Use phycst IMPLICIT NONE PRIVATE PUBLIC bdy_dyn3d ! routine called by bdy_dyn PUBLIC bdy_dyn3d_dmp ! routine called by step !! * Substitutions # include "domzgr_substitute.h90" !!---------------------------------------------------------------------- !! NEMO/OPA 3.3 , NEMO Consortium (2010) !! $Id: bdydyn.F90 2528 2010-12-27 17:33:53Z rblod $ !! Software governed by the CeCILL licence (NEMOGCM/NEMO_CeCILL.txt) !!---------------------------------------------------------------------- CONTAINS SUBROUTINE bdy_dyn3d( kt ) !!---------------------------------------------------------------------- !! *** SUBROUTINE bdy_dyn3d *** !! !! ** Purpose : - Apply open boundary conditions for baroclinic velocities !! !!---------------------------------------------------------------------- INTEGER, INTENT( in ) :: kt ! Main time step counter !! INTEGER :: ib_bdy ! loop index !! DO ib_bdy=1, nb_bdy !!$ IF ( using Orlanski radiation conditions ) THEN !!$ CALL bdy_rad( kt, bdyidx(ib_bdy) ) !!$ ENDIF SELECT CASE( nn_dyn3d(ib_bdy) ) CASE(jp_none) CYCLE CASE(jp_frs) CALL bdy_dyn3d_frs( idx_bdy(ib_bdy), dta_bdy(ib_bdy), kt, ib_bdy ) CASE(2) CALL bdy_dyn3d_spe( idx_bdy(ib_bdy), dta_bdy(ib_bdy), kt, ib_bdy ) CASE(3) CALL bdy_dyn3d_zro( idx_bdy(ib_bdy), dta_bdy(ib_bdy), kt, ib_bdy ) CASE DEFAULT CALL ctl_stop( 'bdy_dyn3d : unrecognised option for open boundaries for baroclinic velocities' ) END SELECT ENDDO END SUBROUTINE bdy_dyn3d SUBROUTINE bdy_dyn3d_spe( idx, dta, kt , ib_bdy ) !!---------------------------------------------------------------------- !! *** SUBROUTINE bdy_dyn3d_spe *** !! !! ** Purpose : - Apply a specified value for baroclinic velocities !! at open boundaries. !! !!---------------------------------------------------------------------- INTEGER :: kt TYPE(OBC_INDEX), INTENT(in) :: idx ! OBC indices TYPE(OBC_DATA), INTENT(in) :: dta ! OBC external data INTEGER, INTENT(in) :: ib_bdy ! BDY set index !! INTEGER :: jb, jk ! dummy loop indices INTEGER :: ii, ij, igrd ! local integers REAL(wp) :: zwgt ! boundary weight !!---------------------------------------------------------------------- ! IF( nn_timing == 1 ) CALL timing_start('bdy_dyn3d_spe') ! igrd = 2 ! Relaxation of zonal velocity DO jb = 1, idx%nblenrim(igrd) DO jk = 1, jpkm1 ii = idx%nbi(jb,igrd) ij = idx%nbj(jb,igrd) ua(ii,ij,jk) = dta%u3d(jb,jk) * umask(ii,ij,jk) END DO END DO ! igrd = 3 ! Relaxation of meridional velocity DO jb = 1, idx%nblenrim(igrd) DO jk = 1, jpkm1 ii = idx%nbi(jb,igrd) ij = idx%nbj(jb,igrd) va(ii,ij,jk) = dta%v3d(jb,jk) * vmask(ii,ij,jk) END DO END DO CALL lbc_bdy_lnk( ua, 'U', -1., ib_bdy ) ; CALL lbc_bdy_lnk( va, 'V', -1.,ib_bdy ) ! Boundary points should be updated ! IF( kt .eq. nit000 ) CLOSE( unit = 102 ) IF( nn_timing == 1 ) CALL timing_stop('bdy_dyn3d_spe') END SUBROUTINE bdy_dyn3d_spe SUBROUTINE bdy_dyn3d_zro( idx, dta, kt, ib_bdy ) !!---------------------------------------------------------------------- !! *** SUBROUTINE bdy_dyn3d_zro *** !! !! ** Purpose : - baroclinic velocities = 0. at open boundaries. !! !!---------------------------------------------------------------------- INTEGER :: kt TYPE(OBC_INDEX), INTENT(in) :: idx ! OBC indices TYPE(OBC_DATA), INTENT(in) :: dta ! OBC external data INTEGER, INTENT(in) :: ib_bdy ! BDY set index !! INTEGER :: ib, ik ! dummy loop indices INTEGER :: ii, ij, igrd, zcoef ! local integers REAL(wp) :: zwgt ! boundary weight !!---------------------------------------------------------------------- ! IF( nn_timing == 1 ) CALL timing_start('bdy_dyn3d_zro') ! igrd = 2 ! Everything is at T-points here DO ib = 1, idx%nblenrim(igrd) ii = idx%nbi(ib,igrd) ij = idx%nbj(ib,igrd) DO ik = 1, jpkm1 ua(ii,ij,ik) = 0._wp END DO END DO igrd = 3 ! Everything is at T-points here DO ib = 1, idx%nblenrim(igrd) ii = idx%nbi(ib,igrd) ij = idx%nbj(ib,igrd) DO ik = 1, jpkm1 va(ii,ij,ik) = 0._wp END DO END DO ! CALL lbc_bdy_lnk( ua, 'U', -1., ib_bdy ) ; CALL lbc_bdy_lnk( va, 'V', -1.,ib_bdy ) ! Boundary points should be updated ! IF( kt .eq. nit000 ) CLOSE( unit = 102 ) IF( nn_timing == 1 ) CALL timing_stop('bdy_dyn3d_zro') END SUBROUTINE bdy_dyn3d_zro SUBROUTINE bdy_dyn3d_frs( idx, dta, kt, ib_bdy ) !!---------------------------------------------------------------------- !! *** SUBROUTINE bdy_dyn3d_frs *** !! !! ** Purpose : - Apply the Flow Relaxation Scheme for baroclinic velocities !! at open boundaries. !! !! References :- Engedahl H., 1995: Use of the flow relaxation scheme in !! a three-dimensional baroclinic ocean model with realistic !! topography. Tellus, 365-382. !!---------------------------------------------------------------------- INTEGER :: kt TYPE(OBC_INDEX), INTENT(in) :: idx ! OBC indices TYPE(OBC_DATA), INTENT(in) :: dta ! OBC external data INTEGER, INTENT(in) :: ib_bdy ! BDY set index !! INTEGER :: jb, jk ! dummy loop indices INTEGER :: ii, ij, igrd ! local integers REAL(wp) :: zwgt ! boundary weight !!---------------------------------------------------------------------- ! IF( nn_timing == 1 ) CALL timing_start('bdy_dyn3d_frs') ! igrd = 2 ! Relaxation of zonal velocity DO jb = 1, idx%nblen(igrd) DO jk = 1, jpkm1 ii = idx%nbi(jb,igrd) ij = idx%nbj(jb,igrd) zwgt = idx%nbw(jb,igrd) ua(ii,ij,jk) = ( ua(ii,ij,jk) + zwgt * ( dta%u3d(jb,jk) - ua(ii,ij,jk) ) ) * umask(ii,ij,jk) END DO END DO ! igrd = 3 ! Relaxation of meridional velocity DO jb = 1, idx%nblen(igrd) DO jk = 1, jpkm1 ii = idx%nbi(jb,igrd) ij = idx%nbj(jb,igrd) zwgt = idx%nbw(jb,igrd) va(ii,ij,jk) = ( va(ii,ij,jk) + zwgt * ( dta%v3d(jb,jk) - va(ii,ij,jk) ) ) * vmask(ii,ij,jk) END DO END DO CALL lbc_bdy_lnk( ua, 'U', -1., ib_bdy ) ; CALL lbc_bdy_lnk( va, 'V', -1.,ib_bdy ) ! Boundary points should be updated ! IF( kt .eq. nit000 ) CLOSE( unit = 102 ) IF( nn_timing == 1 ) CALL timing_stop('bdy_dyn3d_frs') END SUBROUTINE bdy_dyn3d_frs SUBROUTINE bdy_dyn3d_dmp( kt ) !!---------------------------------------------------------------------- !! *** SUBROUTINE bdy_dyn3d_dmp *** !! !! ** Purpose : Apply damping for baroclinic velocities at open boundaries. !! !!---------------------------------------------------------------------- INTEGER :: kt !! INTEGER :: jb, jk ! dummy loop indices INTEGER :: ii, ij, igrd ! local integers REAL(wp) :: zwgt ! boundary weight INTEGER :: ib_bdy ! loop index !!---------------------------------------------------------------------- ! IF( nn_timing == 1 ) CALL timing_start('bdy_dyn3d_dmp') ! !------------------------------------------------------- ! Remove barotropic part from before velocity !------------------------------------------------------- CALL wrk_alloc(jpi,jpj,pu2d,pv2d) pu2d(:,:) = 0.e0 pv2d(:,:) = 0.e0 DO jk = 1, jpkm1 #if defined key_vvl pu2d(:,:) = pu2d(:,:) + fse3u_b(:,:,jk)* ub(:,:,jk) *umask(:,:,jk) pv2d(:,:) = pv2d(:,:) + fse3v_b(:,:,jk)* vb(:,:,jk) *vmask(:,:,jk) #else pu2d(:,:) = pu2d(:,:) + fse3u_0(:,:,jk) * ub(:,:,jk) * umask(:,:,jk) pv2d(:,:) = pv2d(:,:) + fse3v_0(:,:,jk) * vb(:,:,jk) * vmask(:,:,jk) #endif END DO IF( lk_vvl ) THEN pu2d(:,:) = pu2d(:,:) * umask(:,:,1) / ( hu_0(:,:) + sshu_b(:,:) + 1._wp - umask(:,:,1) ) pv2d(:,:) = pv2d(:,:) * vmask(:,:,1) / ( hv_0(:,:) + sshv_b(:,:) + 1._wp - vmask(:,:,1) ) ELSE pu2d(:,:) = pv2d(:,:) * hur(:,:) pv2d(:,:) = pu2d(:,:) * hvr(:,:) ENDIF DO ib_bdy=1, nb_bdy IF ( ln_dyn3d_dmp(ib_bdy).and.nn_dyn3d(ib_bdy).gt.0 ) THEN igrd = 2 ! Relaxation of zonal velocity DO jb = 1, idx_bdy(ib_bdy)%nblen(igrd) ii = idx_bdy(ib_bdy)%nbi(jb,igrd) ij = idx_bdy(ib_bdy)%nbj(jb,igrd) zwgt = idx_bdy(ib_bdy)%nbd(jb,igrd) DO jk = 1, jpkm1 ua(ii,ij,jk) = ( ua(ii,ij,jk) + zwgt * ( dta_bdy(ib_bdy)%u3d(jb,jk) - ub(ii,ij,jk) + pu2d(ii,ij)) ) * umask(ii,ij,jk) END DO END DO ! igrd = 3 ! Relaxation of meridional velocity DO jb = 1, idx_bdy(ib_bdy)%nblen(igrd) ii = idx_bdy(ib_bdy)%nbi(jb,igrd) ij = idx_bdy(ib_bdy)%nbj(jb,igrd) zwgt = idx_bdy(ib_bdy)%nbd(jb,igrd) DO jk = 1, jpkm1 va(ii,ij,jk) = ( va(ii,ij,jk) + zwgt * ( dta_bdy(ib_bdy)%v3d(jb,jk) - vb(ii,ij,jk) + pv2d(ii,ij)) ) * vmask(ii,ij,jk) END DO END DO ENDIF ENDDO ! CALL wrk_dealloc(jpi,jpj,pu2d,pv2d) ! CALL lbc_lnk( ua, 'U', -1. ) ; CALL lbc_lnk( va, 'V', -1. ) ! Boundary points should be updated ! IF( nn_timing == 1 ) CALL timing_stop('bdy_dyn3d_dmp') END SUBROUTINE bdy_dyn3d_dmp #else !!---------------------------------------------------------------------- !! Dummy module NO Unstruct Open Boundary Conditions !!---------------------------------------------------------------------- CONTAINS SUBROUTINE bdy_dyn3d( kt ) ! Empty routine WRITE(*,*) 'bdy_dyn3d: You should not have seen this print! error?', kt END SUBROUTINE bdy_dyn3d SUBROUTINE bdy_dyn3d_dmp( kt ) ! Empty routine WRITE(*,*) 'bdy_dyn3d_dmp: You should not have seen this print! error?', kt END SUBROUTINE bdy_dyn3d_dmp #endif !!====================================================================== END MODULE bdydyn3d