MODULE ldfslp_crs !!====================================================================== !! *** MODULE ldfslp *** !! Ocean physics: slopes of neutral surfaces !!====================================================================== !! History : OPA ! 1994-12 (G. Madec, M. Imbard) Original code !! 8.0 ! 1997-06 (G. Madec) optimization, lbc !! 8.1 ! 1999-10 (A. Jouzeau) NEW profile in the mixed layer !! NEMO 1.0 ! 2002-10 (G. Madec) Free form, F90 !! - ! 2005-10 (A. Beckmann) correction for s-coordinates !! 3.3 ! 2010-10 (G. Nurser, C. Harris, G. Madec) add Griffies operator !! - ! 2010-11 (F. Dupond, G. Madec) bug correction in slopes just below the ML !!---------------------------------------------------------------------- #if defined key_ldfslp || defined key_esopa !!---------------------------------------------------------------------- !! 'key_ldfslp' Rotation of lateral mixing tensor !!---------------------------------------------------------------------- !! ldf_slp_grif : calculates the triads of isoneutral slopes (Griffies operator) !! ldf_slp : calculates the slopes of neutral surface (Madec operator) !! ldf_slp_mxl : calculates the slopes at the base of the mixed layer (Madec operator) !! ldf_slp_init : initialization of the slopes computation !!---------------------------------------------------------------------- !USE oce ! ocean dynamics and tracers !USE dom_oce ! ocean space and time domain USE ldftra_oce ! lateral diffusion: traceur USE ldfdyn_oce ! lateral diffusion: dynamics USE phycst ! physical constants USE zdfmxl_crs ! mixed layer depth USE eosbn2_crs ! equation of states USE crslbclnk ! ocean lateral boundary conditions (or mpp link) USE in_out_manager ! I/O manager USE prtctl ! Print control USE wrk_nemo ! work arrays USE timing ! Timing USE crs USE iom IMPLICIT NONE PRIVATE PUBLIC ldf_slp_crs ! routine called by step.F90 PUBLIC ldf_slp_grif_crs ! routine called by step.F90 PUBLIC ldf_slp_init_crs ! routine called by opa.F90 ! LOGICAL , PUBLIC, PARAMETER :: lk_ldfslp_crs = .TRUE. !: slopes flag ! !! Madec operator ! Arrays allocated in ldf_slp_init() routine once we know whether we're using the Griffies or Madec operator ! !! Griffies operator REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: wslp2 !: wslp**2 from Griffies quarter cells REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:,:,:) :: triadi_g, triadj_g !: skew flux slopes relative to geopotentials REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:,:,:) :: triadi , triadj !: isoneutral slopes relative to model-coordinate ! !! Madec operator ! Arrays allocated in ldf_slp_init() routine once we know whether we're using the Griffies or Madec operator REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: omlmask ! mask of the surface mixed layer at T-pt REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:) :: uslpml, wslpiml ! i_slope at U- and W-points just below the mixed layer REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:) :: vslpml, wslpjml ! j_slope at V- and W-points just below the mixed layer REAL(wp) :: repsln = 1.e-25_wp ! tiny value used as minium of di(rho), dj(rho) and dk(rho) !! * Substitutions # include "domzgr_substitute.h90" # include "ldftra_substitute.h90" # include "ldfeiv_substitute.h90" # include "vectopt_loop_substitute.h90" !!---------------------------------------------------------------------- !! NEMO/OPA 4.0 , NEMO Consortium (2011) !! $Id: ldfslp.F90 3294 2012-01-28 16:44:18Z rblod $ !! Software governed by the CeCILL licence (NEMOGCM/NEMO_CeCILL.txt) !!---------------------------------------------------------------------- CONTAINS SUBROUTINE ldf_slp_crs( kt, prd, pn2 ) !!---------------------------------------------------------------------- !! *** ROUTINE ldf_slp *** !! !! ** Purpose : Compute the slopes of neutral surface (slope of isopycnal !! surfaces referenced locally) (ln_traldf_iso=T). !! !! ** Method : The slope in the i-direction is computed at U- and !! W-points (uslp, wslpi) and the slope in the j-direction is !! computed at V- and W-points (vslp, wslpj). !! They are bounded by 1/100 over the whole ocean, and within the !! surface layer they are bounded by the distance to the surface !! ( slope<= depth/l where l is the length scale of horizontal !! diffusion (here, aht=2000m2/s ==> l=20km with a typical velocity !! of 10cm/s) !! A horizontal shapiro filter is applied to the slopes !! ln_sco=T, s-coordinate, add to the previously computed slopes !! the slope of the model level surface. !! macro-tasked on horizontal slab (jk-loop) (2, jpk-1) !! [slopes already set to zero at level 1, and to zero or the ocean !! bottom slope (ln_sco=T) at level jpk in inildf] !! !! ** Action : - uslp, wslpi, and vslp, wslpj, the i- and j-slopes !! of now neutral surfaces at u-, w- and v- w-points, resp. !!---------------------------------------------------------------------- INTEGER , INTENT(in) :: kt ! ocean time-step index REAL(wp), INTENT(in), DIMENSION(:,:,:) :: prd ! in situ density REAL(wp), INTENT(in), DIMENSION(:,:,:) :: pn2 ! Brunt-Vaisala frequency (locally ref.) !! INTEGER :: ji , jj , jk ! dummy loop indices INTEGER :: ii0, ii1, iku ! temporary integer INTEGER :: ij0, ij1, ikv ! temporary integer REAL(wp) :: zeps, zm1_g, zm1_2g, z1_16, zcofw ! local scalars REAL(wp) :: zci, zfi, zau, zbu, zai, zbi ! - - REAL(wp) :: zcj, zfj, zav, zbv, zaj, zbj ! - - REAL(wp) :: zck, zfk, zbw ! - - REAL(wp), POINTER, DIMENSION(:,:,:) :: zwz, zww REAL(wp), POINTER, DIMENSION(:,:,:) :: zdzr REAL(wp), POINTER, DIMENSION(:,:,:) :: zgru, zgrv !!---------------------------------------------------------------------- ! IF( nn_timing == 1 ) CALL timing_start('ldf_slp_crs') ! CALL wrk_alloc( jpi_crs,jpj_crs,jpk, zwz, zww, zdzr, zgru, zgrv ) zeps = 1.e-20_wp !== Local constant initialization ==! z1_16 = 1.0_wp / 16._wp zm1_g = -1.0_wp / grav zm1_2g = -0.5_wp / grav ! zww(:,:,:) = 0._wp zwz(:,:,:) = 0._wp ! DO jk = 1, jpk !== i- & j-gradient of density ==! DO jj = 1, jpj_crsm1 DO ji = 1, jpi_crsm1 ! vector opt. zgru(ji,jj,jk) = umask_crs(ji,jj,jk) * ( prd(ji+1,jj ,jk) - prd(ji,jj,jk) ) zgrv(ji,jj,jk) = vmask_crs(ji,jj,jk) * ( prd(ji ,jj+1,jk) - prd(ji,jj,jk) ) END DO END DO END DO IF( ln_zps ) THEN ! partial steps correction at the bottom ocean level DO jj = 1, jpj_crsm1 DO ji = 1, jpi_crsm1 zgru(ji,jj,mbku_crs(ji,jj)) = gru_crs(ji,jj) zgrv(ji,jj,mbkv_crs(ji,jj)) = grv_crs(ji,jj) END DO END DO ENDIF ! zdzr(:,:,1) = 0._wp !== Local vertical density gradient at T-point == ! (evaluated from N^2) DO jk = 2, jpkm1 ! ! trick: tmask(ik ) = 0 => all pn2 = 0 => zdzr = 0 ! ! else tmask(ik+1) = 0 => pn2(ik+1) = 0 => zdzr divides by 1 ! ! zdzr = d/dz(prd)= - ( prd ) / grav * mk(pn2) -- at t point ! ! umask(ik+1) /= 0 => all pn2 /= 0 => zdzr divides by 2 ! ! NB: 1/(tmask+1) = (1-.5*tmask) substitute a / by a * ==> faster zdzr(:,:,jk) = zm1_g * ( prd(:,:,jk) + 1._wp ) & & * ( pn2(:,:,jk) + pn2(:,:,jk+1) ) * ( 1._wp - 0.5_wp * tmask_crs(:,:,jk+1) ) END DO ! ! !== Slopes just below the mixed layer ==! CALL ldf_slp_mxl_crs( prd, pn2, zgru, zgrv, zdzr ) ! output: uslpml, vslpml, wslpiml, wslpjml ! I. slopes at u and v point | uslp = d/di( prd ) / d/dz( prd ) ! =========================== | vslp = d/dj( prd ) / d/dz( prd ) ! DO jk = 2, jpkm1 !* Slopes at u and v points DO jj = 2, jpj_crsm1 DO ji = 2, jpi_crsm1 ! vector opt. ! ! horizontal and vertical density gradient at u- and v-points zau = zgru(ji,jj,jk) / e1u_crs(ji,jj) zav = zgrv(ji,jj,jk) / e2v_crs(ji,jj) zbu = 0.5_wp * ( zdzr(ji,jj,jk) + zdzr(ji+1,jj ,jk) ) zbv = 0.5_wp * ( zdzr(ji,jj,jk) + zdzr(ji ,jj+1,jk) ) ! ! bound the slopes: abs(zw.)<= 1/100 and zb..<0 ! ! + kxz max= ah slope max =< e1 e3 /(pi**2 2 dt) zbu = MIN( zbu, -100._wp* ABS( zau ) , -7.e+3_wp/e3u_max_crs(ji,jj,jk)* ABS( zau ) ) zbv = MIN( zbv, -100._wp* ABS( zav ) , -7.e+3_wp/e3v_max_crs(ji,jj,jk)* ABS( zav ) ) !cc zbu = MIN( zbu, -100._wp* ABS( zau ) , -7.e+3_wp/e3u_crs(ji,jj,jk)* ABS( zau ) ) !cc zbv = MIN( zbv, -100._wp* ABS( zav ) , -7.e+3_wp/e3v_crs(ji,jj,jk)* ABS( zav ) ) ! ! uslp and vslp output in zwz and zww, resp. zfi = MAX( omlmask(ji,jj,jk), omlmask(ji+1,jj,jk) ) zfj = MAX( omlmask(ji,jj,jk), omlmask(ji,jj+1,jk) ) zwz(ji,jj,jk) = ( ( 1. - zfi) * zau / ( zbu - zeps ) & & + zfi * uslpml(ji,jj) & & * 0.5_wp * ( gdept_crs(ji+1,jj,jk)+gdept_crs(ji,jj,jk) - e3u_max_crs(ji,jj,1) ) & & / MAX( hmlpt_crs(ji,jj), hmlpt_crs(ji+1,jj), 5._wp ) ) * umask_crs(ji,jj,jk) zww(ji,jj,jk) = ( ( 1. - zfj) * zav / ( zbv - zeps ) & & + zfj * vslpml(ji,jj) & & * 0.5_wp * ( gdept_crs(ji,jj+1,jk)+ gdept_crs(ji,jj,jk)-e3v_max_crs(ji,jj,1) ) & & / MAX( hmlpt_crs(ji,jj), hmlpt_crs(ji,jj+1), 5. ) ) * vmask_crs(ji,jj,jk) !!gm modif to suppress omlmask.... (as in Griffies case) ! ! ! jk must be >= ML level for zf=1. otherwise zf=0. ! zfi = REAL( 1 - 1/(1 + jk / MAX( nmln(ji+1,jj), nmln(ji,jj) ) ), wp ) ! zfj = REAL( 1 - 1/(1 + jk / MAX( nmln(ji,jj+1), nmln(ji,jj) ) ), wp ) ! zci = 0.5 * ( fsdept(ji+1,jj,jk)+fsdept(ji,jj,jk) ) / MAX( hmlpt(ji,jj), hmlpt(ji+1,jj), 10. ) ) ! zcj = 0.5 * ( fsdept(ji,jj+1,jk)+fsdept(ji,jj,jk) ) / MAX( hmlpt(ji,jj), hmlpt(ji,jj+1), 10. ) ) ! zwz(ji,jj,jk) = ( zfi * zai / ( zbi - zeps ) + ( 1._wp - zfi ) * wslpiml(ji,jj) * zci ) * tmask(ji,jj,jk) ! zww(ji,jj,jk) = ( zfj * zaj / ( zbj - zeps ) + ( 1._wp - zfj ) * wslpjml(ji,jj) * zcj ) * tmask(ji,jj,jk) !!gm end modif END DO END DO END DO CALL crs_lbc_lnk( zwz, 'U', -1. ) ; CALL crs_lbc_lnk( zww, 'V', -1. ) ! lateral boundary conditions CALL iom_put("zwz_crs",zwz) CALL iom_put("zww_crs",zww) ! ! !* horizontal Shapiro filter DO jk = 2, jpkm1 DO jj = 2, jpj_crsm1, MAX(1, jpj_crs-3) ! rows jj=2 and =jpjm1 only DO ji = 2, jpi_crsm1 uslp_crs(ji,jj,jk) = z1_16 * ( zwz(ji-1,jj-1,jk) + zwz(ji+1,jj-1,jk) & & + zwz(ji-1,jj+1,jk) + zwz(ji+1,jj+1,jk) & & + 2.*( zwz(ji ,jj-1,jk) + zwz(ji-1,jj ,jk) & & + zwz(ji+1,jj ,jk) + zwz(ji ,jj+1,jk) ) & & + 4.* zwz(ji ,jj ,jk) ) vslp_crs(ji,jj,jk) = z1_16 * ( zww(ji-1,jj-1,jk) + zww(ji+1,jj-1,jk) & & + zww(ji-1,jj+1,jk) + zww(ji+1,jj+1,jk) & & + 2.*( zww(ji ,jj-1,jk) + zww(ji-1,jj ,jk) & & + zww(ji+1,jj ,jk) + zww(ji ,jj+1,jk) ) & & + 4.* zww(ji,jj ,jk) ) END DO END DO DO jj = 3, jpj_crs-2 ! other rows DO ji = 2, jpi_crsm1 ! vector opt. uslp_crs(ji,jj,jk) = z1_16 * ( zwz(ji-1,jj-1,jk) + zwz(ji+1,jj-1,jk) & & + zwz(ji-1,jj+1,jk) + zwz(ji+1,jj+1,jk) & & + 2.*( zwz(ji ,jj-1,jk) + zwz(ji-1,jj ,jk) & & + zwz(ji+1,jj ,jk) + zwz(ji ,jj+1,jk) ) & & + 4.* zwz(ji ,jj ,jk) ) vslp_crs(ji,jj,jk) = z1_16 * ( zww(ji-1,jj-1,jk) + zww(ji+1,jj-1,jk) & & + zww(ji-1,jj+1,jk) + zww(ji+1,jj+1,jk) & & + 2.*( zww(ji ,jj-1,jk) + zww(ji-1,jj ,jk) & & + zww(ji+1,jj ,jk) + zww(ji ,jj+1,jk) ) & & + 4.* zww(ji,jj ,jk) ) END DO END DO ! !* decrease along coastal boundaries DO jj = 2, jpj_crsm1 DO ji = 2, jpi_crsm1 ! vector opt. uslp_crs(ji,jj,jk) = uslp_crs(ji,jj,jk) * ( umask_crs(ji,jj+1,jk) + umask_crs(ji,jj-1,jk ) ) * 0.5_wp & & * ( umask_crs(ji,jj ,jk) + umask_crs(ji,jj ,jk+1) ) * 0.5_wp vslp_crs(ji,jj,jk) = vslp_crs(ji,jj,jk) * ( vmask_crs(ji+1,jj,jk) + vmask_crs(ji-1,jj,jk ) ) * 0.5_wp & & * ( vmask_crs(ji ,jj,jk) + vmask_crs(ji ,jj,jk+1) ) * 0.5_wp END DO END DO END DO ! II. slopes at w point | wslpi = mij( d/di( prd ) / d/dz( prd ) ! =========================== | wslpj = mij( d/dj( prd ) / d/dz( prd ) ! DO jk = 2, jpkm1 DO jj = 2, jpj_crsm1 DO ji = 2, jpi_crsm1 ! vector opt. ! !* Local vertical density gradient evaluated from N^2 zbw = zm1_2g * pn2 (ji,jj,jk) * ( prd (ji,jj,jk) + prd (ji,jj,jk-1) + 2. ) ! !* Slopes at w point ! ! i- & j-gradient of density at w-points zci = MAX( umask_crs(ji-1,jj,jk ) + umask_crs(ji,jj,jk ) & & + umask_crs(ji-1,jj,jk-1) + umask_crs(ji,jj,jk-1) , zeps ) * e1t_crs(ji,jj) zcj = MAX( vmask_crs(ji,jj-1,jk ) + vmask_crs(ji,jj,jk-1) & & + vmask_crs(ji,jj-1,jk-1) + vmask_crs(ji,jj,jk ) , zeps ) * e2t_crs(ji,jj) zai = ( zgru (ji-1,jj,jk ) + zgru (ji,jj,jk-1) & & + zgru (ji-1,jj,jk-1) + zgru (ji,jj,jk ) ) / zci * tmask_crs (ji,jj,jk) zaj = ( zgrv (ji,jj-1,jk ) + zgrv (ji,jj,jk-1) & & + zgrv (ji,jj-1,jk-1) + zgrv (ji,jj,jk ) ) / zcj * tmask_crs (ji,jj,jk) ! ! bound the slopes: abs(zw.)<= 1/100 and zb..<0. ! ! + kxz max= ah slope max =< e1 e3 /(pi**2 2 dt) zbi = MIN( zbw ,- 100._wp* ABS( zai ) , -7.e+3_wp/e3w_max_crs(ji,jj,jk)* ABS( zai ) ) zbj = MIN( zbw , -100._wp* ABS( zaj ) , -7.e+3_wp/e3w_max_crs(ji,jj,jk)* ABS( zaj ) ) ! ! wslpi and wslpj with ML flattening (output in zwz and zww, resp.) zfk = MAX( omlmask(ji,jj,jk), omlmask(ji,jj,jk-1) ) ! zfk=1 in the ML otherwise zfk=0 zck = gdepw_crs(ji,jj,jk) / MAX( hmlp_crs(ji,jj), 10._wp ) zwz(ji,jj,jk) = ( zai / ( zbi - zeps ) * ( 1._wp - zfk ) + zck * wslpiml(ji,jj) * zfk ) * tmask_crs(ji,jj,jk) zww(ji,jj,jk) = ( zaj / ( zbj - zeps ) * ( 1._wp - zfk ) + zck * wslpjml(ji,jj) * zfk ) * tmask_crs(ji,jj,jk) !!gm modif to suppress omlmask.... (as in Griffies operator) ! ! ! jk must be >= ML level for zfk=1. otherwise zfk=0. ! zfk = REAL( 1 - 1/(1 + jk / nmln(ji+1,jj)), wp ) ! zck = fsdepw(ji,jj,jk) / MAX( hmlp(ji,jj), 10. ) ! zwz(ji,jj,jk) = ( zfk * zai / ( zbi - zeps ) + ( 1._wp - zfk ) * wslpiml(ji,jj) * zck ) * tmask(ji,jj,jk) ! zww(ji,jj,jk) = ( zfk * zaj / ( zbj - zeps ) + ( 1._wp - zfk ) * wslpjml(ji,jj) * zck ) * tmask(ji,jj,jk) !!gm end modif END DO END DO END DO CALL crs_lbc_lnk( zwz, 'T', -1. ) ; CALL crs_lbc_lnk( zww, 'T', -1. ) ! lateral boundary conditions ! ! !* horizontal Shapiro filter DO jk = 2, jpkm1 DO jj = 2, jpj_crsm1, MAX(1, jpj-3) ! rows jj=2 and =jpjm1 only DO ji = 2, jpi_crsm1 zcofw = tmask_crs(ji,jj,jk) * z1_16 wslpi_crs(ji,jj,jk) = ( zwz(ji-1,jj-1,jk) + zwz(ji+1,jj-1,jk) & & + zwz(ji-1,jj+1,jk) + zwz(ji+1,jj+1,jk) & & + 2.*( zwz(ji ,jj-1,jk) + zwz(ji-1,jj ,jk) & & + zwz(ji+1,jj ,jk) + zwz(ji ,jj+1,jk) ) & & + 4.* zwz(ji ,jj ,jk) ) * zcofw wslpj_crs(ji,jj,jk) = ( zww(ji-1,jj-1,jk) + zww(ji+1,jj-1,jk) & & + zww(ji-1,jj+1,jk) + zww(ji+1,jj+1,jk) & & + 2.*( zww(ji ,jj-1,jk) + zww(ji-1,jj ,jk) & & + zww(ji+1,jj ,jk) + zww(ji ,jj+1,jk) ) & & + 4.* zww(ji ,jj ,jk) ) * zcofw END DO END DO DO jj = 3, jpj_crs-2 ! other rows DO ji = 2, jpi_crsm1 ! vector opt. zcofw = tmask_crs(ji,jj,jk) * z1_16 wslpi_crs(ji,jj,jk) = ( zwz(ji-1,jj-1,jk) + zwz(ji+1,jj-1,jk) & & + zwz(ji-1,jj+1,jk) + zwz(ji+1,jj+1,jk) & & + 2.*( zwz(ji ,jj-1,jk) + zwz(ji-1,jj ,jk) & & + zwz(ji+1,jj ,jk) + zwz(ji ,jj+1,jk) ) & & + 4.* zwz(ji ,jj ,jk) ) * zcofw wslpj_crs(ji,jj,jk) = ( zww(ji-1,jj-1,jk) + zww(ji+1,jj-1,jk) & & + zww(ji-1,jj+1,jk) + zww(ji+1,jj+1,jk) & & + 2.*( zww(ji ,jj-1,jk) + zww(ji-1,jj ,jk) & & + zww(ji+1,jj ,jk) + zww(ji ,jj+1,jk) ) & & + 4.* zww(ji ,jj ,jk) ) * zcofw END DO END DO ! !* decrease along coastal boundaries DO jj = 2, jpj_crsm1 DO ji = 2, jpi_crsm1 ! vector opt. zck = ( umask_crs(ji,jj,jk) + umask_crs(ji-1,jj,jk) ) & & * ( vmask_crs(ji,jj,jk) + vmask_crs(ji,jj-1,jk) ) * 0.25 wslpi_crs(ji,jj,jk) = wslpi_crs(ji,jj,jk) * zck wslpj_crs(ji,jj,jk) = wslpj_crs(ji,jj,jk) * zck END DO END DO END DO ! IV. Lateral boundary conditions ! =============================== CALL crs_lbc_lnk( uslp_crs , 'U', -1. ) CALL crs_lbc_lnk( vslp_crs , 'V', -1. ) CALL crs_lbc_lnk( wslpi_crs, 'W', -1. ) ; CALL crs_lbc_lnk( wslpj_crs, 'W', -1. ) ! CALL iom_swap( "nemo_crs" ) ! swap on the coarse grid CALL iom_put("zgru_crs",zgru) CALL iom_put("zgrv_crs",zgrv) CALL iom_put("zdzr_crs",zdzr) CALL iom_put("zwz_crs",zwz) CALL iom_put("zww_crs",zww) CALL iom_put("uslp_crs",uslp_crs) CALL iom_put("vslp_crs",vslp_crs) CALL iom_swap( "nemo" ) ! swap on the coarse grid ! CALL wrk_dealloc( jpi_crs,jpj_crs,jpk, zwz, zww, zdzr, zgru, zgrv ) ! IF( nn_timing == 1 ) CALL timing_stop('ldf_slp_crs') ! END SUBROUTINE ldf_slp_crs SUBROUTINE ldf_slp_mxl_crs( prd, pn2, p_gru, p_grv, p_dzr ) !!---------------------------------------------------------------------- !! *** ROUTINE ldf_slp_mxl *** !! !! ** Purpose : Compute the slopes of iso-neutral surface just below !! the mixed layer. !! !! ** Method : The slope in the i-direction is computed at u- & w-points !! (uslpml, wslpiml) and the slope in the j-direction is computed !! at v- and w-points (vslpml, wslpjml) with the same bounds as !! in ldf_slp. !! !! ** Action : uslpml, wslpiml : i- & j-slopes of neutral surfaces !! vslpml, wslpjml just below the mixed layer !! omlmask : mixed layer mask !!---------------------------------------------------------------------- REAL(wp), DIMENSION(:,:,:), INTENT(in) :: prd ! in situ density REAL(wp), DIMENSION(:,:,:), INTENT(in) :: pn2 ! Brunt-Vaisala frequency (locally ref.) REAL(wp), DIMENSION(:,:,:), INTENT(in) :: p_gru, p_grv ! i- & j-gradient of density (u- & v-pts) REAL(wp), DIMENSION(:,:,:), INTENT(in) :: p_dzr ! z-gradient of density (T-point) !! INTEGER :: ji , jj , jk ! dummy loop indices INTEGER :: iku, ikv, ik, ikm1 ! local integers REAL(wp) :: zeps, zm1_g, zm1_2g ! local scalars REAL(wp) :: zci, zfi, zau, zbu, zai, zbi ! - - REAL(wp) :: zcj, zfj, zav, zbv, zaj, zbj ! - - REAL(wp) :: zck, zfk, zbw ! - - !!---------------------------------------------------------------------- ! IF( nn_timing == 1 ) CALL timing_start('ldf_slp_mxl') ! zeps = 1.e-20_wp !== Local constant initialization ==! zm1_g = -1.0_wp / grav zm1_2g = -0.5_wp / grav ! uslpml (1,:) = 0._wp ; uslpml (jpi_crs,:) = 0._wp vslpml (1,:) = 0._wp ; vslpml (jpi_crs,:) = 0._wp wslpiml(1,:) = 0._wp ; wslpiml(jpi_crs,:) = 0._wp wslpjml(1,:) = 0._wp ; wslpjml(jpi_crs,:) = 0._wp ! ! !== surface mixed layer mask ! DO jk = 1, jpk ! =1 inside the mixed layer, =0 otherwise DO jj = 1, jpj_crs DO ji = 1, jpi_crs ik = nmln_crs(ji,jj) - 1 IF( jk <= ik ) THEN ; omlmask(ji,jj,jk) = 1._wp ELSE ; omlmask(ji,jj,jk) = 0._wp ENDIF END DO END DO END DO ! Slopes of isopycnal surfaces just before bottom of mixed layer ! -------------------------------------------------------------- ! The slope are computed as in the 3D case. ! A key point here is the definition of the mixed layer at u- and v-points. ! It is assumed to be the maximum of the two neighbouring T-point mixed layer depth. ! Otherwise, a n2 value inside the mixed layer can be involved in the computation ! of the slope, resulting in a too steep diagnosed slope and thus a spurious eddy ! induce velocity field near the base of the mixed layer. !----------------------------------------------------------------------- ! DO jj = 2, jpj_crsm1 DO ji = 2, jpi_crsm1 ! !== Slope at u- & v-points just below the Mixed Layer ==! ! ! !- vertical density gradient for u- and v-slopes (from dzr at T-point) iku = MIN( MAX( 1, nmln_crs(ji,jj) , nmln_crs(ji+1,jj) ) , jpkm1 ) ! ML (MAX of T-pts, bound by jpkm1) ikv = MIN( MAX( 1, nmln_crs(ji,jj) , nmln_crs(ji,jj+1) ) , jpkm1 ) ! zbu = 0.5_wp * ( p_dzr(ji,jj,iku) + p_dzr(ji+1,jj ,iku) ) zbv = 0.5_wp * ( p_dzr(ji,jj,ikv) + p_dzr(ji ,jj+1,ikv) ) ! !- horizontal density gradient at u- & v-points zau = p_gru(ji,jj,iku) / e1u_crs(ji,jj) zav = p_grv(ji,jj,ikv) / e2v_crs(ji,jj) ! !- bound the slopes: abs(zw.)<= 1/100 and zb..<0 ! kxz max= ah slope max =< e1 e3 /(pi**2 2 dt) zbu = MIN( zbu , -100._wp* ABS( zau ) , -7.e+3_wp/e3u_max_crs(ji,jj,iku)* ABS( zau ) ) zbv = MIN( zbv , -100._wp* ABS( zav ) , -7.e+3_wp/e3v_max_crs(ji,jj,ikv)* ABS( zav ) ) ! !- Slope at u- & v-points (uslpml, vslpml) uslpml(ji,jj) = zau / ( zbu - zeps ) * umask_crs(ji,jj,iku) vslpml(ji,jj) = zav / ( zbv - zeps ) * vmask_crs(ji,jj,ikv) ! ! !== i- & j-slopes at w-points just below the Mixed Layer ==! ! ik = MIN( nmln_crs(ji,jj) + 1, jpk ) ikm1 = MAX( 1, ik-1 ) ! !- vertical density gradient for w-slope (from N^2) zbw = zm1_2g * pn2 (ji,jj,ik) * ( prd (ji,jj,ik) + prd (ji,jj,ikm1) + 2. ) ! !- horizontal density i- & j-gradient at w-points zci = MAX( umask_crs(ji-1,jj,ik ) + umask_crs(ji,jj,ik ) & & + umask_crs(ji-1,jj,ikm1) + umask_crs(ji,jj,ikm1) , zeps ) * e1t_crs(ji,jj) zcj = MAX( vmask_crs(ji,jj-1,ik ) + vmask_crs(ji,jj,ik ) & & + vmask_crs(ji,jj-1,ikm1) + vmask_crs(ji,jj,ikm1) , zeps ) * e2t_crs(ji,jj) zai = ( p_gru(ji-1,jj,ik ) + p_gru(ji,jj,ik) & & + p_gru(ji-1,jj,ikm1) + p_gru(ji,jj,ikm1 ) ) / zci * tmask_crs(ji,jj,ik) zaj = ( p_grv(ji,jj-1,ik ) + p_grv(ji,jj,ik ) & & + p_grv(ji,jj-1,ikm1) + p_grv(ji,jj,ikm1) ) / zcj * tmask_crs(ji,jj,ik) ! !- bound the slopes: abs(zw.)<= 1/100 and zb..<0. ! kxz max= ah slope max =< e1 e3 /(pi**2 2 dt) zbi = MIN( zbw , -100._wp* ABS( zai ) , -7.e+3_wp/e3w_max_crs(ji,jj,ik)* ABS( zai ) ) zbj = MIN( zbw , -100._wp* ABS( zaj ) , -7.e+3_wp/e3w_max_crs(ji,jj,ik)* ABS( zaj ) ) ! !- i- & j-slope at w-points (wslpiml, wslpjml) wslpiml(ji,jj) = zai / ( zbi - zeps ) * tmask_crs (ji,jj,ik) wslpjml(ji,jj) = zaj / ( zbj - zeps ) * tmask_crs (ji,jj,ik) END DO END DO !!gm this lbc_lnk should be useless.... CALL crs_lbc_lnk( uslpml , 'U', -1. ) ; CALL crs_lbc_lnk( vslpml , 'V', -1. ) ! lateral boundary cond. (sign change) CALL crs_lbc_lnk( wslpiml, 'W', -1. ) ; CALL crs_lbc_lnk( wslpjml, 'W', -1. ) ! lateral boundary conditions ! IF( nn_timing == 1 ) CALL timing_stop('ldf_slp_mxl') ! END SUBROUTINE ldf_slp_mxl_crs SUBROUTINE ldf_slp_init_crs !!---------------------------------------------------------------------- !! *** ROUTINE ldf_slp_init *** !! !! ** Purpose : Initialization for the isopycnal slopes computation !! !! ** Method : read the nammbf namelist and check the parameter !! values called by tra_dmp at the first timestep (nit000) !!---------------------------------------------------------------------- INTEGER :: ji, jj, jk ! dummy loop indices INTEGER :: ierr ! local integer !!---------------------------------------------------------------------- ! IF( nn_timing == 1 ) CALL timing_start('ldf_slp_init') ! IF(lwp) THEN WRITE(numout,*) WRITE(numout,*) 'ldf_slp_init_crs : direction of lateral mixing' WRITE(numout,*) '~~~~~~~~~~~~' ENDIF IF( ln_traldf_grif ) THEN ! Griffies operator : triad of slopes ALLOCATE( triadi_g(jpi_crs,jpj_crs,jpk,0:1,0:1) , triadj_g(jpi_crs,jpj_crs,jpk,0:1,0:1) , wslp2(jpi_crs,jpj_crs,jpk) , STAT=ierr ) ALLOCATE( triadi (jpi_crs,jpj_crs,jpk,0:1,0:1) , triadj (jpi_crs,jpj_crs,jpk,0:1,0:1) , STAT=ierr ) IF( ierr > 0 ) CALL ctl_stop( 'STOP', 'ldf_slp_init : unable to allocate Griffies operator slope' ) ! IF( ln_dynldf_iso ) CALL ctl_stop( 'ldf_slp_init: Griffies operator on momentum not supported' ) ! ELSE ! Madec operator : slopes at u-, v-, and w-points ALLOCATE( uslp_crs(jpi_crs,jpj_crs,jpk) , vslp_crs(jpi_crs,jpj_crs,jpk) , & & wslpi_crs(jpi_crs,jpj_crs,jpk) , wslpj_crs(jpi_crs,jpj_crs,jpk) , & & omlmask(jpi_crs,jpj_crs,jpk) , & & uslpml(jpi_crs,jpj_crs) , vslpml(jpi_crs,jpj_crs) , & & wslpiml(jpi_crs,jpj_crs) , wslpjml(jpi_crs,jpj_crs) , STAT=ierr ) IF( ierr > 0 ) CALL ctl_stop( 'STOP', 'ldf_slp_init : unable to allocate Madec operator slope ' ) ! Direction of lateral diffusion (tracers and/or momentum) ! ------------------------------ uslp_crs (:,:,:) = 0._wp ; uslpml (:,:) = 0._wp ! set the slope to zero (even in s-coordinates) vslp_crs (:,:,:) = 0._wp ; vslpml (:,:) = 0._wp wslpi_crs(:,:,:) = 0._wp ; wslpiml(:,:) = 0._wp wslpj_crs(:,:,:) = 0._wp ; wslpjml(:,:) = 0._wp !!gm I no longer understand this..... IF( (ln_traldf_hor .OR. ln_dynldf_hor) .AND. .NOT. (lk_vvl .AND. ln_rstart) ) THEN IF(lwp) WRITE(numout,*) ' Horizontal mixing in s-coordinate: slope = slope of s-surfaces' ! geopotential diffusion in s-coordinates on tracers and/or momentum ! The slopes of s-surfaces are computed once (no call to ldfslp in step) ! The slopes for momentum diffusion are i- or j- averaged of those on tracers ! set the slope of diffusion to the slope of s-surfaces ! ( c a u t i o n : minus sign as fsdep has positive value ) DO jk = 1, jpk DO jj = 2, jpj_crsm1 DO ji = 2, jpi_crsm1 ! vector opt. !cbr uslp_crs (ji,jj,jk) = -1./e1u_crs(ji,jj) * ( gdept_crs(ji+1,jj,jk) - gdept_crs(ji ,jj ,jk) ) * umask_crs(ji,jj,jk) !vslp_crs (ji,jj,jk) = -1./e2v_crs(ji,jj) * ( gdept_crs(ji,jj+1,jk) - gdept_crs(ji ,jj ,jk) ) * vmask_crs(ji,jj,jk) !wslpi_crs(ji,jj,jk) = -1./e1t_crs(ji,jj) * ( gdepw_crs(ji+1,jj,jk) - gdepw_crs(ji-1,jj,jk) ) * tmask_crs(ji,jj,jk) * 0.5 !wslpj_crs(ji,jj,jk) = -1./e2t_crs(ji,jj) * ( gdepw_crs(ji,jj+1,jk) - gdepw_crs(ji,jj-1,jk) ) * tmask_crs(ji,jj,jk) * 0.5 uslp_crs (ji,jj,jk) = -1. * ( gdept_crs(ji+1,jj,jk) - gdept_crs(ji ,jj ,jk) ) * umask_crs(ji,jj,jk) IF( e1u_crs(ji,jj) .NE. 0._wp ) uslp_crs (ji,jj,jk) = uslp_crs (ji,jj,jk) / e1u_crs(ji,jj) vslp_crs (ji,jj,jk) = -1. * ( gdept_crs(ji,jj+1,jk) - gdept_crs(ji ,jj ,jk) ) * vmask_crs(ji,jj,jk) IF( e2v_crs(ji,jj) .NE. 0._wp ) vslp_crs (ji,jj,jk) = vslp_crs (ji,jj,jk) / e2v_crs(ji,jj) wslpi_crs(ji,jj,jk) = -1. * ( gdepw_crs(ji+1,jj,jk) - gdepw_crs(ji-1,jj,jk) ) * tmask_crs(ji,jj,jk) * 0.5 IF( e1t_crs(ji,jj) .NE. 0._wp ) wslpi_crs(ji,jj,jk) = wslpi_crs(ji,jj,jk) / e1t_crs(ji,jj) wslpj_crs(ji,jj,jk) = -1. * ( gdepw_crs(ji,jj+1,jk) - gdepw_crs(ji,jj-1,jk) ) * tmask_crs(ji,jj,jk) * 0.5 IF( e2t_crs(ji,jj) .NE. 0._wp ) wslpj_crs(ji,jj,jk) = wslpj_crs(ji,jj,jk) / e2t_crs(ji,jj) END DO END DO END DO CALL crs_lbc_lnk( uslp_crs , 'U', -1. ) ; CALL crs_lbc_lnk( vslp_crs , 'V', -1. ) ! Lateral boundary conditions CALL crs_lbc_lnk( wslpi_crs, 'W', -1. ) ; CALL crs_lbc_lnk( wslpj_crs, 'W', -1. ) ENDIF ENDIF ! IF( nn_timing == 1 ) CALL timing_stop('ldf_slp_init') ! END SUBROUTINE ldf_slp_init_crs #else !!------------------------------------------------------------------------ !! Dummy module : NO Rotation of lateral mixing tensor !!------------------------------------------------------------------------ LOGICAL, PUBLIC, PARAMETER :: lk_ldfslp_crs = .FALSE. !: slopes flag CONTAINS SUBROUTINE ldf_slp_crs( kt, prd, pn2 ) ! Dummy routine INTEGER, INTENT(in) :: kt REAL, DIMENSION(:,:,:), INTENT(in) :: prd, pn2 WRITE(*,*) 'ldf_slp: You should not have seen this print! error?', kt, prd(1,1,1), pn2(1,1,1) END SUBROUTINE ldf_slp_crs SUBROUTINE ldf_slp_init_crs ! Dummy routine END SUBROUTINE ldf_slp_init_crs #endif SUBROUTINE ldf_slp_grif_crs( kt ) ! Dummy routine INTEGER, INTENT(in) :: kt WRITE(*,*) 'ldf_slp_grif: You should not have seen this print! error?', kt END SUBROUTINE ldf_slp_grif_crs !!====================================================================== END MODULE ldfslp_crs