MODULE limupdate2 !!====================================================================== !! *** MODULE limupdate2 *** !! LIM-3 : Update of sea-ice global variables at the end of the time step !!====================================================================== !! History : 3.0 ! 2006-04 (M. Vancoppenolle) Original code !! 3.6 ! 2014-06 (C. Rousset) Complete rewriting/cleaning !!---------------------------------------------------------------------- #if defined key_lim3 !!---------------------------------------------------------------------- !! 'key_lim3' LIM3 sea-ice model !!---------------------------------------------------------------------- !! lim_update2 : computes update of sea-ice global variables from trend terms !!---------------------------------------------------------------------- USE limrhg ! ice rheology USE dom_oce USE oce ! dynamics and tracers variables USE in_out_manager USE sbc_oce ! Surface boundary condition: ocean fields USE sbc_ice ! Surface boundary condition: ice fields USE dom_ice USE phycst ! physical constants USE ice USE limdyn USE limtrp USE limthd USE limsbc USE limdiahsb USE limwri USE limrst USE thd_ice ! LIM thermodynamic sea-ice variables USE par_ice USE limitd_th USE limitd_me USE limvar USE prtctl ! Print control USE lbclnk ! lateral boundary condition - MPP exchanges USE wrk_nemo ! work arrays USE lib_fortran ! glob_sum USE timing ! Timing USE limcons ! conservation tests IMPLICIT NONE PRIVATE PUBLIC lim_update2 ! routine called by ice_step !! * Substitutions # include "vectopt_loop_substitute.h90" !!---------------------------------------------------------------------- !! NEMO/LIM3 4.0 , UCL - NEMO Consortium (2011) !! $Id$ !! Software governed by the CeCILL licence (NEMOGCM/NEMO_CeCILL.txt) !!---------------------------------------------------------------------- CONTAINS SUBROUTINE lim_update2 !!------------------------------------------------------------------- !! *** ROUTINE lim_update2 *** !! !! ** Purpose : Computes update of sea-ice global variables at !! the end of the time step. !! !!--------------------------------------------------------------------- INTEGER :: ji, jj, jk, jl ! dummy loop indices INTEGER :: i_ice_switch REAL(wp) :: zh, zsal ! REAL(wp) :: zvi_b, zsmv_b, zei_b, zfs_b, zfw_b, zft_b !!------------------------------------------------------------------- IF( nn_timing == 1 ) CALL timing_start('limupdate2') ! conservation test IF( ln_limdiahsb ) CALL lim_cons_hsm(0, 'limupdate2', zvi_b, zsmv_b, zei_b, zfw_b, zfs_b, zft_b) !----------------- ! zap small values !----------------- CALL lim_itd_me_zapsmall CALL lim_var_glo2eqv !---------------------------------------------------- ! Rebin categories with thickness out of bounds !---------------------------------------------------- IF ( jpl > 1 ) CALL lim_itd_th_reb(1, jpl) !---------------------------------------------------------------------- ! Constrain the thickness of the smallest category above hiclim !---------------------------------------------------------------------- DO jj = 1, jpj DO ji = 1, jpi IF( v_i(ji,jj,1) > 0._wp .AND. ht_i(ji,jj,1) < hiclim ) THEN zh = hiclim / ht_i(ji,jj,1) ht_s(ji,jj,1) = ht_s(ji,jj,1) * zh ht_i(ji,jj,1) = ht_i(ji,jj,1) * zh a_i (ji,jj,1) = a_i(ji,jj,1) / zh ENDIF END DO END DO !----------------------------------------------------- ! ice concentration should not exceed amax !----------------------------------------------------- at_i(:,:) = 0._wp DO jl = 1, jpl at_i(:,:) = a_i(:,:,jl) + at_i(:,:) END DO DO jl = 1, jpl DO jj = 1, jpj DO ji = 1, jpi IF( at_i(ji,jj) > amax .AND. a_i(ji,jj,jl) > 0._wp ) THEN a_i(ji,jj,jl) = a_i(ji,jj,jl) * ( 1._wp - ( 1._wp - amax / at_i(ji,jj) ) ) ht_i(ji,jj,jl) = v_i(ji,jj,jl) / a_i(ji,jj,jl) ENDIF END DO END DO END DO at_i(:,:) = 0.0 DO jl = 1, jpl at_i(:,:) = a_i(:,:,jl) + at_i(:,:) END DO ! -------------------------------------- ! Final thickness distribution rebinning ! -------------------------------------- IF ( jpl > 1 ) CALL lim_itd_th_reb( 1, jpl ) !----------------- ! zap small values !----------------- CALL lim_itd_me_zapsmall !--------------------- ! 2.11) Ice salinity !--------------------- IF ( num_sal == 2 ) THEN DO jl = 1, jpl DO jj = 1, jpj DO ji = 1, jpi zsal = smv_i(ji,jj,jl) smv_i(ji,jj,jl) = sm_i(ji,jj,jl) * v_i(ji,jj,jl) ! salinity stays in bounds i_ice_switch = 1._wp - MAX( 0._wp, SIGN( 1._wp, - v_i(ji,jj,jl) ) ) smv_i(ji,jj,jl) = i_ice_switch * MAX( MIN( s_i_max * v_i(ji,jj,jl), smv_i(ji,jj,jl) ), s_i_min * v_i(ji,jj,jl) ) !+ s_i_min * ( 1._wp - i_ice_switch ) * v_i(ji,jj,jl) ! associated salt flux sfx_res(ji,jj) = sfx_res(ji,jj) - ( smv_i(ji,jj,jl) - zsal ) * rhoic * r1_rdtice END DO ! ji END DO ! jj END DO !jl ENDIF !------------------------------------------------------------------------------ ! 2) Corrections to avoid wrong values | !------------------------------------------------------------------------------ ! Ice drift !------------ DO jj = 2, jpjm1 DO ji = 2, jpim1 IF ( at_i(ji,jj) == 0._wp ) THEN ! what to do if there is no ice IF ( at_i(ji+1,jj) == 0._wp ) u_ice(ji,jj) = 0._wp ! right side IF ( at_i(ji-1,jj) == 0._wp ) u_ice(ji-1,jj) = 0._wp ! left side IF ( at_i(ji,jj+1) == 0._wp ) v_ice(ji,jj) = 0._wp ! upper side IF ( at_i(ji,jj-1) == 0._wp ) v_ice(ji,jj-1) = 0._wp ! bottom side ENDIF END DO END DO !lateral boundary conditions CALL lbc_lnk( u_ice(:,:), 'U', -1. ) CALL lbc_lnk( v_ice(:,:), 'V', -1. ) !mask velocities u_ice(:,:) = u_ice(:,:) * tmu(:,:) v_ice(:,:) = v_ice(:,:) * tmv(:,:) ! ------------------------------------------------- ! Diagnostics ! ------------------------------------------------- d_a_i_thd(:,:,:) = a_i(:,:,:) - a_i_b(:,:,:) d_v_s_thd(:,:,:) = v_s(:,:,:) - v_s_b(:,:,:) d_v_i_thd(:,:,:) = v_i(:,:,:) - v_i_b(:,:,:) d_e_s_thd(:,:,:,:) = e_s(:,:,:,:) - e_s_b(:,:,:,:) d_e_i_thd(:,:,1:nlay_i,:) = e_i(:,:,1:nlay_i,:) - e_i_b(:,:,1:nlay_i,:) !?? d_oa_i_thd(:,:,:) = oa_i (:,:,:) - oa_i_b (:,:,:) d_smv_i_thd(:,:,:) = 0._wp IF( num_sal == 2 ) d_smv_i_thd(:,:,:) = smv_i(:,:,:) - smv_i_b(:,:,:) ! diag only (clem) dv_dt_thd(:,:,:) = d_v_i_thd(:,:,:) * r1_rdtice * rday ! heat content variation (W.m-2) DO jj = 1, jpj DO ji = 1, jpi diag_heat_dhc(ji,jj) = ( SUM( d_e_i_trp(ji,jj,1:nlay_i,:) + d_e_i_thd(ji,jj,1:nlay_i,:) ) + & & SUM( d_e_s_trp(ji,jj,1:nlay_s,:) + d_e_s_thd(ji,jj,1:nlay_s,:) ) & & ) * unit_fac * r1_rdtice / area(ji,jj) END DO END DO ! conservation test IF( ln_limdiahsb ) CALL lim_cons_hsm(0, 'limupdate2', zvi_b, zsmv_b, zei_b, zfw_b, zfs_b, zft_b) IF(ln_ctl) THEN ! Control print CALL prt_ctl_info(' ') CALL prt_ctl_info(' - Cell values : ') CALL prt_ctl_info(' ~~~~~~~~~~~~~ ') CALL prt_ctl(tab2d_1=area , clinfo1=' lim_update2 : cell area :') CALL prt_ctl(tab2d_1=at_i , clinfo1=' lim_update2 : at_i :') CALL prt_ctl(tab2d_1=vt_i , clinfo1=' lim_update2 : vt_i :') CALL prt_ctl(tab2d_1=vt_s , clinfo1=' lim_update2 : vt_s :') CALL prt_ctl(tab2d_1=strength , clinfo1=' lim_update2 : strength :') CALL prt_ctl(tab2d_1=u_ice , clinfo1=' lim_update2 : u_ice :', tab2d_2=v_ice , clinfo2=' v_ice :') CALL prt_ctl(tab2d_1=u_ice_b , clinfo1=' lim_update2 : u_ice_b :', tab2d_2=v_ice_b , clinfo2=' v_ice_b :') DO jl = 1, jpl CALL prt_ctl_info(' ') CALL prt_ctl_info(' - Category : ', ivar1=jl) CALL prt_ctl_info(' ~~~~~~~~~~') CALL prt_ctl(tab2d_1=ht_i (:,:,jl) , clinfo1= ' lim_update2 : ht_i : ') CALL prt_ctl(tab2d_1=ht_s (:,:,jl) , clinfo1= ' lim_update2 : ht_s : ') CALL prt_ctl(tab2d_1=t_su (:,:,jl) , clinfo1= ' lim_update2 : t_su : ') CALL prt_ctl(tab2d_1=t_s (:,:,1,jl) , clinfo1= ' lim_update2 : t_snow : ') CALL prt_ctl(tab2d_1=sm_i (:,:,jl) , clinfo1= ' lim_update2 : sm_i : ') CALL prt_ctl(tab2d_1=o_i (:,:,jl) , clinfo1= ' lim_update2 : o_i : ') CALL prt_ctl(tab2d_1=a_i (:,:,jl) , clinfo1= ' lim_update2 : a_i : ') CALL prt_ctl(tab2d_1=a_i_b (:,:,jl) , clinfo1= ' lim_update2 : a_i_b : ') CALL prt_ctl(tab2d_1=d_a_i_thd (:,:,jl) , clinfo1= ' lim_update2 : d_a_i_thd : ') CALL prt_ctl(tab2d_1=v_i (:,:,jl) , clinfo1= ' lim_update2 : v_i : ') CALL prt_ctl(tab2d_1=v_i_b (:,:,jl) , clinfo1= ' lim_update2 : v_i_b : ') CALL prt_ctl(tab2d_1=d_v_i_thd (:,:,jl) , clinfo1= ' lim_update2 : d_v_i_thd : ') CALL prt_ctl(tab2d_1=v_s (:,:,jl) , clinfo1= ' lim_update2 : v_s : ') CALL prt_ctl(tab2d_1=v_s_b (:,:,jl) , clinfo1= ' lim_update2 : v_s_b : ') CALL prt_ctl(tab2d_1=d_v_s_thd (:,:,jl) , clinfo1= ' lim_update2 : d_v_s_thd : ') CALL prt_ctl(tab2d_1=e_i (:,:,1,jl)/1.0e9, clinfo1= ' lim_update2 : e_i1 : ') CALL prt_ctl(tab2d_1=e_i_b (:,:,1,jl)/1.0e9, clinfo1= ' lim_update2 : e_i1_b : ') CALL prt_ctl(tab2d_1=d_e_i_thd (:,:,1,jl)/1.0e9, clinfo1= ' lim_update2 : de_i1_thd : ') CALL prt_ctl(tab2d_1=e_i (:,:,2,jl)/1.0e9, clinfo1= ' lim_update2 : e_i2 : ') CALL prt_ctl(tab2d_1=e_i_b (:,:,2,jl)/1.0e9, clinfo1= ' lim_update2 : e_i2_b : ') CALL prt_ctl(tab2d_1=d_e_i_thd (:,:,2,jl)/1.0e9, clinfo1= ' lim_update2 : de_i2_thd : ') CALL prt_ctl(tab2d_1=e_s (:,:,1,jl) , clinfo1= ' lim_update2 : e_snow : ') CALL prt_ctl(tab2d_1=e_s_b (:,:,1,jl) , clinfo1= ' lim_update2 : e_snow_b : ') CALL prt_ctl(tab2d_1=d_e_s_thd (:,:,1,jl)/1.0e9, clinfo1= ' lim_update2 : d_e_s_thd : ') CALL prt_ctl(tab2d_1=smv_i (:,:,jl) , clinfo1= ' lim_update2 : smv_i : ') CALL prt_ctl(tab2d_1=smv_i_b (:,:,jl) , clinfo1= ' lim_update2 : smv_i_b : ') CALL prt_ctl(tab2d_1=d_smv_i_thd(:,:,jl) , clinfo1= ' lim_update2 : d_smv_i_thd : ') CALL prt_ctl(tab2d_1=oa_i (:,:,jl) , clinfo1= ' lim_update2 : oa_i : ') CALL prt_ctl(tab2d_1=oa_i_b (:,:,jl) , clinfo1= ' lim_update2 : oa_i_b : ') CALL prt_ctl(tab2d_1=d_oa_i_thd (:,:,jl) , clinfo1= ' lim_update2 : d_oa_i_thd : ') DO jk = 1, nlay_i CALL prt_ctl_info(' - Layer : ', ivar1=jk) CALL prt_ctl(tab2d_1=t_i(:,:,jk,jl) , clinfo1= ' lim_update2 : t_i : ') END DO END DO CALL prt_ctl_info(' ') CALL prt_ctl_info(' - Heat / FW fluxes : ') CALL prt_ctl_info(' ~~~~~~~~~~~~~~~~~~ ') CALL prt_ctl(tab2d_1=sst_m , clinfo1= ' lim_update2 : sst : ', tab2d_2=sss_m , clinfo2= ' sss : ') CALL prt_ctl_info(' ') CALL prt_ctl_info(' - Stresses : ') CALL prt_ctl_info(' ~~~~~~~~~~ ') CALL prt_ctl(tab2d_1=utau , clinfo1= ' lim_update2 : utau : ', tab2d_2=vtau , clinfo2= ' vtau : ') CALL prt_ctl(tab2d_1=utau_ice , clinfo1= ' lim_update2 : utau_ice : ', tab2d_2=vtau_ice , clinfo2= ' vtau_ice : ') CALL prt_ctl(tab2d_1=u_oce , clinfo1= ' lim_update2 : u_oce : ', tab2d_2=v_oce , clinfo2= ' v_oce : ') ENDIF IF( nn_timing == 1 ) CALL timing_stop('limupdate2') END SUBROUTINE lim_update2 #else !!---------------------------------------------------------------------- !! Default option Empty Module No sea-ice model !!---------------------------------------------------------------------- CONTAINS SUBROUTINE lim_update2 ! Empty routine END SUBROUTINE lim_update2 #endif END MODULE limupdate2