MODULE dynspg !!====================================================================== !! *** MODULE dynspg *** !! Ocean dynamics: surface pressure gradient control !!====================================================================== !! History : 1.0 ! 2005-12 (C. Talandier, G. Madec, V. Garnier) Original code !! 3.2 ! 2009-07 (R. Benshila) Suppression of rigid-lid option !!---------------------------------------------------------------------- !!---------------------------------------------------------------------- !! dyn_spg : update the dynamics trend with the lateral diffusion !! dyn_spg_ctl : initialization, namelist read, and parameters control !!---------------------------------------------------------------------- USE oce ! ocean dynamics and tracers variables USE dom_oce ! ocean space and time domain variables USE c1d ! 1D vertical configuration USE phycst ! physical constants USE sbc_oce ! surface boundary condition: ocean USE sbcapr ! surface boundary condition: atmospheric pressure USE dynspg_oce ! surface pressure gradient variables USE dynspg_exp ! surface pressure gradient (dyn_spg_exp routine) USE dynspg_ts ! surface pressure gradient (dyn_spg_ts routine) USE dynspg_flt ! surface pressure gradient (dyn_spg_flt routine) USE dynadv ! dynamics: vector invariant versus flux form USE dynhpg, ONLY: ln_dynhpg_imp USE sbctide USE updtide USE trd_oce ! trends: ocean variables USE trddyn ! trend manager: dynamics ! USE prtctl ! Print control (prt_ctl routine) USE in_out_manager ! I/O manager USE lib_mpp ! MPP library USE solver ! solver initialization USE wrk_nemo ! Memory Allocation USE timing ! Timing IMPLICIT NONE PRIVATE PUBLIC dyn_spg ! routine called by step module PUBLIC dyn_spg_init ! routine called by opa module INTEGER :: nspg = 0 ! type of surface pressure gradient scheme defined from lk_dynspg_... !! * Substitutions # include "domzgr_substitute.h90" # include "vectopt_loop_substitute.h90" !!---------------------------------------------------------------------- !! NEMO/OPA 3.2 , LODYC-IPSL (2009) !! $Id$ !! Software governed by the CeCILL licence (NEMOGCM/NEMO_CeCILL.txt) !!---------------------------------------------------------------------- CONTAINS SUBROUTINE dyn_spg( kt, kindic ) !!---------------------------------------------------------------------- !! *** ROUTINE dyn_spg *** !! !! ** Purpose : achieve the momentum time stepping by computing the !! last trend, the surface pressure gradient including the !! atmospheric pressure forcing (ln_apr_dyn=T), and performing !! the Leap-Frog integration. !!gm In the current version only the filtered solution provide !!gm the after velocity, in the 2 other (ua,va) are still the trends !! !! ** Method : Three schemes: !! - explicit computation : the spg is evaluated at now !! - filtered computation : the Roulet & madec (2000) technique is used !! - split-explicit computation: a time splitting technique is used !! !! ln_apr_dyn=T : the atmospheric pressure forcing is applied !! as the gradient of the inverse barometer ssh: !! apgu = - 1/rau0 di[apr] = 0.5*grav di[ssh_ib+ssh_ibb] !! apgv = - 1/rau0 dj[apr] = 0.5*grav dj[ssh_ib+ssh_ibb] !! Note that as all external forcing a time averaging over a two rdt !! period is used to prevent the divergence of odd and even time step. !! !! N.B. : When key_esopa is used all the scheme are tested, regardless !! of the physical meaning of the results. !!---------------------------------------------------------------------- ! INTEGER, INTENT(in ) :: kt ! ocean time-step index INTEGER, INTENT( out) :: kindic ! solver flag ! INTEGER :: ji, jj, jk ! dummy loop indices REAL(wp) :: z2dt, zg_2, zintp, zgrau0r ! temporary scalar REAL(wp), POINTER, DIMENSION(:,:,:) :: ztrdu, ztrdv REAL(wp), POINTER, DIMENSION(:,:) :: zpice !!---------------------------------------------------------------------- ! IF( nn_timing == 1 ) CALL timing_start('dyn_spg') ! !!gm NOTA BENE : the dynspg_exp and dynspg_ts should be modified so that !!gm they return the after velocity, not the trends (as in trazdf_imp...) !!gm In this case, change/simplify dynnxt IF( l_trddyn ) THEN ! temporary save of ta and sa trends CALL wrk_alloc( jpi, jpj, jpk, ztrdu, ztrdv ) ztrdu(:,:,:) = ua(:,:,:) ztrdv(:,:,:) = va(:,:,:) ENDIF IF( ln_apr_dyn & ! atmos. pressure .OR. ( .NOT.lk_dynspg_ts .AND. (ln_tide_pot .AND. lk_tide) ) & ! tide potential (no time slitting) .OR. nn_ice_embd == 2 ) THEN ! embedded sea-ice ! DO jj = 2, jpjm1 DO ji = fs_2, fs_jpim1 ! vector opt. spgu(ji,jj) = 0._wp spgv(ji,jj) = 0._wp END DO END DO ! IF( ln_apr_dyn .AND. (.NOT. lk_dynspg_ts) ) THEN !== Atmospheric pressure gradient (added later in time-split case) ==! zg_2 = grav * 0.5 DO jj = 2, jpjm1 ! gradient of Patm using inverse barometer ssh DO ji = fs_2, fs_jpim1 ! vector opt. spgu(ji,jj) = spgu(ji,jj) + zg_2 * ( ssh_ib (ji+1,jj) - ssh_ib (ji,jj) & & + ssh_ibb(ji+1,jj) - ssh_ibb(ji,jj) ) /e1u(ji,jj) spgv(ji,jj) = spgv(ji,jj) + zg_2 * ( ssh_ib (ji,jj+1) - ssh_ib (ji,jj) & & + ssh_ibb(ji,jj+1) - ssh_ibb(ji,jj) ) /e2v(ji,jj) END DO END DO ENDIF ! ! !== tide potential forcing term ==! IF( .NOT.lk_dynspg_ts .AND. ( ln_tide_pot .AND. lk_tide ) ) THEN ! N.B. added directly at sub-time-step in ts-case ! CALL upd_tide( kt ) ! update tide potential ! DO jj = 2, jpjm1 ! add tide potential forcing DO ji = fs_2, fs_jpim1 ! vector opt. spgu(ji,jj) = spgu(ji,jj) + grav * ( pot_astro(ji+1,jj) - pot_astro(ji,jj) ) / e1u(ji,jj) spgv(ji,jj) = spgv(ji,jj) + grav * ( pot_astro(ji,jj+1) - pot_astro(ji,jj) ) / e2v(ji,jj) END DO END DO ENDIF ! IF( nn_ice_embd == 2 ) THEN !== embedded sea ice: Pressure gradient due to snow-ice mass ==! CALL wrk_alloc( jpi, jpj, zpice ) ! zintp = REAL( MOD( kt-1, nn_fsbc ) ) / REAL( nn_fsbc ) zgrau0r = - grav * r1_rau0 zpice(:,:) = ( zintp * snwice_mass(:,:) + ( 1.- zintp ) * snwice_mass_b(:,:) ) * zgrau0r DO jj = 2, jpjm1 DO ji = fs_2, fs_jpim1 ! vector opt. spgu(ji,jj) = spgu(ji,jj) + ( zpice(ji+1,jj) - zpice(ji,jj) ) / e1u(ji,jj) spgv(ji,jj) = spgv(ji,jj) + ( zpice(ji,jj+1) - zpice(ji,jj) ) / e2v(ji,jj) END DO END DO ! CALL wrk_dealloc( jpi, jpj, zpice ) ENDIF ! DO jk = 1, jpkm1 !== Add all terms to the general trend DO jj = 2, jpjm1 DO ji = fs_2, fs_jpim1 ! vector opt. ua(ji,jj,jk) = ua(ji,jj,jk) + spgu(ji,jj) va(ji,jj,jk) = va(ji,jj,jk) + spgv(ji,jj) END DO END DO END DO !!gm add here a call to dyn_trd for ice pressure gradient, the surf pressure trends ???? ENDIF SELECT CASE ( nspg ) ! compute surf. pressure gradient trend and add it to the general trend ! CASE ( 0 ) ; CALL dyn_spg_exp( kt ) ! explicit CASE ( 1 ) ; CALL dyn_spg_ts ( kt ) ! time-splitting CASE ( 2 ) ; CALL dyn_spg_flt( kt, kindic ) ! filtered ! CASE ( -1 ) ! esopa: test all possibility with control print CALL dyn_spg_exp( kt ) CALL prt_ctl( tab3d_1=ua, clinfo1=' spg0 - Ua: ', mask1=umask, & & tab3d_2=va, clinfo2= ' Va: ', mask2=vmask, clinfo3='dyn' ) CALL dyn_spg_ts ( kt ) CALL prt_ctl( tab3d_1=ua, clinfo1=' spg1 - Ua: ', mask1=umask, & & tab3d_2=va, clinfo2= ' Va: ', mask2=vmask, clinfo3='dyn' ) CALL dyn_spg_flt( kt, kindic ) CALL prt_ctl( tab3d_1=ua, clinfo1=' spg2 - Ua: ', mask1=umask, & & tab3d_2=va, clinfo2= ' Va: ', mask2=vmask, clinfo3='dyn' ) END SELECT ! IF( l_trddyn ) THEN ! save the surface pressure gradient trends for further diagnostics SELECT CASE ( nspg ) CASE ( 0, 1 ) ztrdu(:,:,:) = ua(:,:,:) - ztrdu(:,:,:) ztrdv(:,:,:) = va(:,:,:) - ztrdv(:,:,:) CASE( 2 ) z2dt = 2. * rdt IF( neuler == 0 .AND. kt == nit000 ) z2dt = rdt ztrdu(:,:,:) = ( ua(:,:,:) - ub(:,:,:) ) / z2dt - ztrdu(:,:,:) ztrdv(:,:,:) = ( va(:,:,:) - vb(:,:,:) ) / z2dt - ztrdv(:,:,:) END SELECT CALL trd_dyn( ztrdu, ztrdv, jpdyn_spg, kt ) ! CALL wrk_dealloc( jpi, jpj, jpk, ztrdu, ztrdv ) ENDIF ! ! print mean trends (used for debugging) IF(ln_ctl) CALL prt_ctl( tab3d_1=ua, clinfo1=' spg - Ua: ', mask1=umask, & & tab3d_2=va, clinfo2= ' Va: ', mask2=vmask, clinfo3='dyn' ) ! IF( nn_timing == 1 ) CALL timing_stop('dyn_spg') ! END SUBROUTINE dyn_spg SUBROUTINE dyn_spg_init !!--------------------------------------------------------------------- !! *** ROUTINE dyn_spg_init *** !! !! ** Purpose : Control the consistency between cpp options for !! surface pressure gradient schemes !!---------------------------------------------------------------------- INTEGER :: ioptio !!---------------------------------------------------------------------- ! IF( nn_timing == 1 ) CALL timing_start('dyn_spg_init') ! IF(lwp) THEN ! Control print WRITE(numout,*) WRITE(numout,*) 'dyn_spg_init : choice of the surface pressure gradient scheme' WRITE(numout,*) '~~~~~~~~~~~' WRITE(numout,*) ' Explicit free surface lk_dynspg_exp = ', lk_dynspg_exp WRITE(numout,*) ' Free surface with time splitting lk_dynspg_ts = ', lk_dynspg_ts WRITE(numout,*) ' Filtered free surface cst volume lk_dynspg_flt = ', lk_dynspg_flt ENDIF IF( lk_dynspg_ts ) CALL dyn_spg_ts_init( nit000 ) ! (do it now, to set nn_baro, used to allocate some arrays later on) ! ! allocate dyn_spg arrays IF( lk_dynspg_ts ) THEN IF( dynspg_oce_alloc() /= 0 ) CALL ctl_stop('STOP', 'dyn_spg_init: failed to allocate dynspg_oce arrays') IF( dyn_spg_ts_alloc() /= 0 ) CALL ctl_stop('STOP', 'dyn_spg_init: failed to allocate dynspg_ts arrays') IF ((neuler/=0).AND.(ln_bt_fw)) CALL ts_rst( nit000, 'READ' ) ENDIF ! ! Control of surface pressure gradient scheme options ioptio = 0 IF(lk_dynspg_exp) ioptio = ioptio + 1 IF(lk_dynspg_ts ) ioptio = ioptio + 1 IF(lk_dynspg_flt) ioptio = ioptio + 1 ! IF( ( ioptio > 1 .AND. .NOT. lk_esopa ) .OR. ( ioptio == 0 .AND. .NOT. lk_c1d ) ) & & CALL ctl_stop( ' Choose only one surface pressure gradient scheme with a key cpp' ) IF( ( lk_dynspg_ts .OR. lk_dynspg_exp ) .AND. ln_isfcav ) & & CALL ctl_stop( ' dynspg_ts and dynspg_exp not tested with ice shelf cavity ' ) ! IF( lk_esopa ) nspg = -1 IF( lk_dynspg_exp) nspg = 0 IF( lk_dynspg_ts ) nspg = 1 IF( lk_dynspg_flt) nspg = 2 ! IF( lk_esopa ) nspg = -1 ! IF(lwp) THEN WRITE(numout,*) IF( nspg == -1 ) WRITE(numout,*) ' ESOPA test All scheme used' IF( nspg == 0 ) WRITE(numout,*) ' explicit free surface' IF( nspg == 1 ) WRITE(numout,*) ' free surface with time splitting scheme' IF( nspg == 2 ) WRITE(numout,*) ' filtered free surface' ENDIF #if defined key_dynspg_flt || defined key_esopa CALL solver_init( nit000 ) ! Elliptic solver initialisation #endif ! ! Control of timestep choice IF( lk_dynspg_ts .OR. lk_dynspg_exp ) THEN IF( nn_cla == 1 ) CALL ctl_stop( 'Crossland advection not implemented for this free surface formulation' ) ENDIF ! ! Control of hydrostatic pressure choice IF( lk_dynspg_ts .AND. ln_dynhpg_imp ) THEN CALL ctl_stop( 'Semi-implicit hpg not compatible with time splitting' ) ENDIF ! IF( nn_timing == 1 ) CALL timing_stop('dyn_spg_init') ! END SUBROUTINE dyn_spg_init !!====================================================================== END MODULE dynspg