MODULE sshwzv !!============================================================================== !! *** MODULE sshwzv *** !! Ocean dynamics : sea surface height and vertical velocity !!============================================================================== !! History : 3.1 ! 2009-02 (G. Madec, M. Leclair) Original code !! 3.3 ! 2010-04 (M. Leclair, G. Madec) modified LF-RA !! - ! 2010-05 (K. Mogensen, A. Weaver, M. Martin, D. Lea) Assimilation interface !! - ! 2010-09 (D.Storkey and E.O'Dea) bug fixes for BDY module !! 3.3 ! 2011-10 (M. Leclair) split former ssh_wzv routine and remove all vvl related work !!---------------------------------------------------------------------- !!---------------------------------------------------------------------- !! ssh_nxt : after ssh !! ssh_swp : filter ans swap the ssh arrays !! wzv : compute now vertical velocity !!---------------------------------------------------------------------- USE oce ! ocean dynamics and tracers variables USE dom_oce ! ocean space and time domain variables USE sbc_oce ! surface boundary condition: ocean USE domvvl ! Variable volume USE divcur ! hor. divergence and curl (div & cur routines) USE iom ! I/O library USE restart ! only for lrst_oce USE in_out_manager ! I/O manager USE prtctl ! Print control USE phycst USE lbclnk ! ocean lateral boundary condition (or mpp link) USE lib_mpp ! MPP library USE obc_par ! open boundary cond. parameter USE obc_oce USE bdy_oce USE bdy_par USE bdydyn2d ! bdy_ssh routine USE diaar5, ONLY: lk_diaar5 USE iom USE sbcrnf, ONLY: h_rnf, nk_rnf, sbc_rnf_div ! River runoff USE dynspg_ts, ONLY: ln_bt_fw USE dynspg_oce, ONLY: lk_dynspg_ts #if defined key_agrif USE agrif_opa_update USE agrif_opa_interp #endif #if defined key_asminc USE asminc ! Assimilation increment #endif USE wrk_nemo ! Memory Allocation USE timing ! Timing IMPLICIT NONE PRIVATE PUBLIC ssh_nxt ! called by step.F90 PUBLIC wzv ! called by step.F90 PUBLIC ssh_swp ! called by step.F90 !! * Substitutions # include "domzgr_substitute.h90" # include "vectopt_loop_substitute.h90" !!---------------------------------------------------------------------- !! NEMO/OPA 3.3 , NEMO Consortium (2010) !! $Id$ !! Software governed by the CeCILL licence (NEMOGCM/NEMO_CeCILL.txt) !!---------------------------------------------------------------------- CONTAINS SUBROUTINE ssh_nxt( kt ) !!---------------------------------------------------------------------- !! *** ROUTINE ssh_nxt *** !! !! ** Purpose : compute the after ssh (ssha) !! !! ** Method : - Using the incompressibility hypothesis, the ssh increment !! is computed by integrating the horizontal divergence and multiply by !! by the time step. !! !! ** action : ssha : after sea surface height !! !! Reference : Leclair, M., and G. Madec, 2009, Ocean Modelling. !!---------------------------------------------------------------------- ! REAL(wp), POINTER, DIMENSION(:,: ) :: zhdiv INTEGER, INTENT(in) :: kt ! time step ! INTEGER :: jk ! dummy loop indice REAL(wp) :: z2dt, z1_rau0 ! local scalars !!---------------------------------------------------------------------- ! IF( nn_timing == 1 ) CALL timing_start('ssh_nxt') ! CALL wrk_alloc( jpi, jpj, zhdiv ) ! IF( kt == nit000 ) THEN ! IF(lwp) WRITE(numout,*) IF(lwp) WRITE(numout,*) 'ssh_nxt : after sea surface height' IF(lwp) WRITE(numout,*) '~~~~~~~ ' ! ENDIF ! CALL div_cur( kt ) ! Horizontal divergence & Relative vorticity ! z2dt = 2._wp * rdt ! set time step size (Euler/Leapfrog) IF( neuler == 0 .AND. kt == nit000 ) z2dt = rdt ! !------------------------------! ! ! After Sea Surface Height ! ! !------------------------------! zhdiv(:,:) = 0._wp DO jk = 1, jpkm1 ! Horizontal divergence of barotropic transports zhdiv(:,:) = zhdiv(:,:) + fse3t_n(:,:,jk) * hdivn(:,:,jk) END DO ! ! Sea surface elevation time stepping ! In forward Euler time stepping case, the same formulation as in the leap-frog case can be used ! because emp_b field is initialized with the vlaues of emp field. Hence, 0.5 * ( emp + emp_b ) = emp z1_rau0 = 0.5_wp * r1_rau0 ssha(:,:) = ( sshb(:,:) - z2dt * ( z1_rau0 * ( emp_b(:,:) + emp(:,:) ) + zhdiv(:,:) ) ) * tmask(:,:,1) #if defined key_agrif CALL agrif_ssh( kt ) #endif #if defined key_obc IF( Agrif_Root() ) THEN ssha(:,:) = ssha(:,:) * obctmsk(:,:) CALL lbc_lnk( ssha, 'T', 1. ) ! absolutly compulsory !! (jmm) ENDIF #endif #if defined key_bdy ! bg jchanut tschanges ! These lines are not necessary with time splitting since ! boundary condition on sea level is set during ts loop IF (lk_bdy) THEN CALL lbc_lnk( ssha, 'T', 1. ) ! Not sure that's necessary CALL bdy_ssh( ssha ) ! Duplicate sea level across open boundaries ENDIF #endif ! end jchanut tschanges #if defined key_asminc ! ! Include the IAU weighted SSH increment IF( lk_asminc .AND. ln_sshinc .AND. ln_asmiau ) THEN CALL ssh_asm_inc( kt ) ssha(:,:) = ssha(:,:) + z2dt * ssh_iau(:,:) ENDIF #endif ! !------------------------------! ! ! outputs ! ! !------------------------------! CALL iom_put( "ssh" , sshn ) ! sea surface height CALL iom_put( "ssh2", sshn(:,:) * sshn(:,:) ) ! square of sea surface height ! IF(ln_ctl) CALL prt_ctl( tab2d_1=ssha, clinfo1=' ssha - : ', mask1=tmask, ovlap=1 ) ! CALL wrk_dealloc( jpi, jpj, zhdiv ) ! IF( nn_timing == 1 ) CALL timing_stop('ssh_nxt') ! END SUBROUTINE ssh_nxt SUBROUTINE wzv( kt ) !!---------------------------------------------------------------------- !! *** ROUTINE wzv *** !! !! ** Purpose : compute the now vertical velocity !! !! ** Method : - Using the incompressibility hypothesis, the vertical !! velocity is computed by integrating the horizontal divergence !! from the bottom to the surface minus the scale factor evolution. !! The boundary conditions are w=0 at the bottom (no flux) and. !! !! ** action : wn : now vertical velocity !! !! Reference : Leclair, M., and G. Madec, 2009, Ocean Modelling. !!---------------------------------------------------------------------- ! INTEGER, INTENT(in) :: kt ! time step REAL(wp), POINTER, DIMENSION(:,: ) :: z2d REAL(wp), POINTER, DIMENSION(:,:,:) :: z3d, zhdiv ! INTEGER :: ji, jj, jk ! dummy loop indices REAL(wp) :: z1_2dt ! local scalars !!---------------------------------------------------------------------- IF( nn_timing == 1 ) CALL timing_start('wzv') ! IF( kt == nit000 ) THEN ! IF(lwp) WRITE(numout,*) IF(lwp) WRITE(numout,*) 'wzv : now vertical velocity ' IF(lwp) WRITE(numout,*) '~~~~~ ' ! wn(:,:,jpk) = 0._wp ! bottom boundary condition: w=0 (set once for all) ! ENDIF ! !------------------------------! ! ! Now Vertical Velocity ! ! !------------------------------! z1_2dt = 1. / ( 2. * rdt ) ! set time step size (Euler/Leapfrog) IF( neuler == 0 .AND. kt == nit000 ) z1_2dt = 1. / rdt ! IF( ln_vvl_ztilde .OR. ln_vvl_layer ) THEN ! z_tilde and layer cases CALL wrk_alloc( jpi, jpj, jpk, zhdiv ) ! DO jk = 1, jpkm1 ! horizontal divergence of thickness diffusion transport ( velocity multiplied by e3t) ! - ML - note: computation allready done in dom_vvl_sf_nxt. Could be optimized (not critical and clearer this way) DO jj = 2, jpjm1 DO ji = fs_2, fs_jpim1 ! vector opt. zhdiv(ji,jj,jk) = r1_e12t(ji,jj) * ( un_td(ji,jj,jk) - un_td(ji-1,jj,jk) + vn_td(ji,jj,jk) - vn_td(ji,jj-1,jk) ) END DO END DO END DO CALL lbc_lnk(zhdiv, 'T', 1.) ! - ML - Perhaps not necessary: not used for horizontal "connexions" ! ! Is it problematic to have a wrong vertical velocity in boundary cells? ! ! Same question holds for hdivn. Perhaps just for security DO jk = jpkm1, 1, -1 ! integrate from the bottom the hor. divergence ! computation of w wn(:,:,jk) = wn(:,:,jk+1) - ( fse3t_n(:,:,jk) * hdivn(:,:,jk) + zhdiv(:,:,jk) & & + z1_2dt * ( fse3t_a(:,:,jk) - fse3t_b(:,:,jk) ) ) * tmask(:,:,jk) END DO ! IF( ln_vvl_layer ) wn(:,:,:) = 0.e0 CALL wrk_dealloc( jpi, jpj, jpk, zhdiv ) ELSE ! z_star and linear free surface cases DO jk = jpkm1, 1, -1 ! integrate from the bottom the hor. divergence ! computation of w wn(:,:,jk) = wn(:,:,jk+1) - ( fse3t_n(:,:,jk) * hdivn(:,:,jk) & & + z1_2dt * ( fse3t_a(:,:,jk) - fse3t_b(:,:,jk) ) ) * tmask(:,:,jk) END DO ENDIF #if defined key_bdy IF (lk_bdy) THEN DO jk = 1, jpkm1 wn(:,:,jk) = wn(:,:,jk) * bdytmask(:,:) END DO ENDIF #endif ! ! !------------------------------! ! ! outputs ! ! !------------------------------! CALL iom_put( "woce", wn ) ! vertical velocity IF( lk_diaar5 ) THEN ! vertical mass transport & its square value CALL wrk_alloc( jpi, jpj, z2d ) CALL wrk_alloc( jpi, jpj, jpk, z3d ) ! Caution: in the VVL case, it only correponds to the baroclinic mass transport. z2d(:,:) = rau0 * e12t(:,:) DO jk = 1, jpk z3d(:,:,jk) = wn(:,:,jk) * z2d(:,:) END DO CALL iom_put( "w_masstr" , z3d ) CALL iom_put( "w_masstr2", z3d(:,:,:) * z3d(:,:,:) ) CALL wrk_dealloc( jpi, jpj, z2d ) CALL wrk_dealloc( jpi, jpj, jpk, z3d ) ENDIF ! IF( nn_timing == 1 ) CALL timing_stop('wzv') END SUBROUTINE wzv SUBROUTINE ssh_swp( kt ) !!---------------------------------------------------------------------- !! *** ROUTINE ssh_nxt *** !! !! ** Purpose : achieve the sea surface height time stepping by !! applying Asselin time filter and swapping the arrays !! ssha already computed in ssh_nxt !! !! ** Method : - apply Asselin time fiter to now ssh (excluding the forcing !! from the filter, see Leclair and Madec 2010) and swap : !! sshn = ssha + atfp * ( sshb -2 sshn + ssha ) !! - atfp * rdt * ( emp_b - emp ) / rau0 !! sshn = ssha !! !! ** action : - sshb, sshn : before & now sea surface height !! ready for the next time step !! !! Reference : Leclair, M., and G. Madec, 2009, Ocean Modelling. !!---------------------------------------------------------------------- INTEGER, INTENT(in) :: kt ! ocean time-step index !!---------------------------------------------------------------------- ! IF( nn_timing == 1 ) CALL timing_start('ssh_swp') ! IF( kt == nit000 ) THEN IF(lwp) WRITE(numout,*) IF(lwp) WRITE(numout,*) 'ssh_swp : Asselin time filter and swap of sea surface height' IF(lwp) WRITE(numout,*) '~~~~~~~ ' ENDIF # if defined key_dynspg_ts IF( ( neuler == 0 .AND. kt == nit000 ) .OR. ln_bt_fw ) THEN !** Euler time-stepping: no filter # else IF ( neuler == 0 .AND. kt == nit000 ) THEN !** Euler time-stepping at first time-step : no filter #endif sshb(:,:) = sshn(:,:) ! before <-- now sshn(:,:) = ssha(:,:) ! now <-- after (before already = now) ELSE !** Leap-Frog time-stepping: Asselin filter + swap sshb(:,:) = sshn(:,:) + atfp * ( sshb(:,:) - 2 * sshn(:,:) + ssha(:,:) ) ! before <-- now filtered IF( lk_vvl ) sshb(:,:) = sshb(:,:) - atfp * rdt / rau0 * ( emp_b(:,:) - emp(:,:) ) * tmask(:,:,1) sshn(:,:) = ssha(:,:) ! now <-- after ENDIF ! ! Update velocity at AGRIF zoom boundaries #if defined key_agrif IF ( .NOT.Agrif_Root() ) CALL Agrif_Update_Dyn( kt ) #endif ! IF(ln_ctl) CALL prt_ctl( tab2d_1=sshb, clinfo1=' sshb - : ', mask1=tmask, ovlap=1 ) ! IF( nn_timing == 1 ) CALL timing_stop('ssh_swp') ! END SUBROUTINE ssh_swp !!====================================================================== END MODULE sshwzv