MODULE domvvl !!====================================================================== !! *** MODULE domvvl *** !! Ocean : !!====================================================================== !! History : 2.0 ! 2006-06 (B. Levier, L. Marie) original code !! 3.1 ! 2009-02 (G. Madec, M. Leclair, R. Benshila) pure z* coordinate !! 3.3 ! 2011-10 (M. Leclair) totally rewrote domvvl: !! vvl option includes z_star and z_tilde coordinates !!---------------------------------------------------------------------- !! 'key_vvl' variable volume !!---------------------------------------------------------------------- !!---------------------------------------------------------------------- !! dom_vvl_init : define initial vertical scale factors, depths and column thickness !! dom_vvl_sf_nxt : Compute next vertical scale factors !! dom_vvl_sf_swp : Swap vertical scale factors and update the vertical grid !! dom_vvl_interpol : Interpolate vertical scale factors from one grid point to another !! dom_vvl_rst : read/write restart file !! dom_vvl_ctl : Check the vvl options !! dom_vvl_orca_fix : Recompute some area-weighted interpolations of vertical scale factors !! : to account for manual changes to e[1,2][u,v] in some Straits !!---------------------------------------------------------------------- !! * Modules used USE oce ! ocean dynamics and tracers USE dom_oce ! ocean space and time domain USE sbc_oce ! ocean surface boundary condition USE in_out_manager ! I/O manager USE iom ! I/O manager library USE restart ! ocean restart USE lib_mpp ! distributed memory computing library USE lbclnk ! ocean lateral boundary conditions (or mpp link) USE wrk_nemo ! Memory allocation USE timing ! Timing IMPLICIT NONE PRIVATE !! * Routine accessibility PUBLIC dom_vvl_init ! called by domain.F90 PUBLIC dom_vvl_sf_nxt ! called by step.F90 PUBLIC dom_vvl_sf_swp ! called by step.F90 PUBLIC dom_vvl_interpol ! called by dynnxt.F90 PRIVATE dom_vvl_orca_fix ! called by dom_vvl_interpol !!* Namelist nam_vvl LOGICAL , PUBLIC :: ln_vvl_zstar ! zstar vertical coordinate LOGICAL , PUBLIC :: ln_vvl_ztilde ! ztilde vertical coordinate LOGICAL , PUBLIC :: ln_vvl_layer ! level vertical coordinate LOGICAL , PUBLIC :: ln_vvl_ztilde_as_zstar ! ztilde vertical coordinate LOGICAL , PUBLIC :: ln_vvl_zstar_at_eqtor ! ztilde vertical coordinate LOGICAL , PUBLIC :: ln_vvl_kepe ! kinetic/potential energy transfer ! ! conservation: not used yet REAL(wp) :: rn_ahe3 ! thickness diffusion coefficient REAL(wp) :: rn_rst_e3t ! ztilde to zstar restoration timescale [days] REAL(wp) :: rn_lf_cutoff ! cutoff frequency for low-pass filter [days] REAL(wp) :: rn_zdef_max ! maximum fractional e3t deformation LOGICAL , PUBLIC :: ln_vvl_dbg ! debug control prints !! * Module variables REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: un_td, vn_td ! thickness diffusion transport REAL(wp) , ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: hdiv_lf ! low frequency part of hz divergence REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: tilde_e3t_b, tilde_e3t_n ! baroclinic scale factors REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: tilde_e3t_a, dtilde_e3t_a ! baroclinic scale factors REAL(wp) , ALLOCATABLE, SAVE, DIMENSION(:,:) :: frq_rst_e3t ! retoring period for scale factors REAL(wp) , ALLOCATABLE, SAVE, DIMENSION(:,:) :: frq_rst_hdv ! retoring period for low freq. divergence !! * Substitutions # include "domzgr_substitute.h90" # include "vectopt_loop_substitute.h90" !!---------------------------------------------------------------------- !! NEMO/OPA 3.3 , NEMO-Consortium (2010) !! $Id$ !! Software governed by the CeCILL licence (NEMOGCM/NEMO_CeCILL.txt) !!---------------------------------------------------------------------- CONTAINS INTEGER FUNCTION dom_vvl_alloc() !!---------------------------------------------------------------------- !! *** FUNCTION dom_vvl_alloc *** !!---------------------------------------------------------------------- IF( ln_vvl_zstar ) dom_vvl_alloc = 0 IF( ln_vvl_ztilde .OR. ln_vvl_layer ) THEN ALLOCATE( tilde_e3t_b(jpi,jpj,jpk) , tilde_e3t_n(jpi,jpj,jpk) , tilde_e3t_a(jpi,jpj,jpk) , & & dtilde_e3t_a(jpi,jpj,jpk) , un_td (jpi,jpj,jpk) , vn_td (jpi,jpj,jpk) , & & STAT = dom_vvl_alloc ) IF( lk_mpp ) CALL mpp_sum ( dom_vvl_alloc ) IF( dom_vvl_alloc /= 0 ) CALL ctl_warn('dom_vvl_alloc: failed to allocate arrays') un_td = 0.0_wp vn_td = 0.0_wp ENDIF IF( ln_vvl_ztilde ) THEN ALLOCATE( frq_rst_e3t(jpi,jpj) , frq_rst_hdv(jpi,jpj) , hdiv_lf(jpi,jpj,jpk) , STAT= dom_vvl_alloc ) IF( lk_mpp ) CALL mpp_sum ( dom_vvl_alloc ) IF( dom_vvl_alloc /= 0 ) CALL ctl_warn('dom_vvl_alloc: failed to allocate arrays') ENDIF END FUNCTION dom_vvl_alloc SUBROUTINE dom_vvl_init !!---------------------------------------------------------------------- !! *** ROUTINE dom_vvl_init *** !! !! ** Purpose : Initialization of all scale factors, depths !! and water column heights !! !! ** Method : - use restart file and/or initialize !! - interpolate scale factors !! !! ** Action : - fse3t_(n/b) and tilde_e3t_(n/b) !! - Regrid: fse3(u/v)_n !! fse3(u/v)_b !! fse3w_n !! fse3(u/v)w_b !! fse3(u/v)w_n !! fsdept_n, fsdepw_n and fsde3w_n !! - h(t/u/v)_0 !! - frq_rst_e3t and frq_rst_hdv !! !! Reference : Leclair, M., and G. Madec, 2011, Ocean Modelling. !!---------------------------------------------------------------------- USE phycst, ONLY : rpi, rsmall, rad !! * Local declarations INTEGER :: ji,jj,jk INTEGER :: ii0, ii1, ij0, ij1 !!---------------------------------------------------------------------- IF( nn_timing == 1 ) CALL timing_start('dom_vvl_init') IF(lwp) WRITE(numout,*) IF(lwp) WRITE(numout,*) 'dom_vvl_init : Variable volume activated' IF(lwp) WRITE(numout,*) '~~~~~~~~~~~~' ! choose vertical coordinate (z_star, z_tilde or layer) ! ========================== CALL dom_vvl_ctl ! Allocate module arrays ! ====================== IF( dom_vvl_alloc() /= 0 ) CALL ctl_stop( 'STOP', 'dom_vvl_init : unable to allocate arrays' ) ! Read or initialize fse3t_(b/n), tilde_e3t_(b/n) and hdiv_lf (and e3t_a(jpk)) ! ============================================================================ CALL dom_vvl_rst( nit000, 'READ' ) fse3t_a(:,:,jpk) = e3t_0(:,:,jpk) ! Reconstruction of all vertical scale factors at now and before time steps ! ============================================================================= ! Horizontal scale factor interpolations ! -------------------------------------- CALL dom_vvl_interpol( fse3t_b(:,:,:), fse3u_b(:,:,:), 'U' ) CALL dom_vvl_interpol( fse3t_b(:,:,:), fse3v_b(:,:,:), 'V' ) CALL dom_vvl_interpol( fse3t_n(:,:,:), fse3u_n(:,:,:), 'U' ) CALL dom_vvl_interpol( fse3t_n(:,:,:), fse3v_n(:,:,:), 'V' ) CALL dom_vvl_interpol( fse3u_n(:,:,:), fse3f_n(:,:,:), 'F' ) ! Vertical scale factor interpolations ! ------------------------------------ CALL dom_vvl_interpol( fse3t_n(:,:,:), fse3w_n (:,:,:), 'W' ) CALL dom_vvl_interpol( fse3u_n(:,:,:), fse3uw_n(:,:,:), 'UW' ) CALL dom_vvl_interpol( fse3v_n(:,:,:), fse3vw_n(:,:,:), 'VW' ) CALL dom_vvl_interpol( fse3t_b(:,:,:), fse3w_b (:,:,:), 'W' ) CALL dom_vvl_interpol( fse3u_b(:,:,:), fse3uw_b(:,:,:), 'UW' ) CALL dom_vvl_interpol( fse3v_b(:,:,:), fse3vw_b(:,:,:), 'VW' ) ! t- and w- points depth ! ---------------------- fsdept_n(:,:,1) = 0.5_wp * fse3w_n(:,:,1) fsdepw_n(:,:,1) = 0.0_wp fsde3w_n(:,:,1) = fsdept_n(:,:,1) - sshn(:,:) fsdept_b(:,:,1) = 0.5_wp * fse3w_b(:,:,1) fsdepw_b(:,:,1) = 0.0_wp DO jj = 1,jpj DO ji = 1,jpi DO jk = 2,mikt(ji,jj)-1 fsdept_n(ji,jj,jk) = gdept_0(ji,jj,jk) fsdepw_n(ji,jj,jk) = gdepw_0(ji,jj,jk) fsde3w_n(ji,jj,jk) = gdept_0(ji,jj,jk) - sshn(ji,jj) fsdept_b(ji,jj,jk) = gdept_0(ji,jj,jk) fsdepw_b(ji,jj,jk) = gdepw_0(ji,jj,jk) END DO IF (mikt(ji,jj) .GT. 1) THEN jk = mikt(ji,jj) fsdept_n(ji,jj,jk) = gdepw_0(ji,jj,jk) + 0.5_wp * fse3w_n(ji,jj,jk) fsdepw_n(ji,jj,jk) = gdepw_0(ji,jj,jk) fsde3w_n(ji,jj,jk) = fsdept_n(ji,jj,jk ) - sshn (ji,jj) fsdept_b(ji,jj,jk) = gdepw_0(ji,jj,jk) + 0.5_wp * fse3w_b(ji,jj,jk) fsdepw_b(ji,jj,jk) = gdepw_0(ji,jj,jk) END IF DO jk = mikt(ji,jj)+1, jpk fsdept_n(ji,jj,jk) = fsdept_n(ji,jj,jk-1) + fse3w_n(ji,jj,jk) fsdepw_n(ji,jj,jk) = fsdepw_n(ji,jj,jk-1) + fse3t_n(ji,jj,jk-1) fsde3w_n(ji,jj,jk) = fsdept_n(ji,jj,jk ) - sshn (ji,jj) fsdept_b(ji,jj,jk) = fsdept_b(ji,jj,jk-1) + fse3w_b(ji,jj,jk) fsdepw_b(ji,jj,jk) = fsdepw_b(ji,jj,jk-1) + fse3t_b(ji,jj,jk-1) END DO END DO END DO ! Before depth and Inverse of the local depth of the water column at u- and v- points ! ----------------------------------------------------------------------------------- hu_b(:,:) = 0. hv_b(:,:) = 0. DO jk = 1, jpkm1 hu_b(:,:) = hu_b(:,:) + fse3u_b(:,:,jk) * umask(:,:,jk) hv_b(:,:) = hv_b(:,:) + fse3v_b(:,:,jk) * vmask(:,:,jk) END DO hur_b(:,:) = umask_i(:,:) / ( hu_b(:,:) + 1. - umask_i(:,:) ) hvr_b(:,:) = vmask_i(:,:) / ( hv_b(:,:) + 1. - vmask_i(:,:) ) ! Restoring frequencies for z_tilde coordinate ! ============================================ IF( ln_vvl_ztilde ) THEN ! Values in days provided via the namelist; use rsmall to avoid possible division by zero errors with faulty settings frq_rst_e3t(:,:) = 2.0_wp * rpi / ( MAX( rn_rst_e3t , rsmall ) * 86400.0_wp ) frq_rst_hdv(:,:) = 2.0_wp * rpi / ( MAX( rn_lf_cutoff, rsmall ) * 86400.0_wp ) IF( ln_vvl_ztilde_as_zstar ) THEN ! Ignore namelist settings and use these next two to emulate z-star using z-tilde frq_rst_e3t(:,:) = 0.0_wp frq_rst_hdv(:,:) = 1.0_wp / rdt ENDIF IF ( ln_vvl_zstar_at_eqtor ) THEN DO jj = 1, jpj DO ji = 1, jpi IF( ABS(gphit(ji,jj)) >= 6.) THEN ! values outside the equatorial band and transition zone (ztilde) frq_rst_e3t(ji,jj) = 2.0_wp * rpi / ( MAX( rn_rst_e3t , rsmall ) * 86400.e0_wp ) frq_rst_hdv(ji,jj) = 2.0_wp * rpi / ( MAX( rn_lf_cutoff, rsmall ) * 86400.e0_wp ) ELSEIF( ABS(gphit(ji,jj)) <= 2.5) THEN ! values inside the equatorial band (ztilde as zstar) frq_rst_e3t(ji,jj) = 0.0_wp frq_rst_hdv(ji,jj) = 1.0_wp / rdt ELSE ! values in the transition band (linearly vary from ztilde to ztilde as zstar values) frq_rst_e3t(ji,jj) = 0.0_wp + (frq_rst_e3t(ji,jj)-0.0_wp)*0.5_wp & & * ( 1.0_wp - COS( rad*(ABS(gphit(ji,jj))-2.5_wp) & & * 180._wp / 3.5_wp ) ) frq_rst_hdv(ji,jj) = (1.0_wp / rdt) & & + ( frq_rst_hdv(ji,jj)-(1.e0_wp / rdt) )*0.5_wp & & * ( 1._wp - COS( rad*(ABS(gphit(ji,jj))-2.5_wp) & & * 180._wp / 3.5_wp ) ) ENDIF END DO END DO IF( cp_cfg == "orca" .AND. jp_cfg == 3 ) THEN ii0 = 103 ; ii1 = 111 ! Suppress ztilde in the Foxe Basin for ORCA2 ij0 = 128 ; ij1 = 135 ; frq_rst_e3t( mi0(ii0):mi1(ii1) , mj0(ij0):mj1(ij1) ) = 0.0_wp frq_rst_hdv( mi0(ii0):mi1(ii1) , mj0(ij0):mj1(ij1) ) = 1.e0_wp / rdt ENDIF ENDIF ENDIF IF( nn_timing == 1 ) CALL timing_stop('dom_vvl_init') END SUBROUTINE dom_vvl_init SUBROUTINE dom_vvl_sf_nxt( kt, kcall ) !!---------------------------------------------------------------------- !! *** ROUTINE dom_vvl_sf_nxt *** !! !! ** Purpose : - compute the after scale factors used in tra_zdf, dynnxt, !! tranxt and dynspg routines !! !! ** Method : - z_star case: Repartition of ssh INCREMENT proportionnaly to the level thickness. !! - z_tilde_case: after scale factor increment = !! high frequency part of horizontal divergence !! + retsoring towards the background grid !! + thickness difusion !! Then repartition of ssh INCREMENT proportionnaly !! to the "baroclinic" level thickness. !! !! ** Action : - hdiv_lf : restoring towards full baroclinic divergence in z_tilde case !! - tilde_e3t_a: after increment of vertical scale factor !! in z_tilde case !! - fse3(t/u/v)_a !! !! Reference : Leclair, M., and Madec, G. 2011, Ocean Modelling. !!---------------------------------------------------------------------- REAL(wp), POINTER, DIMENSION(:,:,:) :: ze3t REAL(wp), POINTER, DIMENSION(:,: ) :: zht, z_scale, zwu, zwv, zhdiv !! * Arguments INTEGER, INTENT( in ) :: kt ! time step INTEGER, INTENT( in ), OPTIONAL :: kcall ! optional argument indicating call sequence !! * Local declarations INTEGER :: ji, jj, jk ! dummy loop indices INTEGER , DIMENSION(3) :: ijk_max, ijk_min ! temporary integers REAL(wp) :: z2dt ! temporary scalars REAL(wp) :: z_tmin, z_tmax ! temporary scalars LOGICAL :: ll_do_bclinic ! temporary logical !!---------------------------------------------------------------------- IF( nn_timing == 1 ) CALL timing_start('dom_vvl_sf_nxt') CALL wrk_alloc( jpi, jpj, zht, z_scale, zwu, zwv, zhdiv ) CALL wrk_alloc( jpi, jpj, jpk, ze3t ) IF(kt == nit000) THEN IF(lwp) WRITE(numout,*) IF(lwp) WRITE(numout,*) 'dom_vvl_sf_nxt : compute after scale factors' IF(lwp) WRITE(numout,*) '~~~~~~~~~~~~~~' ENDIF ll_do_bclinic = .TRUE. IF( PRESENT(kcall) ) THEN IF ( kcall == 2 .AND. ln_vvl_ztilde ) ll_do_bclinic = .FALSE. ENDIF ! ******************************* ! ! After acale factors at t-points ! ! ******************************* ! ! ! --------------------------------------------- ! ! z_star coordinate and barotropic z-tilde part ! ! ! --------------------------------------------- ! z_scale(:,:) = ( ssha(:,:) - sshb(:,:) ) * ssmask(:,:) / ( ht_0(:,:) + sshn(:,:) + 1. - ssmask(:,:) ) DO jk = 1, jpkm1 ! formally this is the same as fse3t_a = e3t_0*(1+ssha/ht_0) fse3t_a(:,:,jk) = fse3t_b(:,:,jk) + fse3t_n(:,:,jk) * z_scale(:,:) * tmask(:,:,jk) END DO IF( ln_vvl_ztilde .OR. ln_vvl_layer .AND. ll_do_bclinic ) THEN ! z_tilde or layer coordinate ! ! ! ------baroclinic part------ ! ! I - initialization ! ================== ! 1 - barotropic divergence ! ------------------------- zhdiv(:,:) = 0. zht(:,:) = 0. DO jk = 1, jpkm1 zhdiv(:,:) = zhdiv(:,:) + fse3t_n(:,:,jk) * hdivn(:,:,jk) zht (:,:) = zht (:,:) + fse3t_n(:,:,jk) * tmask(:,:,jk) END DO zhdiv(:,:) = zhdiv(:,:) / ( zht(:,:) + 1. - tmask_i(:,:) ) ! 2 - Low frequency baroclinic horizontal divergence (z-tilde case only) ! -------------------------------------------------- IF( ln_vvl_ztilde ) THEN IF( kt .GT. nit000 ) THEN DO jk = 1, jpkm1 hdiv_lf(:,:,jk) = hdiv_lf(:,:,jk) - rdt * frq_rst_hdv(:,:) & & * ( hdiv_lf(:,:,jk) - fse3t_n(:,:,jk) * ( hdivn(:,:,jk) - zhdiv(:,:) ) ) END DO ENDIF END IF ! II - after z_tilde increments of vertical scale factors ! ======================================================= tilde_e3t_a(:,:,:) = 0.0_wp ! tilde_e3t_a used to store tendency terms ! 1 - High frequency divergence term ! ---------------------------------- IF( ln_vvl_ztilde ) THEN ! z_tilde case DO jk = 1, jpkm1 tilde_e3t_a(:,:,jk) = tilde_e3t_a(:,:,jk) - ( fse3t_n(:,:,jk) * ( hdivn(:,:,jk) - zhdiv(:,:) ) - hdiv_lf(:,:,jk) ) END DO ELSE ! layer case DO jk = 1, jpkm1 tilde_e3t_a(:,:,jk) = tilde_e3t_a(:,:,jk) - fse3t_n(:,:,jk) * ( hdivn(:,:,jk) - zhdiv(:,:) ) * tmask(:,:,jk) END DO END IF ! 2 - Restoring term (z-tilde case only) ! ------------------ IF( ln_vvl_ztilde ) THEN DO jk = 1, jpk tilde_e3t_a(:,:,jk) = tilde_e3t_a(:,:,jk) - frq_rst_e3t(:,:) * tilde_e3t_b(:,:,jk) END DO END IF ! 3 - Thickness diffusion term ! ---------------------------- zwu(:,:) = 0.0_wp zwv(:,:) = 0.0_wp ! a - first derivative: diffusive fluxes DO jk = 1, jpkm1 DO jj = 1, jpjm1 DO ji = 1, fs_jpim1 ! vector opt. un_td(ji,jj,jk) = rn_ahe3 * umask(ji,jj,jk) * re2u_e1u(ji,jj) & & * ( tilde_e3t_b(ji,jj,jk) - tilde_e3t_b(ji+1,jj ,jk) ) vn_td(ji,jj,jk) = rn_ahe3 * vmask(ji,jj,jk) * re1v_e2v(ji,jj) & & * ( tilde_e3t_b(ji,jj,jk) - tilde_e3t_b(ji ,jj+1,jk) ) zwu(ji,jj) = zwu(ji,jj) + un_td(ji,jj,jk) zwv(ji,jj) = zwv(ji,jj) + vn_td(ji,jj,jk) END DO END DO END DO ! b - correction for last oceanic u-v points DO jj = 1, jpj DO ji = 1, jpi un_td(ji,jj,mbku(ji,jj)) = un_td(ji,jj,mbku(ji,jj)) - zwu(ji,jj) vn_td(ji,jj,mbkv(ji,jj)) = vn_td(ji,jj,mbkv(ji,jj)) - zwv(ji,jj) END DO END DO ! c - second derivative: divergence of diffusive fluxes DO jk = 1, jpkm1 DO jj = 2, jpjm1 DO ji = fs_2, fs_jpim1 ! vector opt. tilde_e3t_a(ji,jj,jk) = tilde_e3t_a(ji,jj,jk) + ( un_td(ji-1,jj ,jk) - un_td(ji,jj,jk) & & + vn_td(ji ,jj-1,jk) - vn_td(ji,jj,jk) & & ) * r1_e12t(ji,jj) END DO END DO END DO ! d - thickness diffusion transport: boundary conditions ! (stored for tracer advction and continuity equation) CALL lbc_lnk( un_td , 'U' , -1.) CALL lbc_lnk( vn_td , 'V' , -1.) ! 4 - Time stepping of baroclinic scale factors ! --------------------------------------------- ! Leapfrog time stepping ! ~~~~~~~~~~~~~~~~~~~~~~ IF( neuler == 0 .AND. kt == nit000 ) THEN z2dt = rdt ELSE z2dt = 2.0_wp * rdt ENDIF CALL lbc_lnk( tilde_e3t_a(:,:,:), 'T', 1. ) tilde_e3t_a(:,:,:) = tilde_e3t_b(:,:,:) + z2dt * tmask(:,:,:) * tilde_e3t_a(:,:,:) ! Maximum deformation control ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~ ze3t(:,:,jpk) = 0.0_wp DO jk = 1, jpkm1 ze3t(:,:,jk) = tilde_e3t_a(:,:,jk) / e3t_0(:,:,jk) * tmask(:,:,jk) * tmask_i(:,:) END DO z_tmax = MAXVAL( ze3t(:,:,:) ) IF( lk_mpp ) CALL mpp_max( z_tmax ) ! max over the global domain z_tmin = MINVAL( ze3t(:,:,:) ) IF( lk_mpp ) CALL mpp_min( z_tmin ) ! min over the global domain ! - ML - test: for the moment, stop simulation for too large e3_t variations IF( ( z_tmax .GT. rn_zdef_max ) .OR. ( z_tmin .LT. - rn_zdef_max ) ) THEN IF( lk_mpp ) THEN CALL mpp_maxloc( ze3t, tmask, z_tmax, ijk_max(1), ijk_max(2), ijk_max(3) ) CALL mpp_minloc( ze3t, tmask, z_tmin, ijk_min(1), ijk_min(2), ijk_min(3) ) ELSE ijk_max = MAXLOC( ze3t(:,:,:) ) ijk_max(1) = ijk_max(1) + nimpp - 1 ijk_max(2) = ijk_max(2) + njmpp - 1 ijk_min = MINLOC( ze3t(:,:,:) ) ijk_min(1) = ijk_min(1) + nimpp - 1 ijk_min(2) = ijk_min(2) + njmpp - 1 ENDIF IF (lwp) THEN WRITE(numout, *) 'MAX( tilde_e3t_a(:,:,:) / e3t_0(:,:,:) ) =', z_tmax WRITE(numout, *) 'at i, j, k=', ijk_max WRITE(numout, *) 'MIN( tilde_e3t_a(:,:,:) / e3t_0(:,:,:) ) =', z_tmin WRITE(numout, *) 'at i, j, k=', ijk_min CALL ctl_warn('MAX( ABS( tilde_e3t_a(:,:,:) ) / e3t_0(:,:,:) ) too high') ENDIF ENDIF ! - ML - end test ! - ML - Imposing these limits will cause a baroclinicity error which is corrected for below tilde_e3t_a(:,:,:) = MIN( tilde_e3t_a(:,:,:), rn_zdef_max * e3t_0(:,:,:) ) tilde_e3t_a(:,:,:) = MAX( tilde_e3t_a(:,:,:), - rn_zdef_max * e3t_0(:,:,:) ) ! ! "tilda" change in the after scale factor ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ DO jk = 1, jpkm1 dtilde_e3t_a(:,:,jk) = tilde_e3t_a(:,:,jk) - tilde_e3t_b(:,:,jk) END DO ! III - Barotropic repartition of the sea surface height over the baroclinic profile ! ================================================================================== ! add ( ssh increment + "baroclinicity error" ) proportionly to e3t(n) ! - ML - baroclinicity error should be better treated in the future ! i.e. locally and not spread over the water column. ! (keep in mind that the idea is to reduce Eulerian velocity as much as possible) zht(:,:) = 0. DO jk = 1, jpkm1 zht(:,:) = zht(:,:) + tilde_e3t_a(:,:,jk) * tmask(:,:,jk) END DO z_scale(:,:) = - zht(:,:) / ( ht_0(:,:) + sshn(:,:) + 1. - ssmask(:,:) ) DO jk = 1, jpkm1 dtilde_e3t_a(:,:,jk) = dtilde_e3t_a(:,:,jk) + fse3t_n(:,:,jk) * z_scale(:,:) * tmask(:,:,jk) END DO ENDIF IF( ln_vvl_ztilde .OR. ln_vvl_layer ) THEN ! z_tilde or layer coordinate ! ! ! ---baroclinic part--------- ! DO jk = 1, jpkm1 fse3t_a(:,:,jk) = fse3t_a(:,:,jk) + dtilde_e3t_a(:,:,jk) * tmask(:,:,jk) END DO ENDIF IF( ln_vvl_dbg .AND. .NOT. ll_do_bclinic ) THEN ! - ML - test: control prints for debuging ! IF( lwp ) WRITE(numout, *) 'kt =', kt IF ( ln_vvl_ztilde .OR. ln_vvl_layer ) THEN z_tmax = MAXVAL( tmask(:,:,1) * tmask_i(:,:) * ABS( zht(:,:) ) ) IF( lk_mpp ) CALL mpp_max( z_tmax ) ! max over the global domain IF( lwp ) WRITE(numout, *) kt,' MAXVAL(abs(SUM(tilde_e3t_a))) =', z_tmax END IF ! zht(:,:) = 0.0_wp DO jk = 1, jpkm1 zht(:,:) = zht(:,:) + fse3t_n(:,:,jk) * tmask(:,:,jk) END DO z_tmax = MAXVAL( tmask(:,:,1) * tmask_i(:,:) * ABS( ht_0(:,:) + sshn(:,:) - zht(:,:) ) ) IF( lk_mpp ) CALL mpp_max( z_tmax ) ! max over the global domain IF( lwp ) WRITE(numout, *) kt,' MAXVAL(abs(ht_0+sshn-SUM(fse3t_n))) =', z_tmax ! zht(:,:) = 0.0_wp DO jk = 1, jpkm1 zht(:,:) = zht(:,:) + fse3t_a(:,:,jk) * tmask(:,:,jk) END DO z_tmax = MAXVAL( tmask(:,:,1) * tmask_i(:,:) * ABS( ht_0(:,:) + ssha(:,:) - zht(:,:) ) ) IF( lk_mpp ) CALL mpp_max( z_tmax ) ! max over the global domain IF( lwp ) WRITE(numout, *) kt,' MAXVAL(abs(ht_0+ssha-SUM(fse3t_a))) =', z_tmax ! zht(:,:) = 0.0_wp DO jk = 1, jpkm1 zht(:,:) = zht(:,:) + fse3t_b(:,:,jk) * tmask(:,:,jk) END DO z_tmax = MAXVAL( tmask(:,:,1) * tmask_i(:,:) * ABS( ht_0(:,:) + sshb(:,:) - zht(:,:) ) ) IF( lk_mpp ) CALL mpp_max( z_tmax ) ! max over the global domain IF( lwp ) WRITE(numout, *) kt,' MAXVAL(abs(ht_0+sshb-SUM(fse3t_b))) =', z_tmax ! z_tmax = MAXVAL( tmask(:,:,1) * ABS( sshb(:,:) ) ) IF( lk_mpp ) CALL mpp_max( z_tmax ) ! max over the global domain IF( lwp ) WRITE(numout, *) kt,' MAXVAL(abs(sshb))) =', z_tmax ! z_tmax = MAXVAL( tmask(:,:,1) * ABS( sshn(:,:) ) ) IF( lk_mpp ) CALL mpp_max( z_tmax ) ! max over the global domain IF( lwp ) WRITE(numout, *) kt,' MAXVAL(abs(sshn))) =', z_tmax ! z_tmax = MAXVAL( tmask(:,:,1) * ABS( ssha(:,:) ) ) IF( lk_mpp ) CALL mpp_max( z_tmax ) ! max over the global domain IF( lwp ) WRITE(numout, *) kt,' MAXVAL(abs(ssha))) =', z_tmax END IF ! *********************************** ! ! After scale factors at u- v- points ! ! *********************************** ! CALL dom_vvl_interpol( fse3t_a(:,:,:), fse3u_a(:,:,:), 'U' ) CALL dom_vvl_interpol( fse3t_a(:,:,:), fse3v_a(:,:,:), 'V' ) ! *********************************** ! ! After depths at u- v points ! ! *********************************** ! hu_a(:,:) = 0._wp ! Ocean depth at U-points hv_a(:,:) = 0._wp ! Ocean depth at V-points DO jk = 1, jpkm1 hu_a(:,:) = hu_a(:,:) + fse3u_a(:,:,jk) * umask(:,:,jk) hv_a(:,:) = hv_a(:,:) + fse3v_a(:,:,jk) * vmask(:,:,jk) END DO ! ! Inverse of the local depth hur_a(:,:) = 1._wp / ( hu_a(:,:) + 1._wp - umask_i(:,:) ) * umask_i(:,:) hvr_a(:,:) = 1._wp / ( hv_a(:,:) + 1._wp - vmask_i(:,:) ) * vmask_i(:,:) CALL wrk_dealloc( jpi, jpj, zht, z_scale, zwu, zwv, zhdiv ) CALL wrk_dealloc( jpi, jpj, jpk, ze3t ) IF( nn_timing == 1 ) CALL timing_stop('dom_vvl_sf_nxt') END SUBROUTINE dom_vvl_sf_nxt SUBROUTINE dom_vvl_sf_swp( kt ) !!---------------------------------------------------------------------- !! *** ROUTINE dom_vvl_sf_swp *** !! !! ** Purpose : compute time filter and swap of scale factors !! compute all depths and related variables for next time step !! write outputs and restart file !! !! ** Method : - swap of e3t with trick for volume/tracer conservation !! - reconstruct scale factor at other grid points (interpolate) !! - recompute depths and water height fields !! !! ** Action : - fse3t_(b/n), tilde_e3t_(b/n) and fse3(u/v)_n ready for next time step !! - Recompute: !! fse3(u/v)_b !! fse3w_n !! fse3(u/v)w_b !! fse3(u/v)w_n !! fsdept_n, fsdepw_n and fsde3w_n !! h(u/v) and h(u/v)r !! !! Reference : Leclair, M., and G. Madec, 2009, Ocean Modelling. !! Leclair, M., and G. Madec, 2011, Ocean Modelling. !!---------------------------------------------------------------------- !! * Arguments INTEGER, INTENT( in ) :: kt ! time step !! * Local declarations REAL(wp), POINTER, DIMENSION(:,:,:) :: z_e3t_def INTEGER :: ji,jj,jk ! dummy loop indices !!---------------------------------------------------------------------- IF( nn_timing == 1 ) CALL timing_start('dom_vvl_sf_swp') ! CALL wrk_alloc( jpi, jpj, jpk, z_e3t_def ) ! IF( kt == nit000 ) THEN IF(lwp) WRITE(numout,*) IF(lwp) WRITE(numout,*) 'dom_vvl_sf_swp : - time filter and swap of scale factors' IF(lwp) WRITE(numout,*) '~~~~~~~~~~~~~~ - interpolate scale factors and compute depths for next time step' ENDIF ! ! Time filter and swap of scale factors ! ===================================== ! - ML - fse3(t/u/v)_b are allready computed in dynnxt. IF( ln_vvl_ztilde .OR. ln_vvl_layer ) THEN IF( neuler == 0 .AND. kt == nit000 ) THEN tilde_e3t_b(:,:,:) = tilde_e3t_n(:,:,:) ELSE tilde_e3t_b(:,:,:) = tilde_e3t_n(:,:,:) & & + atfp * ( tilde_e3t_b(:,:,:) - 2.0_wp * tilde_e3t_n(:,:,:) + tilde_e3t_a(:,:,:) ) ENDIF tilde_e3t_n(:,:,:) = tilde_e3t_a(:,:,:) ENDIF fsdept_b(:,:,:) = fsdept_n(:,:,:) fsdepw_b(:,:,:) = fsdepw_n(:,:,:) fse3t_n(:,:,:) = fse3t_a(:,:,:) fse3u_n(:,:,:) = fse3u_a(:,:,:) fse3v_n(:,:,:) = fse3v_a(:,:,:) ! Compute all missing vertical scale factor and depths ! ==================================================== ! Horizontal scale factor interpolations ! -------------------------------------- ! - ML - fse3u_b and fse3v_b are allready computed in dynnxt ! - JC - hu_b, hv_b, hur_b, hvr_b also CALL dom_vvl_interpol( fse3u_n(:,:,:), fse3f_n (:,:,:), 'F' ) ! Vertical scale factor interpolations ! ------------------------------------ CALL dom_vvl_interpol( fse3t_n(:,:,:), fse3w_n (:,:,:), 'W' ) CALL dom_vvl_interpol( fse3u_n(:,:,:), fse3uw_n(:,:,:), 'UW' ) CALL dom_vvl_interpol( fse3v_n(:,:,:), fse3vw_n(:,:,:), 'VW' ) CALL dom_vvl_interpol( fse3t_b(:,:,:), fse3w_b (:,:,:), 'W' ) CALL dom_vvl_interpol( fse3u_b(:,:,:), fse3uw_b(:,:,:), 'UW' ) CALL dom_vvl_interpol( fse3v_b(:,:,:), fse3vw_b(:,:,:), 'VW' ) ! t- and w- points depth ! ---------------------- fsdept_n(:,:,1) = 0.5_wp * fse3w_n(:,:,1) fsdepw_n(:,:,1) = 0.0_wp fsde3w_n(:,:,1) = fsdept_n(:,:,1) - sshn(:,:) DO jj = 1,jpj DO ji = 1,jpi DO jk = 2,mikt(ji,jj)-1 fsdept_n(ji,jj,jk) = gdept_0(ji,jj,jk) fsdepw_n(ji,jj,jk) = gdepw_0(ji,jj,jk) fsde3w_n(ji,jj,jk) = gdept_0(ji,jj,jk) - sshn(ji,jj) END DO IF (mikt(ji,jj) .GT. 1) THEN jk = mikt(ji,jj) fsdept_n(ji,jj,jk) = gdepw_0(ji,jj,jk) + 0.5_wp * fse3w_n(ji,jj,jk) fsdepw_n(ji,jj,jk) = gdepw_0(ji,jj,jk) fsde3w_n(ji,jj,jk) = fsdept_n(ji,jj,jk ) - sshn (ji,jj) END IF DO jk = mikt(ji,jj)+1, jpk fsdept_n(ji,jj,jk) = fsdept_n(ji,jj,jk-1) + fse3w_n(ji,jj,jk) fsdepw_n(ji,jj,jk) = fsdepw_n(ji,jj,jk-1) + fse3t_n(ji,jj,jk-1) fsde3w_n(ji,jj,jk) = fsdept_n(ji,jj,jk ) - sshn (ji,jj) END DO END DO END DO ! Local depth and Inverse of the local depth of the water column at u- and v- points ! ---------------------------------------------------------------------------------- hu (:,:) = hu_a (:,:) hv (:,:) = hv_a (:,:) ! Inverse of the local depth hur(:,:) = hur_a(:,:) hvr(:,:) = hvr_a(:,:) ! Local depth of the water column at t- points ! -------------------------------------------- ht(:,:) = 0. DO jk = 1, jpkm1 ht(:,:) = ht(:,:) + fse3t_n(:,:,jk) * tmask(:,:,jk) END DO ! Write outputs ! ============= z_e3t_def(:,:,:) = ( ( fse3t_n(:,:,:) - e3t_0(:,:,:) ) / e3t_0(:,:,:) * 100 * tmask(:,:,:) ) ** 2 CALL iom_put( "cellthc" , fse3t_n (:,:,:) ) CALL iom_put( "tpt_dep" , fsde3w_n (:,:,:) ) CALL iom_put( "e3tdef" , z_e3t_def(:,:,:) ) ! write restart file ! ================== IF( lrst_oce ) CALL dom_vvl_rst( kt, 'WRITE' ) ! CALL wrk_dealloc( jpi, jpj, jpk, z_e3t_def ) ! IF( nn_timing == 1 ) CALL timing_stop('dom_vvl_sf_swp') END SUBROUTINE dom_vvl_sf_swp SUBROUTINE dom_vvl_interpol( pe3_in, pe3_out, pout ) !!--------------------------------------------------------------------- !! *** ROUTINE dom_vvl__interpol *** !! !! ** Purpose : interpolate scale factors from one grid point to another !! !! ** Method : e3_out = e3_0 + interpolation(e3_in - e3_0) !! - horizontal interpolation: grid cell surface averaging !! - vertical interpolation: simple averaging !!---------------------------------------------------------------------- !! * Arguments REAL(wp), DIMENSION(jpi,jpj,jpk), INTENT( in ) :: pe3_in ! input e3 to be interpolated REAL(wp), DIMENSION(jpi,jpj,jpk), INTENT( inout ) :: pe3_out ! output interpolated e3 CHARACTER(LEN=*), INTENT( in ) :: pout ! grid point of out scale factors ! ! = 'U', 'V', 'W, 'F', 'UW' or 'VW' !! * Local declarations INTEGER :: ji, jj, jk ! dummy loop indices LOGICAL :: l_is_orca ! local logical !!---------------------------------------------------------------------- IF( nn_timing == 1 ) CALL timing_start('dom_vvl_interpol') ! l_is_orca = .FALSE. IF( cp_cfg == "orca" .AND. jp_cfg == 2 ) l_is_orca = .TRUE. ! ORCA R2 configuration - will need to correct some locations SELECT CASE ( pout ) ! ! ------------------------------------- ! CASE( 'U' ) ! interpolation from T-point to U-point ! ! ! ------------------------------------- ! ! horizontal surface weighted interpolation DO jk = 1, jpk DO jj = 1, jpjm1 DO ji = 1, fs_jpim1 ! vector opt. pe3_out(ji,jj,jk) = 0.5_wp * umask(ji,jj,jk) * r1_e12u(ji,jj) & & * ( e12t(ji ,jj) * ( pe3_in(ji ,jj,jk) - e3t_0(ji ,jj,jk) ) & & + e12t(ji+1,jj) * ( pe3_in(ji+1,jj,jk) - e3t_0(ji+1,jj,jk) ) ) END DO END DO END DO ! IF( l_is_orca ) CALL dom_vvl_orca_fix( pe3_in, pe3_out, pout ) ! boundary conditions CALL lbc_lnk( pe3_out(:,:,:), 'U', 1. ) pe3_out(:,:,:) = pe3_out(:,:,:) + e3u_0(:,:,:) ! ! ------------------------------------- ! CASE( 'V' ) ! interpolation from T-point to V-point ! ! ! ------------------------------------- ! ! horizontal surface weighted interpolation DO jk = 1, jpk DO jj = 1, jpjm1 DO ji = 1, fs_jpim1 ! vector opt. pe3_out(ji,jj,jk) = 0.5_wp * vmask(ji,jj,jk) * r1_e12v(ji,jj) & & * ( e12t(ji,jj ) * ( pe3_in(ji,jj ,jk) - e3t_0(ji,jj ,jk) ) & & + e12t(ji,jj+1) * ( pe3_in(ji,jj+1,jk) - e3t_0(ji,jj+1,jk) ) ) END DO END DO END DO ! IF( l_is_orca ) CALL dom_vvl_orca_fix( pe3_in, pe3_out, pout ) ! boundary conditions CALL lbc_lnk( pe3_out(:,:,:), 'V', 1. ) pe3_out(:,:,:) = pe3_out(:,:,:) + e3v_0(:,:,:) ! ! ------------------------------------- ! CASE( 'F' ) ! interpolation from U-point to F-point ! ! ! ------------------------------------- ! ! horizontal surface weighted interpolation DO jk = 1, jpk DO jj = 1, jpjm1 DO ji = 1, fs_jpim1 ! vector opt. pe3_out(ji,jj,jk) = 0.5_wp * umask(ji,jj,jk) * umask(ji,jj+1,jk) * r1_e12f(ji,jj) & & * ( e12u(ji,jj ) * ( pe3_in(ji,jj ,jk) - e3u_0(ji,jj ,jk) ) & & + e12u(ji,jj+1) * ( pe3_in(ji,jj+1,jk) - e3u_0(ji,jj+1,jk) ) ) END DO END DO END DO ! IF( l_is_orca ) CALL dom_vvl_orca_fix( pe3_in, pe3_out, pout ) ! boundary conditions CALL lbc_lnk( pe3_out(:,:,:), 'F', 1. ) pe3_out(:,:,:) = pe3_out(:,:,:) + e3f_0(:,:,:) ! ! ------------------------------------- ! CASE( 'W' ) ! interpolation from T-point to W-point ! ! ! ------------------------------------- ! ! vertical simple interpolation pe3_out(:,:,1) = e3w_0(:,:,1) + pe3_in(:,:,1) - e3t_0(:,:,1) ! - ML - The use of mask in this formaula enables the special treatment of the last w- point without indirect adressing DO jk = 2, jpk pe3_out(:,:,jk) = e3w_0(:,:,jk) + ( 1.0_wp - 0.5_wp * tmask(:,:,jk) ) * ( pe3_in(:,:,jk-1) - e3t_0(:,:,jk-1) ) & & + 0.5_wp * tmask(:,:,jk) * ( pe3_in(:,:,jk ) - e3t_0(:,:,jk ) ) END DO ! ! -------------------------------------- ! CASE( 'UW' ) ! interpolation from U-point to UW-point ! ! ! -------------------------------------- ! ! vertical simple interpolation pe3_out(:,:,1) = e3uw_0(:,:,1) + pe3_in(:,:,1) - e3u_0(:,:,1) ! - ML - The use of mask in this formaula enables the special treatment of the last w- point without indirect adressing DO jk = 2, jpk pe3_out(:,:,jk) = e3uw_0(:,:,jk) + ( 1.0_wp - 0.5_wp * umask(:,:,jk) ) * ( pe3_in(:,:,jk-1) - e3u_0(:,:,jk-1) ) & & + 0.5_wp * umask(:,:,jk) * ( pe3_in(:,:,jk ) - e3u_0(:,:,jk ) ) END DO ! ! -------------------------------------- ! CASE( 'VW' ) ! interpolation from V-point to VW-point ! ! ! -------------------------------------- ! ! vertical simple interpolation pe3_out(:,:,1) = e3vw_0(:,:,1) + pe3_in(:,:,1) - e3v_0(:,:,1) ! - ML - The use of mask in this formaula enables the special treatment of the last w- point without indirect adressing DO jk = 2, jpk pe3_out(:,:,jk) = e3vw_0(:,:,jk) + ( 1.0_wp - 0.5_wp * vmask(:,:,jk) ) * ( pe3_in(:,:,jk-1) - e3v_0(:,:,jk-1) ) & & + 0.5_wp * vmask(:,:,jk) * ( pe3_in(:,:,jk ) - e3v_0(:,:,jk ) ) END DO END SELECT ! IF( nn_timing == 1 ) CALL timing_stop('dom_vvl_interpol') END SUBROUTINE dom_vvl_interpol SUBROUTINE dom_vvl_rst( kt, cdrw ) !!--------------------------------------------------------------------- !! *** ROUTINE dom_vvl_rst *** !! !! ** Purpose : Read or write VVL file in restart file !! !! ** Method : use of IOM library !! if the restart does not contain vertical scale factors, !! they are set to the _0 values !! if the restart does not contain vertical scale factors increments (z_tilde), !! they are set to 0. !!---------------------------------------------------------------------- !! * Arguments INTEGER , INTENT(in) :: kt ! ocean time-step CHARACTER(len=*), INTENT(in) :: cdrw ! "READ"/"WRITE" flag !! * Local declarations INTEGER :: jk INTEGER :: id1, id2, id3, id4, id5 ! local integers !!---------------------------------------------------------------------- ! IF( nn_timing == 1 ) CALL timing_start('dom_vvl_rst') IF( TRIM(cdrw) == 'READ' ) THEN ! Read/initialise ! ! =============== IF( ln_rstart ) THEN !* Read the restart file CALL rst_read_open ! open the restart file if necessary CALL iom_get( numror, jpdom_autoglo, 'sshn' , sshn ) ! id1 = iom_varid( numror, 'fse3t_b', ldstop = .FALSE. ) id2 = iom_varid( numror, 'fse3t_n', ldstop = .FALSE. ) id3 = iom_varid( numror, 'tilde_e3t_b', ldstop = .FALSE. ) id4 = iom_varid( numror, 'tilde_e3t_n', ldstop = .FALSE. ) id5 = iom_varid( numror, 'hdif_lf', ldstop = .FALSE. ) ! ! --------- ! ! ! all cases ! ! ! --------- ! IF( MIN( id1, id2 ) > 0 ) THEN ! all required arrays exist CALL iom_get( numror, jpdom_autoglo, 'fse3t_b', fse3t_b(:,:,:) ) CALL iom_get( numror, jpdom_autoglo, 'fse3t_n', fse3t_n(:,:,:) ) IF( neuler == 0 ) THEN fse3t_b(:,:,:) = fse3t_n(:,:,:) ENDIF ELSE IF( id1 > 0 ) THEN IF(lwp) write(numout,*) 'dom_vvl_rst WARNING : fse3t_b not found in restart files' IF(lwp) write(numout,*) 'fse3t_b set equal to fse3t_n.' IF(lwp) write(numout,*) 'neuler is forced to 0' fse3t_b(:,:,:) = fse3t_n(:,:,:) neuler = 0 ELSE IF(lwp) write(numout,*) 'dom_vvl_rst WARNING : fse3t_n not found in restart file' IF(lwp) write(numout,*) 'Compute scale factor from sshn' IF(lwp) write(numout,*) 'neuler is forced to 0' DO jk=1,jpk fse3t_n(:,:,jk) = e3t_0(:,:,jk) * ( ht_0(:,:) + sshn(:,:) ) & & / ( ht_0(:,:) + 1._wp - tmask_i(:,:) ) * tmask(:,:,jk) & & + e3t_0(:,:,jk) * (1._wp -tmask(:,:,jk)) END DO fse3t_b(:,:,:) = fse3t_n(:,:,:) neuler = 0 ENDIF ! ! ----------- ! IF( ln_vvl_zstar ) THEN ! z_star case ! ! ! ----------- ! IF( MIN( id3, id4 ) > 0 ) THEN CALL ctl_stop( 'dom_vvl_rst: z_star cannot restart from a z_tilde or layer run' ) ENDIF ! ! ----------------------- ! ELSE ! z_tilde and layer cases ! ! ! ----------------------- ! IF( MIN( id3, id4 ) > 0 ) THEN ! all required arrays exist CALL iom_get( numror, jpdom_autoglo, 'tilde_e3t_b', tilde_e3t_b(:,:,:) ) CALL iom_get( numror, jpdom_autoglo, 'tilde_e3t_n', tilde_e3t_n(:,:,:) ) ELSE ! one at least array is missing tilde_e3t_b(:,:,:) = 0.0_wp tilde_e3t_n(:,:,:) = 0.0_wp ENDIF ! ! ------------ ! IF( ln_vvl_ztilde ) THEN ! z_tilde case ! ! ! ------------ ! IF( id5 > 0 ) THEN ! required array exists CALL iom_get( numror, jpdom_autoglo, 'hdiv_lf', hdiv_lf(:,:,:) ) ELSE ! array is missing hdiv_lf(:,:,:) = 0.0_wp ENDIF ENDIF ENDIF ! ELSE !* Initialize at "rest" fse3t_b(:,:,:) = e3t_0(:,:,:) fse3t_n(:,:,:) = e3t_0(:,:,:) sshn(:,:) = 0.0_wp IF( ln_vvl_ztilde .OR. ln_vvl_layer) THEN tilde_e3t_b(:,:,:) = 0.0_wp tilde_e3t_n(:,:,:) = 0.0_wp IF( ln_vvl_ztilde ) hdiv_lf(:,:,:) = 0.0_wp END IF ENDIF ELSEIF( TRIM(cdrw) == 'WRITE' ) THEN ! Create restart file ! ! =================== IF(lwp) WRITE(numout,*) '---- dom_vvl_rst ----' ! ! --------- ! ! ! all cases ! ! ! --------- ! CALL iom_rstput( kt, nitrst, numrow, 'fse3t_b', fse3t_b(:,:,:) ) CALL iom_rstput( kt, nitrst, numrow, 'fse3t_n', fse3t_n(:,:,:) ) ! ! ----------------------- ! IF( ln_vvl_ztilde .OR. ln_vvl_layer ) THEN ! z_tilde and layer cases ! ! ! ----------------------- ! CALL iom_rstput( kt, nitrst, numrow, 'tilde_e3t_b', tilde_e3t_b(:,:,:) ) CALL iom_rstput( kt, nitrst, numrow, 'tilde_e3t_n', tilde_e3t_n(:,:,:) ) END IF ! ! -------------! IF( ln_vvl_ztilde ) THEN ! z_tilde case ! ! ! ------------ ! CALL iom_rstput( kt, nitrst, numrow, 'hdiv_lf', hdiv_lf(:,:,:) ) ENDIF ENDIF IF( nn_timing == 1 ) CALL timing_stop('dom_vvl_rst') END SUBROUTINE dom_vvl_rst SUBROUTINE dom_vvl_ctl !!--------------------------------------------------------------------- !! *** ROUTINE dom_vvl_ctl *** !! !! ** Purpose : Control the consistency between namelist options !! for vertical coordinate !!---------------------------------------------------------------------- INTEGER :: ioptio INTEGER :: ios NAMELIST/nam_vvl/ ln_vvl_zstar, ln_vvl_ztilde, ln_vvl_layer, ln_vvl_ztilde_as_zstar, & & ln_vvl_zstar_at_eqtor , rn_ahe3 , rn_rst_e3t , & & rn_lf_cutoff , rn_zdef_max , ln_vvl_dbg ! not yet implemented: ln_vvl_kepe !!---------------------------------------------------------------------- REWIND( numnam_ref ) ! Namelist nam_vvl in reference namelist : READ ( numnam_ref, nam_vvl, IOSTAT = ios, ERR = 901) 901 IF( ios /= 0 ) CALL ctl_nam ( ios , 'nam_vvl in reference namelist', lwp ) REWIND( numnam_cfg ) ! Namelist nam_vvl in configuration namelist : Parameters of the run READ ( numnam_cfg, nam_vvl, IOSTAT = ios, ERR = 902 ) 902 IF( ios /= 0 ) CALL ctl_nam ( ios , 'nam_vvl in configuration namelist', lwp ) IF(lwm) WRITE ( numond, nam_vvl ) IF(lwp) THEN ! Namelist print WRITE(numout,*) WRITE(numout,*) 'dom_vvl_ctl : choice/control of the variable vertical coordinate' WRITE(numout,*) '~~~~~~~~~~~' WRITE(numout,*) ' Namelist nam_vvl : chose a vertical coordinate' WRITE(numout,*) ' zstar ln_vvl_zstar = ', ln_vvl_zstar WRITE(numout,*) ' ztilde ln_vvl_ztilde = ', ln_vvl_ztilde WRITE(numout,*) ' layer ln_vvl_layer = ', ln_vvl_layer WRITE(numout,*) ' ztilde as zstar ln_vvl_ztilde_as_zstar = ', ln_vvl_ztilde_as_zstar WRITE(numout,*) ' ztilde near the equator ln_vvl_zstar_at_eqtor = ', ln_vvl_zstar_at_eqtor ! WRITE(numout,*) ' Namelist nam_vvl : chose kinetic-to-potential energy conservation' ! WRITE(numout,*) ' ln_vvl_kepe = ', ln_vvl_kepe WRITE(numout,*) ' Namelist nam_vvl : thickness diffusion coefficient' WRITE(numout,*) ' rn_ahe3 = ', rn_ahe3 WRITE(numout,*) ' Namelist nam_vvl : maximum e3t deformation fractional change' WRITE(numout,*) ' rn_zdef_max = ', rn_zdef_max IF( ln_vvl_ztilde_as_zstar ) THEN WRITE(numout,*) ' ztilde running in zstar emulation mode; ' WRITE(numout,*) ' ignoring namelist timescale parameters and using:' WRITE(numout,*) ' hard-wired : z-tilde to zstar restoration timescale (days)' WRITE(numout,*) ' rn_rst_e3t = 0.0' WRITE(numout,*) ' hard-wired : z-tilde cutoff frequency of low-pass filter (days)' WRITE(numout,*) ' rn_lf_cutoff = 1.0/rdt' ELSE WRITE(numout,*) ' Namelist nam_vvl : z-tilde to zstar restoration timescale (days)' WRITE(numout,*) ' rn_rst_e3t = ', rn_rst_e3t WRITE(numout,*) ' Namelist nam_vvl : z-tilde cutoff frequency of low-pass filter (days)' WRITE(numout,*) ' rn_lf_cutoff = ', rn_lf_cutoff ENDIF WRITE(numout,*) ' Namelist nam_vvl : debug prints' WRITE(numout,*) ' ln_vvl_dbg = ', ln_vvl_dbg ENDIF ioptio = 0 ! Parameter control IF( ln_vvl_ztilde_as_zstar ) ln_vvl_ztilde = .true. IF( ln_vvl_zstar ) ioptio = ioptio + 1 IF( ln_vvl_ztilde ) ioptio = ioptio + 1 IF( ln_vvl_layer ) ioptio = ioptio + 1 IF( ioptio /= 1 ) CALL ctl_stop( 'Choose ONE vertical coordinate in namelist nam_vvl' ) IF( .NOT. ln_vvl_zstar .AND. nn_isf .NE. 0) CALL ctl_stop( 'vvl_ztilde, vvl_layer, vvl_ztilde_as_zstar, vvl_zstar_at_eqtor not tested with ice shelf cavity (only vvl_zstar was tested)' ) IF(lwp) THEN ! Print the choice WRITE(numout,*) IF( ln_vvl_zstar ) WRITE(numout,*) ' zstar vertical coordinate is used' IF( ln_vvl_ztilde ) WRITE(numout,*) ' ztilde vertical coordinate is used' IF( ln_vvl_layer ) WRITE(numout,*) ' layer vertical coordinate is used' IF( ln_vvl_ztilde_as_zstar ) WRITE(numout,*) ' to emulate a zstar coordinate' ! - ML - Option not developed yet ! IF( ln_vvl_kepe ) WRITE(numout,*) ' kinetic to potential energy transfer : option used' ! IF( .NOT. ln_vvl_kepe ) WRITE(numout,*) ' kinetic to potential energy transfer : option not used' ENDIF #if defined key_agrif IF (.NOT.Agrif_Root()) CALL ctl_stop( 'AGRIF not implemented with non-linear free surface (key_vvl)' ) #endif END SUBROUTINE dom_vvl_ctl SUBROUTINE dom_vvl_orca_fix( pe3_in, pe3_out, pout ) !!--------------------------------------------------------------------- !! *** ROUTINE dom_vvl_orca_fix *** !! !! ** Purpose : Correct surface weighted, horizontally interpolated, !! scale factors at locations that have been individually !! modified in domhgr. Such modifications break the !! relationship between e12t and e1u*e2u etc. !! Recompute some scale factors ignoring the modified metric. !!---------------------------------------------------------------------- !! * Arguments REAL(wp), DIMENSION(jpi,jpj,jpk), INTENT( in ) :: pe3_in ! input e3 to be interpolated REAL(wp), DIMENSION(jpi,jpj,jpk), INTENT( inout ) :: pe3_out ! output interpolated e3 CHARACTER(LEN=*), INTENT( in ) :: pout ! grid point of out scale factors ! ! = 'U', 'V', 'W, 'F', 'UW' or 'VW' !! * Local declarations INTEGER :: ji, jj, jk ! dummy loop indices INTEGER :: ij0, ij1, ii0, ii1 ! dummy loop indices !! acc !! Hmm with the time splitting these "fixes" seem to do more harm than good. Temporarily disabled for !! the ORCA2 tests (by changing jp_cfg test from 2 to 3) pending further investigations !! ! ! ===================== IF( cp_cfg == "orca" .AND. jp_cfg == 3 ) THEN ! ORCA R2 configuration ! ! ===================== !! acc IF( nn_cla == 0 ) THEN ! ii0 = 139 ; ii1 = 140 ! Gibraltar Strait (e2u was modified) ij0 = 102 ; ij1 = 102 DO jk = 1, jpkm1 DO jj = mj0(ij0), mj1(ij1) DO ji = mi0(ii0), mi1(ii1) SELECT CASE ( pout ) CASE( 'U' ) pe3_out(ji,jj,jk) = 0.5_wp * umask(ji,jj,jk) & & * ( e1t(ji ,jj) * ( pe3_in(ji ,jj,jk) - e3t_0(ji ,jj,jk) ) & & + e1t(ji+1,jj) * ( pe3_in(ji+1,jj,jk) - e3t_0(ji+1,jj,jk) ) & & ) / e1u(ji,jj) + e3u_0(ji,jj,jk) CASE( 'F' ) pe3_out(ji,jj,jk) = 0.5_wp * umask(ji,jj,jk) * umask(ji,jj+1,jk) & & * ( e1u(ji ,jj) * ( pe3_in(ji ,jj,jk) - e3u_0(ji ,jj,jk) ) & & + e1u(ji+1,jj) * ( pe3_in(ji+1,jj,jk) - e3u_0(ji+1,jj,jk) ) & & ) / e1f(ji,jj) + e3f_0(ji,jj,jk) END SELECT END DO END DO END DO ! ii0 = 160 ; ii1 = 160 ! Bab el Mandeb (e2u and e1v were modified) ij0 = 88 ; ij1 = 88 DO jk = 1, jpkm1 DO jj = mj0(ij0), mj1(ij1) DO ji = mi0(ii0), mi1(ii1) SELECT CASE ( pout ) CASE( 'U' ) pe3_out(ji,jj,jk) = 0.5_wp * umask(ji,jj,jk) & & * ( e1t(ji ,jj) * ( pe3_in(ji ,jj,jk) - e3t_0(ji ,jj,jk) ) & & + e1t(ji+1,jj) * ( pe3_in(ji+1,jj,jk) - e3t_0(ji+1,jj,jk) ) & & ) / e1u(ji,jj) + e3u_0(ji,jj,jk) CASE( 'V' ) pe3_out(ji,jj,jk) = 0.5_wp * vmask(ji,jj,jk) & & * ( e2t(ji,jj ) * ( pe3_in(ji,jj ,jk) - e3t_0(ji,jj ,jk) ) & & + e2t(ji,jj+1) * ( pe3_in(ji,jj+1,jk) - e3t_0(ji,jj+1,jk) ) & & ) / e2v(ji,jj) + e3v_0(ji,jj,jk) CASE( 'F' ) pe3_out(ji,jj,jk) = 0.5_wp * umask(ji,jj,jk) * umask(ji,jj+1,jk) & & * ( e1u(ji ,jj) * ( pe3_in(ji ,jj,jk) - e3u_0(ji ,jj,jk) ) & & + e1u(ji+1,jj) * ( pe3_in(ji+1,jj,jk) - e3u_0(ji+1,jj,jk) ) & & ) / e1f(ji,jj) + e3f_0(ji,jj,jk) END SELECT END DO END DO END DO ENDIF ii0 = 145 ; ii1 = 146 ! Danish Straits (e2u was modified) ij0 = 116 ; ij1 = 116 DO jk = 1, jpkm1 DO jj = mj0(ij0), mj1(ij1) DO ji = mi0(ii0), mi1(ii1) SELECT CASE ( pout ) CASE( 'U' ) pe3_out(ji,jj,jk) = 0.5_wp * umask(ji,jj,jk) & & * ( e1t(ji ,jj) * ( pe3_in(ji ,jj,jk) - e3t_0(ji ,jj,jk) ) & & + e1t(ji+1,jj) * ( pe3_in(ji+1,jj,jk) - e3t_0(ji+1,jj,jk) ) & & ) / e1u(ji,jj) + e3u_0(ji,jj,jk) CASE( 'F' ) pe3_out(ji,jj,jk) = 0.5_wp * umask(ji,jj,jk) * umask(ji,jj+1,jk) & & * ( e1u(ji ,jj) * ( pe3_in(ji ,jj,jk) - e3u_0(ji ,jj,jk) ) & & + e1u(ji+1,jj) * ( pe3_in(ji+1,jj,jk) - e3u_0(ji+1,jj,jk) ) & & ) / e1f(ji,jj) + e3f_0(ji,jj,jk) END SELECT END DO END DO END DO ENDIF ! ! ! ===================== IF( cp_cfg == "orca" .AND. jp_cfg == 1 ) THEN ! ORCA R1 configuration ! ! ===================== ! ii0 = 281 ; ii1 = 282 ! Gibraltar Strait (e2u was modified) ij0 = 200 ; ij1 = 200 DO jk = 1, jpkm1 DO jj = mj0(ij0), mj1(ij1) DO ji = mi0(ii0), mi1(ii1) SELECT CASE ( pout ) CASE( 'U' ) pe3_out(ji,jj,jk) = 0.5_wp * umask(ji,jj,jk) & & * ( e1t(ji ,jj) * ( pe3_in(ji ,jj,jk) - e3t_0(ji ,jj,jk) ) & & + e1t(ji+1,jj) * ( pe3_in(ji+1,jj,jk) - e3t_0(ji+1,jj,jk) ) & & ) / e1u(ji,jj) + e3u_0(ji,jj,jk) CASE( 'F' ) pe3_out(ji,jj,jk) = 0.5_wp * umask(ji,jj,jk) * umask(ji,jj+1,jk) & & * ( e1u(ji ,jj) * ( pe3_in(ji ,jj,jk) - e3u_0(ji ,jj,jk) ) & & + e1u(ji+1,jj) * ( pe3_in(ji+1,jj,jk) - e3u_0(ji+1,jj,jk) ) & & ) / e1f(ji,jj) + e3f_0(ji,jj,jk) END SELECT END DO END DO END DO ! ii0 = 314 ; ii1 = 315 ! Bhosporus Strait (e2u was modified) ij0 = 208 ; ij1 = 208 DO jk = 1, jpkm1 DO jj = mj0(ij0), mj1(ij1) DO ji = mi0(ii0), mi1(ii1) SELECT CASE ( pout ) CASE( 'U' ) pe3_out(ji,jj,jk) = 0.5_wp * umask(ji,jj,jk) & & * ( e1t(ji ,jj) * ( pe3_in(ji ,jj,jk) - e3t_0(ji ,jj,jk) ) & & + e1t(ji+1,jj) * ( pe3_in(ji+1,jj,jk) - e3t_0(ji+1,jj,jk) ) & & ) / e1u(ji,jj) + e3u_0(ji,jj,jk) CASE( 'F' ) pe3_out(ji,jj,jk) = 0.5_wp * umask(ji,jj,jk) * umask(ji,jj+1,jk) & & * ( e1u(ji ,jj) * ( pe3_in(ji ,jj,jk) - e3u_0(ji ,jj,jk) ) & & + e1u(ji+1,jj) * ( pe3_in(ji+1,jj,jk) - e3u_0(ji+1,jj,jk) ) & & ) / e1f(ji,jj) + e3f_0(ji,jj,jk) END SELECT END DO END DO END DO ! ii0 = 44 ; ii1 = 44 ! Lombok Strait (e1v was modified) ij0 = 124 ; ij1 = 125 DO jk = 1, jpkm1 DO jj = mj0(ij0), mj1(ij1) DO ji = mi0(ii0), mi1(ii1) SELECT CASE ( pout ) CASE( 'V' ) pe3_out(ji,jj,jk) = 0.5_wp * vmask(ji,jj,jk) & & * ( e2t(ji,jj ) * ( pe3_in(ji,jj ,jk) - e3t_0(ji,jj ,jk) ) & & + e2t(ji,jj+1) * ( pe3_in(ji,jj+1,jk) - e3t_0(ji,jj+1,jk) ) & & ) / e2v(ji,jj) + e3v_0(ji,jj,jk) END SELECT END DO END DO END DO ! ii0 = 48 ; ii1 = 48 ! Sumba Strait (e1v was modified) [closed from bathy_11 on] ij0 = 124 ; ij1 = 125 DO jk = 1, jpkm1 DO jj = mj0(ij0), mj1(ij1) DO ji = mi0(ii0), mi1(ii1) SELECT CASE ( pout ) CASE( 'V' ) pe3_out(ji,jj,jk) = 0.5_wp * vmask(ji,jj,jk) & & * ( e2t(ji,jj ) * ( pe3_in(ji,jj ,jk) - e3t_0(ji,jj ,jk) ) & & + e2t(ji,jj+1) * ( pe3_in(ji,jj+1,jk) - e3t_0(ji,jj+1,jk) ) & & ) / e2v(ji,jj) + e3v_0(ji,jj,jk) END SELECT END DO END DO END DO ! ii0 = 53 ; ii1 = 53 ! Ombai Strait (e1v was modified) ij0 = 124 ; ij1 = 125 DO jk = 1, jpkm1 DO jj = mj0(ij0), mj1(ij1) DO ji = mi0(ii0), mi1(ii1) SELECT CASE ( pout ) CASE( 'V' ) pe3_out(ji,jj,jk) = 0.5_wp * vmask(ji,jj,jk) & & * ( e2t(ji,jj ) * ( pe3_in(ji,jj ,jk) - e3t_0(ji,jj ,jk) ) & & + e2t(ji,jj+1) * ( pe3_in(ji,jj+1,jk) - e3t_0(ji,jj+1,jk) ) & & ) / e2v(ji,jj) + e3v_0(ji,jj,jk) END SELECT END DO END DO END DO ! ii0 = 56 ; ii1 = 56 ! Timor Passage (e1v was modified) ij0 = 124 ; ij1 = 125 DO jk = 1, jpkm1 DO jj = mj0(ij0), mj1(ij1) DO ji = mi0(ii0), mi1(ii1) SELECT CASE ( pout ) CASE( 'V' ) pe3_out(ji,jj,jk) = 0.5_wp * vmask(ji,jj,jk) & & * ( e2t(ji,jj ) * ( pe3_in(ji,jj ,jk) - e3t_0(ji,jj ,jk) ) & & + e2t(ji,jj+1) * ( pe3_in(ji,jj+1,jk) - e3t_0(ji,jj+1,jk) ) & & ) / e2v(ji,jj) + e3v_0(ji,jj,jk) END SELECT END DO END DO END DO ! ii0 = 55 ; ii1 = 55 ! West Halmahera Strait (e1v was modified) ij0 = 141 ; ij1 = 142 DO jk = 1, jpkm1 DO jj = mj0(ij0), mj1(ij1) DO ji = mi0(ii0), mi1(ii1) SELECT CASE ( pout ) CASE( 'V' ) pe3_out(ji,jj,jk) = 0.5_wp * vmask(ji,jj,jk) & & * ( e2t(ji,jj ) * ( pe3_in(ji,jj ,jk) - e3t_0(ji,jj ,jk) ) & & + e2t(ji,jj+1) * ( pe3_in(ji,jj+1,jk) - e3t_0(ji,jj+1,jk) ) & & ) / e2v(ji,jj) + e3v_0(ji,jj,jk) END SELECT END DO END DO END DO ! ii0 = 58 ; ii1 = 58 ! East Halmahera Strait (e1v was modified) ij0 = 141 ; ij1 = 142 DO jk = 1, jpkm1 DO jj = mj0(ij0), mj1(ij1) DO ji = mi0(ii0), mi1(ii1) SELECT CASE ( pout ) CASE( 'V' ) pe3_out(ji,jj,jk) = 0.5_wp * vmask(ji,jj,jk) & & * ( e2t(ji,jj ) * ( pe3_in(ji,jj ,jk) - e3t_0(ji,jj ,jk) ) & & + e2t(ji,jj+1) * ( pe3_in(ji,jj+1,jk) - e3t_0(ji,jj+1,jk) ) & & ) / e2v(ji,jj) + e3v_0(ji,jj,jk) END SELECT END DO END DO END DO ENDIF ! ! ===================== IF( cp_cfg == "orca" .AND. jp_cfg == 05 ) THEN ! ORCA R05 configuration ! ! ===================== ! ii0 = 563 ; ii1 = 564 ! Gibraltar Strait (e2u was modified) ij0 = 327 ; ij1 = 327 DO jk = 1, jpkm1 DO jj = mj0(ij0), mj1(ij1) DO ji = mi0(ii0), mi1(ii1) SELECT CASE ( pout ) CASE( 'U' ) pe3_out(ji,jj,jk) = 0.5_wp * umask(ji,jj,jk) & & * ( e1t(ji ,jj) * ( pe3_in(ji ,jj,jk) - e3t_0(ji ,jj,jk) ) & & + e1t(ji+1,jj) * ( pe3_in(ji+1,jj,jk) - e3t_0(ji+1,jj,jk) ) & & ) / e1u(ji,jj) + e3u_0(ji,jj,jk) CASE( 'F' ) pe3_out(ji,jj,jk) = 0.5_wp * umask(ji,jj,jk) * umask(ji,jj+1,jk) & & * ( e1u(ji ,jj) * ( pe3_in(ji ,jj,jk) - e3u_0(ji ,jj,jk) ) & & + e1u(ji+1,jj) * ( pe3_in(ji+1,jj,jk) - e3u_0(ji+1,jj,jk) ) & & ) / e1f(ji,jj) + e3f_0(ji,jj,jk) END SELECT END DO END DO END DO ! ii0 = 627 ; ii1 = 628 ! Bosphorus Strait (e2u was modified) ij0 = 343 ; ij1 = 343 DO jk = 1, jpkm1 DO jj = mj0(ij0), mj1(ij1) DO ji = mi0(ii0), mi1(ii1) SELECT CASE ( pout ) CASE( 'U' ) pe3_out(ji,jj,jk) = 0.5_wp * umask(ji,jj,jk) & & * ( e1t(ji ,jj) * ( pe3_in(ji ,jj,jk) - e3t_0(ji ,jj,jk) ) & & + e1t(ji+1,jj) * ( pe3_in(ji+1,jj,jk) - e3t_0(ji+1,jj,jk) ) & & ) / e1u(ji,jj) + e3u_0(ji,jj,jk) CASE( 'F' ) pe3_out(ji,jj,jk) = 0.5_wp * umask(ji,jj,jk) * umask(ji,jj+1,jk) & & * ( e1u(ji ,jj) * ( pe3_in(ji ,jj,jk) - e3u_0(ji ,jj,jk) ) & & + e1u(ji+1,jj) * ( pe3_in(ji+1,jj,jk) - e3u_0(ji+1,jj,jk) ) & & ) / e1f(ji,jj) + e3f_0(ji,jj,jk) END SELECT END DO END DO END DO ! ii0 = 93 ; ii1 = 94 ! Sumba Strait (e2u was modified) ij0 = 232 ; ij1 = 232 DO jk = 1, jpkm1 DO jj = mj0(ij0), mj1(ij1) DO ji = mi0(ii0), mi1(ii1) SELECT CASE ( pout ) CASE( 'U' ) pe3_out(ji,jj,jk) = 0.5_wp * umask(ji,jj,jk) & & * ( e1t(ji ,jj) * ( pe3_in(ji ,jj,jk) - e3t_0(ji ,jj,jk) ) & & + e1t(ji+1,jj) * ( pe3_in(ji+1,jj,jk) - e3t_0(ji+1,jj,jk) ) & & ) / e1u(ji,jj) + e3u_0(ji,jj,jk) CASE( 'F' ) pe3_out(ji,jj,jk) = 0.5_wp * umask(ji,jj,jk) * umask(ji,jj+1,jk) & & * ( e1u(ji ,jj) * ( pe3_in(ji ,jj,jk) - e3u_0(ji ,jj,jk) ) & & + e1u(ji+1,jj) * ( pe3_in(ji+1,jj,jk) - e3u_0(ji+1,jj,jk) ) & & ) / e1f(ji,jj) + e3f_0(ji,jj,jk) END SELECT END DO END DO END DO ! ii0 = 103 ; ii1 = 103 ! Ombai Strait (e2u was modified) ij0 = 232 ; ij1 = 232 DO jk = 1, jpkm1 DO jj = mj0(ij0), mj1(ij1) DO ji = mi0(ii0), mi1(ii1) SELECT CASE ( pout ) CASE( 'U' ) pe3_out(ji,jj,jk) = 0.5_wp * umask(ji,jj,jk) & & * ( e1t(ji ,jj) * ( pe3_in(ji ,jj,jk) - e3t_0(ji ,jj,jk) ) & & + e1t(ji+1,jj) * ( pe3_in(ji+1,jj,jk) - e3t_0(ji+1,jj,jk) ) & & ) / e1u(ji,jj) + e3u_0(ji,jj,jk) CASE( 'F' ) pe3_out(ji,jj,jk) = 0.5_wp * umask(ji,jj,jk) * umask(ji,jj+1,jk) & & * ( e1u(ji ,jj) * ( pe3_in(ji ,jj,jk) - e3u_0(ji ,jj,jk) ) & & + e1u(ji+1,jj) * ( pe3_in(ji+1,jj,jk) - e3u_0(ji+1,jj,jk) ) & & ) / e1f(ji,jj) + e3f_0(ji,jj,jk) END SELECT END DO END DO END DO ! ii0 = 15 ; ii1 = 15 ! Palk Strait (e2u was modified) ij0 = 270 ; ij1 = 270 DO jk = 1, jpkm1 DO jj = mj0(ij0), mj1(ij1) DO ji = mi0(ii0), mi1(ii1) SELECT CASE ( pout ) CASE( 'U' ) pe3_out(ji,jj,jk) = 0.5_wp * umask(ji,jj,jk) & & * ( e1t(ji ,jj) * ( pe3_in(ji ,jj,jk) - e3t_0(ji ,jj,jk) ) & & + e1t(ji+1,jj) * ( pe3_in(ji+1,jj,jk) - e3t_0(ji+1,jj,jk) ) & & ) / e1u(ji,jj) + e3u_0(ji,jj,jk) CASE( 'F' ) pe3_out(ji,jj,jk) = 0.5_wp * umask(ji,jj,jk) * umask(ji,jj+1,jk) & & * ( e1u(ji ,jj) * ( pe3_in(ji ,jj,jk) - e3u_0(ji ,jj,jk) ) & & + e1u(ji+1,jj) * ( pe3_in(ji+1,jj,jk) - e3u_0(ji+1,jj,jk) ) & & ) / e1f(ji,jj) + e3f_0(ji,jj,jk) END SELECT END DO END DO END DO ! ii0 = 87 ; ii1 = 87 ! Lombok Strait (e1v was modified) ij0 = 232 ; ij1 = 233 DO jk = 1, jpkm1 DO jj = mj0(ij0), mj1(ij1) DO ji = mi0(ii0), mi1(ii1) SELECT CASE ( pout ) CASE( 'V' ) pe3_out(ji,jj,jk) = 0.5_wp * vmask(ji,jj,jk) & & * ( e2t(ji,jj ) * ( pe3_in(ji,jj ,jk) - e3t_0(ji,jj ,jk) ) & & + e2t(ji,jj+1) * ( pe3_in(ji,jj+1,jk) - e3t_0(ji,jj+1,jk) ) & & ) / e2v(ji,jj) + e3v_0(ji,jj,jk) END SELECT END DO END DO END DO ! ii0 = 662 ; ii1 = 662 ! Bab el Mandeb (e1v was modified) ij0 = 276 ; ij1 = 276 DO jk = 1, jpkm1 DO jj = mj0(ij0), mj1(ij1) DO ji = mi0(ii0), mi1(ii1) SELECT CASE ( pout ) CASE( 'V' ) pe3_out(ji,jj,jk) = 0.5_wp * vmask(ji,jj,jk) & & * ( e2t(ji,jj ) * ( pe3_in(ji,jj ,jk) - e3t_0(ji,jj ,jk) ) & & + e2t(ji,jj+1) * ( pe3_in(ji,jj+1,jk) - e3t_0(ji,jj+1,jk) ) & & ) / e2v(ji,jj) + e3v_0(ji,jj,jk) END SELECT END DO END DO END DO ENDIF END SUBROUTINE dom_vvl_orca_fix !!====================================================================== END MODULE domvvl