MODULE limthd !!====================================================================== !! *** MODULE limthd *** !! LIM-3 : ice thermodynamic !!====================================================================== !! History : LIM ! 2000-01 (M.A. Morales Maqueda, H. Goosse, T. Fichefet) LIM-1 !! 2.0 ! 2002-07 (C. Ethe, G. Madec) LIM-2 (F90 rewriting) !! 3.0 ! 2005-11 (M. Vancoppenolle) LIM-3 : Multi-layer thermodynamics + salinity variations !! - ! 2007-04 (M. Vancoppenolle) add lim_thd_glohec, lim_thd_con_dh and lim_thd_con_dif !! 3.2 ! 2009-07 (M. Vancoppenolle, Y. Aksenov, G. Madec) bug correction in wfx_snw !! 3.3 ! 2010-11 (G. Madec) corrected snow melting heat (due to factor betas) !! 4.0 ! 2011-02 (G. Madec) dynamical allocation !! - ! 2012-05 (C. Rousset) add penetration solar flux !!---------------------------------------------------------------------- #if defined key_lim3 !!---------------------------------------------------------------------- !! 'key_lim3' LIM3 sea-ice model !!---------------------------------------------------------------------- !! lim_thd : thermodynamic of sea ice !! lim_thd_init : initialisation of sea-ice thermodynamic !!---------------------------------------------------------------------- USE phycst ! physical constants USE dom_oce ! ocean space and time domain variables USE oce , ONLY : fraqsr_1lev USE ice ! LIM: sea-ice variables USE sbc_oce ! Surface boundary condition: ocean fields USE sbc_ice ! Surface boundary condition: ice fields USE thd_ice ! LIM thermodynamic sea-ice variables USE dom_ice ! LIM sea-ice domain USE domvvl ! domain: variable volume level USE limthd_dif ! LIM: thermodynamics, vertical diffusion USE limthd_dh ! LIM: thermodynamics, ice and snow thickness variation USE limthd_sal ! LIM: thermodynamics, ice salinity USE limthd_ent ! LIM: thermodynamics, ice enthalpy redistribution USE limthd_lac ! LIM-3 lateral accretion USE limitd_th ! remapping thickness distribution USE limtab ! LIM: 1D <==> 2D transformation USE limvar ! LIM: sea-ice variables USE lbclnk ! lateral boundary condition - MPP links USE lib_mpp ! MPP library USE wrk_nemo ! work arrays USE in_out_manager ! I/O manager USE prtctl ! Print control USE lib_fortran ! Fortran utilities (allows no signed zero when 'key_nosignedzero' defined) USE timing ! Timing USE limcons ! conservation tests USE limctl IMPLICIT NONE PRIVATE PUBLIC lim_thd ! called by limstp module PUBLIC lim_thd_init ! called by sbc_lim_init !! * Substitutions # include "domzgr_substitute.h90" # include "vectopt_loop_substitute.h90" !!---------------------------------------------------------------------- !! NEMO/LIM3 3.3 , UCL - NEMO Consortium (2010) !! $Id$ !! Software governed by the CeCILL licence (NEMOGCM/NEMO_CeCILL.txt) !!---------------------------------------------------------------------- CONTAINS SUBROUTINE lim_thd( kt ) !!------------------------------------------------------------------- !! *** ROUTINE lim_thd *** !! !! ** Purpose : This routine manages ice thermodynamics !! !! ** Action : - Initialisation of some variables !! - Some preliminary computation (oceanic heat flux !! at the ice base, snow acc.,heat budget of the leads) !! - selection of the icy points and put them in an array !! - call lim_thd_dif for vertical heat diffusion !! - call lim_thd_dh for vertical ice growth and melt !! - call lim_thd_ent for enthalpy remapping !! - call lim_thd_sal for ice desalination !! - call lim_thd_temp to retrieve temperature from ice enthalpy !! - back to the geographic grid !! !! ** References : !!--------------------------------------------------------------------- INTEGER, INTENT(in) :: kt ! number of iteration !! INTEGER :: ji, jj, jk, jl ! dummy loop indices INTEGER :: nbpb ! nb of icy pts for vertical thermo calculations INTEGER :: ii, ij ! temporary dummy loop index REAL(wp) :: zfric_u, zqld, zqfr REAL(wp) :: zvi_b, zsmv_b, zei_b, zfs_b, zfw_b, zft_b REAL(wp), PARAMETER :: zfric_umin = 0._wp ! lower bound for the friction velocity (cice value=5.e-04) REAL(wp), PARAMETER :: zch = 0.0057_wp ! heat transfer coefficient ! REAL(wp), POINTER, DIMENSION(:,:) :: zqsr, zqns !!------------------------------------------------------------------- CALL wrk_alloc( jpi, jpj, zqsr, zqns ) IF( nn_timing == 1 ) CALL timing_start('limthd') ! conservation test IF( ln_limdiahsb ) CALL lim_cons_hsm(0, 'limthd', zvi_b, zsmv_b, zei_b, zfw_b, zfs_b, zft_b) !------------------------------------------------------------------------! ! 1) Initialization of some variables ! !------------------------------------------------------------------------! ftr_ice(:,:,:) = 0._wp ! part of solar radiation transmitted through the ice !-------------------- ! 1.2) Heat content !-------------------- ! Change the units of heat content; from J/m2 to J/m3 DO jl = 1, jpl DO jk = 1, nlay_i DO jj = 1, jpj DO ji = 1, jpi !0 if no ice and 1 if yes rswitch = 1.0 - MAX( 0.0 , SIGN( 1.0 , - v_i(ji,jj,jl) + epsi20 ) ) !Energy of melting q(S,T) [J.m-3] e_i(ji,jj,jk,jl) = rswitch * e_i(ji,jj,jk,jl) / MAX( v_i(ji,jj,jl) , epsi20 ) * REAL( nlay_i ) END DO END DO END DO DO jk = 1, nlay_s DO jj = 1, jpj DO ji = 1, jpi !0 if no ice and 1 if yes rswitch = 1.0 - MAX( 0.0 , SIGN( 1.0 , - v_s(ji,jj,jl) + epsi20 ) ) !Energy of melting q(S,T) [J.m-3] e_s(ji,jj,jk,jl) = rswitch * e_s(ji,jj,jk,jl) / MAX( v_s(ji,jj,jl) , epsi20 ) * REAL( nlay_s ) END DO END DO END DO END DO ! 2) Partial computation of forcing for the thermodynamic sea ice model. ! !-----------------------------------------------------------------------------! !--- Ocean solar and non solar fluxes to be used in zqld IF ( .NOT. lk_cpl ) THEN ! --- forced case, fluxes to the lead are the same as over the ocean ! zqsr(:,:) = qsr(:,:) ; zqns(:,:) = qns(:,:) ! ELSE ! --- coupled case, fluxes to the lead are total - intercepted ! zqsr(:,:) = qsr_tot(:,:) ; zqns(:,:) = qns_tot(:,:) ! DO jl = 1, jpl DO jj = 1, jpj DO ji = 1, jpi zqsr(ji,jj) = zqsr(ji,jj) - qsr_ice(ji,jj,jl) * a_i_b(ji,jj,jl) zqns(ji,jj) = zqns(ji,jj) - qns_ice(ji,jj,jl) * a_i_b(ji,jj,jl) END DO END DO END DO ! ENDIF DO jj = 1, jpj DO ji = 1, jpi rswitch = tmask(ji,jj,1) * ( 1._wp - MAX( 0._wp , SIGN( 1._wp , - at_i(ji,jj) + epsi10 ) ) ) ! 0 if no ice ! ! ! solar irradiance transmission at the mixed layer bottom and used in the lead heat budget ! ! practically no "direct lateral ablation" ! ! ! net downward heat flux from the ice to the ocean, expressed as a function of ocean ! ! temperature and turbulent mixing (McPhee, 1992) ! ! --- Energy received in the lead, zqld is defined everywhere (J.m-2) --- ! ! REMARK valid at least in forced mode from clem ! precip is included in qns but not in qns_ice IF ( lk_cpl ) THEN zqld = tmask(ji,jj,1) * rdt_ice * & & ( zqsr(ji,jj) * fraqsr_1lev(ji,jj) + zqns(ji,jj) & ! pfrld already included in coupled mode & + ( pfrld(ji,jj)**rn_betas - pfrld(ji,jj) ) * sprecip(ji,jj) * & ! heat content of precip & ( cpic * ( MIN( tatm_ice(ji,jj), rt0_snow ) - rt0 ) - lfus ) & & + ( 1._wp - pfrld(ji,jj) ) * ( tprecip(ji,jj) - sprecip(ji,jj) ) * rcp * ( tatm_ice(ji,jj) - rt0 ) ) ELSE zqld = tmask(ji,jj,1) * rdt_ice * & & ( pfrld(ji,jj) * ( zqsr(ji,jj) * fraqsr_1lev(ji,jj) + zqns(ji,jj) ) & & + ( pfrld(ji,jj)**rn_betas - pfrld(ji,jj) ) * sprecip(ji,jj) * & ! heat content of precip & ( cpic * ( MIN( tatm_ice(ji,jj), rt0_snow ) - rt0 ) - lfus ) & & + ( 1._wp - pfrld(ji,jj) ) * ( tprecip(ji,jj) - sprecip(ji,jj) ) * rcp * ( tatm_ice(ji,jj) - rt0 ) ) ENDIF !-- Energy needed to bring ocean surface layer until its freezing (<0, J.m-2) --- ! zqfr = tmask(ji,jj,1) * rau0 * rcp * fse3t_m(ji,jj) * ( t_bo(ji,jj) - ( sst_m(ji,jj) + rt0 ) ) !-- Energy Budget of the leads (J.m-2). Must be < 0 to form ice qlead(ji,jj) = MIN( 0._wp , zqld - zqfr ) ! If there is ice and leads are warming, then transfer energy from the lead budget and use it for bottom melting IF( at_i(ji,jj) > epsi10 .AND. zqld > 0._wp ) THEN fhld (ji,jj) = zqld * r1_rdtice / at_i(ji,jj) ! divided by at_i since this is (re)multiplied by a_i in limthd_dh.F90 qlead(ji,jj) = 0._wp ELSE fhld (ji,jj) = 0._wp ENDIF ! !-- Energy from the turbulent oceanic heat flux --- ! !clem zfric_u = MAX ( MIN( SQRT( ust2s(ji,jj) ) , zfric_umax ) , zfric_umin ) zfric_u = MAX( SQRT( ust2s(ji,jj) ), zfric_umin ) fhtur(ji,jj) = MAX( 0._wp, rswitch * rau0 * rcp * zch * zfric_u * ( ( sst_m(ji,jj) + rt0 ) - t_bo(ji,jj) ) ) ! W.m-2 ! upper bound for fhtur: we do not want SST to drop below Tfreeze. ! So we say that the heat retrieved from the ocean (fhtur+fhld) must be < to the heat necessary to reach Tfreeze (zqfr) ! This is not a clean budget, so that should be corrected at some point fhtur(ji,jj) = rswitch * MIN( fhtur(ji,jj), - fhld(ji,jj) - zqfr * r1_rdtice / MAX( at_i(ji,jj), epsi10 ) ) ! ----------------------------------------- ! Net heat flux on top of ice-ocean [W.m-2] ! ----------------------------------------- ! First step here : heat flux at the ocean surface + precip ! Second step below : heat flux at the ice surface (after limthd_dif) hfx_in(ji,jj) = hfx_in(ji,jj) & ! heat flux above the ocean & + pfrld(ji,jj) * ( zqns(ji,jj) + zqsr(ji,jj) ) & ! latent heat of precip (note that precip is included in qns but not in qns_ice) & + ( 1._wp - pfrld(ji,jj) ) * sprecip(ji,jj) * ( cpic * ( MIN( tatm_ice(ji,jj), rt0_snow ) - rt0 ) - lfus ) & & + ( 1._wp - pfrld(ji,jj) ) * ( tprecip(ji,jj) - sprecip(ji,jj) ) * rcp * ( tatm_ice(ji,jj) - rt0 ) ! ----------------------------------------------------------------------------- ! Net heat flux that is retroceded to the ocean or taken from the ocean [W.m-2] ! ----------------------------------------------------------------------------- ! First step here : non solar + precip - qlead - qturb ! Second step in limthd_dh : heat remaining if total melt (zq_rema) ! Third step in limsbc : heat from ice-ocean mass exchange (zf_mass) + solar hfx_out(ji,jj) = hfx_out(ji,jj) & ! Non solar heat flux received by the ocean & + pfrld(ji,jj) * qns(ji,jj) & ! latent heat of precip (note that precip is included in qns but not in qns_ice) & + ( pfrld(ji,jj)**rn_betas - pfrld(ji,jj) ) * sprecip(ji,jj) & & * ( cpic * ( MIN( tatm_ice(ji,jj), rt0_snow ) - rt0 ) - lfus ) & & + ( 1._wp - pfrld(ji,jj) ) * ( tprecip(ji,jj) - sprecip(ji,jj) ) * rcp * ( tatm_ice(ji,jj) - rt0 ) & ! heat flux taken from the ocean where there is open water ice formation & - qlead(ji,jj) * r1_rdtice & ! heat flux taken from the ocean during bottom growth/melt (fhld should be 0 while bott growth) & - at_i(ji,jj) * fhtur(ji,jj) & & - at_i(ji,jj) * fhld(ji,jj) END DO END DO !------------------------------------------------------------------------------! ! 3) Select icy points and fulfill arrays for the vectorial grid. !------------------------------------------------------------------------------! DO jl = 1, jpl !loop over ice categories IF( kt == nit000 .AND. lwp ) THEN WRITE(numout,*) ' lim_thd : transfer to 1D vectors. Category no : ', jl WRITE(numout,*) ' ~~~~~~~~' ENDIF nbpb = 0 DO jj = 1, jpj DO ji = 1, jpi IF ( a_i(ji,jj,jl) > epsi10 ) THEN nbpb = nbpb + 1 npb(nbpb) = (jj - 1) * jpi + ji ENDIF END DO END DO ! debug point to follow jiindex_1d = 0 IF( ln_nicep ) THEN DO ji = mi0(jiindx), mi1(jiindx) DO jj = mj0(jjindx), mj1(jjindx) jiindex_1d = (jj - 1) * jpi + ji WRITE(numout,*) ' lim_thd : Category no : ', jl END DO END DO ENDIF !------------------------------------------------------------------------------! ! 4) Thermodynamic computation !------------------------------------------------------------------------------! IF( lk_mpp ) CALL mpp_ini_ice( nbpb , numout ) IF( nbpb > 0 ) THEN ! If there is no ice, do nothing. !-------------------------! ! --- Move to 1D arrays --- !-------------------------! CALL lim_thd_1d2d( nbpb, jl, 1 ) !--------------------------------------! ! --- Ice/Snow Temperature profile --- ! !--------------------------------------! CALL lim_thd_dif( 1, nbpb ) !---------------------------------! ! --- Ice/Snow thickness --- ! !---------------------------------! CALL lim_thd_dh( 1, nbpb ) ! --- Ice enthalpy remapping --- ! CALL lim_thd_ent( 1, nbpb, q_i_1d(1:nbpb,:) ) !---------------------------------! ! --- Ice salinity --- ! !---------------------------------! CALL lim_thd_sal( 1, nbpb ) !---------------------------------! ! --- temperature update --- ! !---------------------------------! CALL lim_thd_temp( 1, nbpb ) !------------------------------------! ! --- lateral melting if monocat --- ! !------------------------------------! IF ( ( ( nn_monocat == 1 ) .OR. ( nn_monocat == 4 ) ) .AND. ( jpl == 1 ) ) THEN CALL lim_thd_lam( 1, nbpb ) END IF !-------------------------! ! --- Move to 2D arrays --- !-------------------------! CALL lim_thd_1d2d( nbpb, jl, 2 ) ! IF( lk_mpp ) CALL mpp_comm_free( ncomm_ice ) !RB necessary ?? ENDIF ! END DO !------------------------------------------------------------------------------! ! 5) Global variables, diagnostics !------------------------------------------------------------------------------! !------------------------ ! Ice heat content !------------------------ ! Enthalpies are global variables we have to readjust the units (heat content in J/m2) DO jl = 1, jpl DO jk = 1, nlay_i e_i(:,:,jk,jl) = e_i(:,:,jk,jl) * a_i(:,:,jl) * ht_i(:,:,jl) * r1_nlay_i END DO END DO !------------------------ ! Snow heat content !------------------------ ! Enthalpies are global variables we have to readjust the units (heat content in J/m2) DO jl = 1, jpl DO jk = 1, nlay_s e_s(:,:,jk,jl) = e_s(:,:,jk,jl) * a_i(:,:,jl) * ht_s(:,:,jl) * r1_nlay_s END DO END DO !------------------------ ! Ice natural aging !------------------------ oa_i(:,:,:) = oa_i(:,:,:) + a_i(:,:,:) * rdt_ice /rday !---------------------------------- ! Change thickness to volume !---------------------------------- CALL lim_var_eqv2glo !-------------------------------------------- ! 5.4) Diagnostic thermodynamic growth rates !-------------------------------------------- IF( ln_nicep ) CALL lim_prt( kt, jiindx, jjindx, 1, ' - ice thermodyn. - ' ) ! control print IF(ln_ctl) THEN ! Control print CALL prt_ctl_info(' ') CALL prt_ctl_info(' - Cell values : ') CALL prt_ctl_info(' ~~~~~~~~~~~~~ ') CALL prt_ctl(tab2d_1=e12t , clinfo1=' lim_thd : cell area :') CALL prt_ctl(tab2d_1=at_i , clinfo1=' lim_thd : at_i :') CALL prt_ctl(tab2d_1=vt_i , clinfo1=' lim_thd : vt_i :') CALL prt_ctl(tab2d_1=vt_s , clinfo1=' lim_thd : vt_s :') DO jl = 1, jpl CALL prt_ctl_info(' ') CALL prt_ctl_info(' - Category : ', ivar1=jl) CALL prt_ctl_info(' ~~~~~~~~~~') CALL prt_ctl(tab2d_1=a_i (:,:,jl) , clinfo1= ' lim_thd : a_i : ') CALL prt_ctl(tab2d_1=ht_i (:,:,jl) , clinfo1= ' lim_thd : ht_i : ') CALL prt_ctl(tab2d_1=ht_s (:,:,jl) , clinfo1= ' lim_thd : ht_s : ') CALL prt_ctl(tab2d_1=v_i (:,:,jl) , clinfo1= ' lim_thd : v_i : ') CALL prt_ctl(tab2d_1=v_s (:,:,jl) , clinfo1= ' lim_thd : v_s : ') CALL prt_ctl(tab2d_1=e_s (:,:,1,jl) , clinfo1= ' lim_thd : e_s : ') CALL prt_ctl(tab2d_1=t_su (:,:,jl) , clinfo1= ' lim_thd : t_su : ') CALL prt_ctl(tab2d_1=t_s (:,:,1,jl) , clinfo1= ' lim_thd : t_snow : ') CALL prt_ctl(tab2d_1=sm_i (:,:,jl) , clinfo1= ' lim_thd : sm_i : ') CALL prt_ctl(tab2d_1=smv_i (:,:,jl) , clinfo1= ' lim_thd : smv_i : ') DO jk = 1, nlay_i CALL prt_ctl_info(' ') CALL prt_ctl_info(' - Layer : ', ivar1=jk) CALL prt_ctl_info(' ~~~~~~~') CALL prt_ctl(tab2d_1=t_i(:,:,jk,jl) , clinfo1= ' lim_thd : t_i : ') CALL prt_ctl(tab2d_1=e_i(:,:,jk,jl) , clinfo1= ' lim_thd : e_i : ') END DO END DO ENDIF ! ! CALL wrk_dealloc( jpi, jpj, zqsr, zqns ) IF( ln_limdiahsb ) CALL lim_cons_hsm(1, 'limthd', zvi_b, zsmv_b, zei_b, zfw_b, zfs_b, zft_b) !------------------------------------------------------------------------------| ! 1) Transport of ice between thickness categories. | !------------------------------------------------------------------------------| IF( ln_limdiahsb ) CALL lim_cons_hsm(0, 'limitd_th_rem', zvi_b, zsmv_b, zei_b, zfw_b, zfs_b, zft_b) ! Given thermodynamic growth rates, transport ice between thickness categories. IF( jpl > 1 ) CALL lim_itd_th_rem( 1, jpl, kt ) ! CALL lim_var_glo2eqv ! only for info CALL lim_var_agg(1) IF( ln_limdiahsb ) CALL lim_cons_hsm(1, 'limitd_th_rem', zvi_b, zsmv_b, zei_b, zfw_b, zfs_b, zft_b) IF( ln_limdiahsb ) CALL lim_cons_hsm(0, 'limthd_lac', zvi_b, zsmv_b, zei_b, zfw_b, zfs_b, zft_b) !------------------------------------------------------------------------------| ! 3) Add frazil ice growing in leads. !------------------------------------------------------------------------------| CALL lim_thd_lac CALL lim_var_glo2eqv ! only for info ! conservation test IF( ln_limdiahsb ) CALL lim_cons_hsm(1, 'limthd_lac', zvi_b, zsmv_b, zei_b, zfw_b, zfs_b, zft_b) IF(ln_ctl) THEN ! Control print CALL prt_ctl_info(' ') CALL prt_ctl_info(' - Cell values : ') CALL prt_ctl_info(' ~~~~~~~~~~~~~ ') CALL prt_ctl(tab2d_1=e12t , clinfo1=' lim_itd_th : cell area :') CALL prt_ctl(tab2d_1=at_i , clinfo1=' lim_itd_th : at_i :') CALL prt_ctl(tab2d_1=vt_i , clinfo1=' lim_itd_th : vt_i :') CALL prt_ctl(tab2d_1=vt_s , clinfo1=' lim_itd_th : vt_s :') DO jl = 1, jpl CALL prt_ctl_info(' ') CALL prt_ctl_info(' - Category : ', ivar1=jl) CALL prt_ctl_info(' ~~~~~~~~~~') CALL prt_ctl(tab2d_1=a_i (:,:,jl) , clinfo1= ' lim_itd_th : a_i : ') CALL prt_ctl(tab2d_1=ht_i (:,:,jl) , clinfo1= ' lim_itd_th : ht_i : ') CALL prt_ctl(tab2d_1=ht_s (:,:,jl) , clinfo1= ' lim_itd_th : ht_s : ') CALL prt_ctl(tab2d_1=v_i (:,:,jl) , clinfo1= ' lim_itd_th : v_i : ') CALL prt_ctl(tab2d_1=v_s (:,:,jl) , clinfo1= ' lim_itd_th : v_s : ') CALL prt_ctl(tab2d_1=e_s (:,:,1,jl) , clinfo1= ' lim_itd_th : e_s : ') CALL prt_ctl(tab2d_1=t_su (:,:,jl) , clinfo1= ' lim_itd_th : t_su : ') CALL prt_ctl(tab2d_1=t_s (:,:,1,jl) , clinfo1= ' lim_itd_th : t_snow : ') CALL prt_ctl(tab2d_1=sm_i (:,:,jl) , clinfo1= ' lim_itd_th : sm_i : ') CALL prt_ctl(tab2d_1=smv_i (:,:,jl) , clinfo1= ' lim_itd_th : smv_i : ') DO jk = 1, nlay_i CALL prt_ctl_info(' ') CALL prt_ctl_info(' - Layer : ', ivar1=jk) CALL prt_ctl_info(' ~~~~~~~') CALL prt_ctl(tab2d_1=t_i(:,:,jk,jl) , clinfo1= ' lim_itd_th : t_i : ') CALL prt_ctl(tab2d_1=e_i(:,:,jk,jl) , clinfo1= ' lim_itd_th : e_i : ') END DO END DO ENDIF ! IF( nn_timing == 1 ) CALL timing_stop('limthd') END SUBROUTINE lim_thd SUBROUTINE lim_thd_temp( kideb, kiut ) !!----------------------------------------------------------------------- !! *** ROUTINE lim_thd_temp *** !! !! ** Purpose : Computes sea ice temperature (Kelvin) from enthalpy !! !! ** Method : Formula (Bitz and Lipscomb, 1999) !!------------------------------------------------------------------- INTEGER, INTENT(in) :: kideb, kiut ! bounds for the spatial loop !! INTEGER :: ji, jk ! dummy loop indices REAL(wp) :: ztmelts, zaaa, zbbb, zccc, zdiscrim ! local scalar !!------------------------------------------------------------------- ! Recover ice temperature DO jk = 1, nlay_i DO ji = kideb, kiut ztmelts = -tmut * s_i_1d(ji,jk) + rt0 ! Conversion q(S,T) -> T (second order equation) zaaa = cpic zbbb = ( rcp - cpic ) * ( ztmelts - rt0 ) + q_i_1d(ji,jk) * r1_rhoic - lfus zccc = lfus * ( ztmelts - rt0 ) zdiscrim = SQRT( MAX( zbbb * zbbb - 4._wp * zaaa * zccc, 0._wp ) ) t_i_1d(ji,jk) = rt0 - ( zbbb + zdiscrim ) / ( 2._wp * zaaa ) ! mask temperature rswitch = 1._wp - MAX( 0._wp , SIGN( 1._wp , - ht_i_1d(ji) ) ) t_i_1d(ji,jk) = rswitch * t_i_1d(ji,jk) + ( 1._wp - rswitch ) * rt0 END DO END DO END SUBROUTINE lim_thd_temp SUBROUTINE lim_thd_lam( kideb, kiut ) !!----------------------------------------------------------------------- !! *** ROUTINE lim_thd_lam *** !! !! ** Purpose : Lateral melting in case monocategory !! ( dA = A/2h dh ) !!----------------------------------------------------------------------- INTEGER, INTENT(in) :: kideb, kiut ! bounds for the spatial loop INTEGER :: ji ! dummy loop indices REAL(wp) :: zhi_bef ! ice thickness before thermo REAL(wp) :: zdh_mel, zda_mel ! net melting REAL(wp) :: zv ! ice volume DO ji = kideb, kiut zdh_mel = MIN( 0._wp, dh_i_surf(ji) + dh_i_bott(ji) + dh_snowice(ji) ) IF( zdh_mel < 0._wp ) THEN zv = a_i_1d(ji) * ht_i_1d(ji) ! lateral melting = concentration change zhi_bef = ht_i_1d(ji) - zdh_mel zda_mel = a_i_1d(ji) * zdh_mel / ( 2._wp * MAX( zhi_bef, epsi10 ) ) a_i_1d(ji) = MAX( 0._wp, a_i_1d(ji) + zda_mel ) ! adjust thickness rswitch = 1._wp - MAX( 0._wp , SIGN( 1._wp , - a_i_1d(ji) + epsi20 ) ) ht_i_1d(ji) = rswitch * zv / MAX( a_i_1d(ji), epsi20 ) ! retrieve total concentration at_i_1d(ji) = a_i_1d(ji) END IF END DO END SUBROUTINE lim_thd_lam SUBROUTINE lim_thd_1d2d( nbpb, jl, kn ) !!----------------------------------------------------------------------- !! *** ROUTINE lim_thd_1d2d *** !! !! ** Purpose : move arrays from 1d to 2d and the reverse !!----------------------------------------------------------------------- INTEGER, INTENT(in) :: kn ! 1= from 2D to 1D ! 2= from 1D to 2D INTEGER, INTENT(in) :: nbpb ! size of 1D arrays INTEGER, INTENT(in) :: jl ! ice cat INTEGER :: jk ! dummy loop indices SELECT CASE( kn ) CASE( 1 ) CALL tab_2d_1d( nbpb, at_i_1d (1:nbpb), at_i , jpi, jpj, npb(1:nbpb) ) CALL tab_2d_1d( nbpb, a_i_1d (1:nbpb), a_i(:,:,jl) , jpi, jpj, npb(1:nbpb) ) CALL tab_2d_1d( nbpb, ht_i_1d (1:nbpb), ht_i(:,:,jl) , jpi, jpj, npb(1:nbpb) ) CALL tab_2d_1d( nbpb, ht_s_1d (1:nbpb), ht_s(:,:,jl) , jpi, jpj, npb(1:nbpb) ) CALL tab_2d_1d( nbpb, t_su_1d (1:nbpb), t_su(:,:,jl) , jpi, jpj, npb(1:nbpb) ) CALL tab_2d_1d( nbpb, sm_i_1d (1:nbpb), sm_i(:,:,jl) , jpi, jpj, npb(1:nbpb) ) DO jk = 1, nlay_s CALL tab_2d_1d( nbpb, t_s_1d(1:nbpb,jk), t_s(:,:,jk,jl) , jpi, jpj, npb(1:nbpb) ) CALL tab_2d_1d( nbpb, q_s_1d(1:nbpb,jk), e_s(:,:,jk,jl) , jpi, jpj, npb(1:nbpb) ) END DO DO jk = 1, nlay_i CALL tab_2d_1d( nbpb, t_i_1d(1:nbpb,jk), t_i(:,:,jk,jl) , jpi, jpj, npb(1:nbpb) ) CALL tab_2d_1d( nbpb, q_i_1d(1:nbpb,jk), e_i(:,:,jk,jl) , jpi, jpj, npb(1:nbpb) ) CALL tab_2d_1d( nbpb, s_i_1d(1:nbpb,jk), s_i(:,:,jk,jl) , jpi, jpj, npb(1:nbpb) ) END DO CALL tab_2d_1d( nbpb, tatm_ice_1d(1:nbpb), tatm_ice(:,:) , jpi, jpj, npb(1:nbpb) ) CALL tab_2d_1d( nbpb, qsr_ice_1d (1:nbpb), qsr_ice(:,:,jl) , jpi, jpj, npb(1:nbpb) ) CALL tab_2d_1d( nbpb, fr1_i0_1d (1:nbpb), fr1_i0 , jpi, jpj, npb(1:nbpb) ) CALL tab_2d_1d( nbpb, fr2_i0_1d (1:nbpb), fr2_i0 , jpi, jpj, npb(1:nbpb) ) CALL tab_2d_1d( nbpb, qns_ice_1d (1:nbpb), qns_ice(:,:,jl) , jpi, jpj, npb(1:nbpb) ) CALL tab_2d_1d( nbpb, ftr_ice_1d (1:nbpb), ftr_ice(:,:,jl) , jpi, jpj, npb(1:nbpb) ) IF( .NOT. lk_cpl ) THEN CALL tab_2d_1d( nbpb, qla_ice_1d (1:nbpb), qla_ice(:,:,jl) , jpi, jpj, npb(1:nbpb) ) CALL tab_2d_1d( nbpb, dqla_ice_1d(1:nbpb), dqla_ice(:,:,jl), jpi, jpj, npb(1:nbpb) ) ENDIF CALL tab_2d_1d( nbpb, dqns_ice_1d(1:nbpb), dqns_ice(:,:,jl), jpi, jpj, npb(1:nbpb) ) CALL tab_2d_1d( nbpb, t_bo_1d (1:nbpb), t_bo , jpi, jpj, npb(1:nbpb) ) CALL tab_2d_1d( nbpb, sprecip_1d (1:nbpb), sprecip , jpi, jpj, npb(1:nbpb) ) CALL tab_2d_1d( nbpb, fhtur_1d (1:nbpb), fhtur , jpi, jpj, npb(1:nbpb) ) CALL tab_2d_1d( nbpb, qlead_1d (1:nbpb), qlead , jpi, jpj, npb(1:nbpb) ) CALL tab_2d_1d( nbpb, fhld_1d (1:nbpb), fhld , jpi, jpj, npb(1:nbpb) ) CALL tab_2d_1d( nbpb, wfx_snw_1d (1:nbpb), wfx_snw , jpi, jpj, npb(1:nbpb) ) CALL tab_2d_1d( nbpb, wfx_sub_1d (1:nbpb), wfx_sub , jpi, jpj, npb(1:nbpb) ) CALL tab_2d_1d( nbpb, wfx_bog_1d (1:nbpb), wfx_bog , jpi, jpj, npb(1:nbpb) ) CALL tab_2d_1d( nbpb, wfx_bom_1d (1:nbpb), wfx_bom , jpi, jpj, npb(1:nbpb) ) CALL tab_2d_1d( nbpb, wfx_sum_1d (1:nbpb), wfx_sum , jpi, jpj, npb(1:nbpb) ) CALL tab_2d_1d( nbpb, wfx_sni_1d (1:nbpb), wfx_sni , jpi, jpj, npb(1:nbpb) ) CALL tab_2d_1d( nbpb, wfx_res_1d (1:nbpb), wfx_res , jpi, jpj, npb(1:nbpb) ) CALL tab_2d_1d( nbpb, wfx_spr_1d (1:nbpb), wfx_spr , jpi, jpj, npb(1:nbpb) ) CALL tab_2d_1d( nbpb, sfx_bog_1d (1:nbpb), sfx_bog , jpi, jpj, npb(1:nbpb) ) CALL tab_2d_1d( nbpb, sfx_bom_1d (1:nbpb), sfx_bom , jpi, jpj, npb(1:nbpb) ) CALL tab_2d_1d( nbpb, sfx_sum_1d (1:nbpb), sfx_sum , jpi, jpj, npb(1:nbpb) ) CALL tab_2d_1d( nbpb, sfx_sni_1d (1:nbpb), sfx_sni , jpi, jpj, npb(1:nbpb) ) CALL tab_2d_1d( nbpb, sfx_bri_1d (1:nbpb), sfx_bri , jpi, jpj, npb(1:nbpb) ) CALL tab_2d_1d( nbpb, sfx_res_1d (1:nbpb), sfx_res , jpi, jpj, npb(1:nbpb) ) CALL tab_2d_1d( nbpb, hfx_thd_1d (1:nbpb), hfx_thd , jpi, jpj, npb(1:nbpb) ) CALL tab_2d_1d( nbpb, hfx_spr_1d (1:nbpb), hfx_spr , jpi, jpj, npb(1:nbpb) ) CALL tab_2d_1d( nbpb, hfx_sum_1d (1:nbpb), hfx_sum , jpi, jpj, npb(1:nbpb) ) CALL tab_2d_1d( nbpb, hfx_bom_1d (1:nbpb), hfx_bom , jpi, jpj, npb(1:nbpb) ) CALL tab_2d_1d( nbpb, hfx_bog_1d (1:nbpb), hfx_bog , jpi, jpj, npb(1:nbpb) ) CALL tab_2d_1d( nbpb, hfx_dif_1d (1:nbpb), hfx_dif , jpi, jpj, npb(1:nbpb) ) CALL tab_2d_1d( nbpb, hfx_opw_1d (1:nbpb), hfx_opw , jpi, jpj, npb(1:nbpb) ) CALL tab_2d_1d( nbpb, hfx_snw_1d (1:nbpb), hfx_snw , jpi, jpj, npb(1:nbpb) ) CALL tab_2d_1d( nbpb, hfx_sub_1d (1:nbpb), hfx_sub , jpi, jpj, npb(1:nbpb) ) CALL tab_2d_1d( nbpb, hfx_err_1d (1:nbpb), hfx_err , jpi, jpj, npb(1:nbpb) ) CALL tab_2d_1d( nbpb, hfx_res_1d (1:nbpb), hfx_res , jpi, jpj, npb(1:nbpb) ) CALL tab_2d_1d( nbpb, hfx_err_rem_1d (1:nbpb), hfx_err_rem , jpi, jpj, npb(1:nbpb) ) CASE( 2 ) CALL tab_1d_2d( nbpb, at_i , npb, at_i_1d (1:nbpb) , jpi, jpj ) CALL tab_1d_2d( nbpb, ht_i(:,:,jl) , npb, ht_i_1d (1:nbpb) , jpi, jpj ) CALL tab_1d_2d( nbpb, ht_s(:,:,jl) , npb, ht_s_1d (1:nbpb) , jpi, jpj ) CALL tab_1d_2d( nbpb, a_i (:,:,jl) , npb, a_i_1d (1:nbpb) , jpi, jpj ) CALL tab_1d_2d( nbpb, t_su(:,:,jl) , npb, t_su_1d (1:nbpb) , jpi, jpj ) CALL tab_1d_2d( nbpb, sm_i(:,:,jl) , npb, sm_i_1d (1:nbpb) , jpi, jpj ) DO jk = 1, nlay_s CALL tab_1d_2d( nbpb, t_s(:,:,jk,jl), npb, t_s_1d (1:nbpb,jk), jpi, jpj) CALL tab_1d_2d( nbpb, e_s(:,:,jk,jl), npb, q_s_1d (1:nbpb,jk), jpi, jpj) END DO DO jk = 1, nlay_i CALL tab_1d_2d( nbpb, t_i(:,:,jk,jl), npb, t_i_1d (1:nbpb,jk), jpi, jpj) CALL tab_1d_2d( nbpb, e_i(:,:,jk,jl), npb, q_i_1d (1:nbpb,jk), jpi, jpj) CALL tab_1d_2d( nbpb, s_i(:,:,jk,jl), npb, s_i_1d (1:nbpb,jk), jpi, jpj) END DO CALL tab_1d_2d( nbpb, qlead , npb, qlead_1d (1:nbpb) , jpi, jpj ) CALL tab_1d_2d( nbpb, wfx_snw , npb, wfx_snw_1d(1:nbpb) , jpi, jpj ) CALL tab_1d_2d( nbpb, wfx_sub , npb, wfx_sub_1d(1:nbpb) , jpi, jpj ) CALL tab_1d_2d( nbpb, wfx_bog , npb, wfx_bog_1d(1:nbpb) , jpi, jpj ) CALL tab_1d_2d( nbpb, wfx_bom , npb, wfx_bom_1d(1:nbpb) , jpi, jpj ) CALL tab_1d_2d( nbpb, wfx_sum , npb, wfx_sum_1d(1:nbpb) , jpi, jpj ) CALL tab_1d_2d( nbpb, wfx_sni , npb, wfx_sni_1d(1:nbpb) , jpi, jpj ) CALL tab_1d_2d( nbpb, wfx_res , npb, wfx_res_1d(1:nbpb) , jpi, jpj ) CALL tab_1d_2d( nbpb, wfx_spr , npb, wfx_spr_1d(1:nbpb) , jpi, jpj ) CALL tab_1d_2d( nbpb, sfx_bog , npb, sfx_bog_1d(1:nbpb) , jpi, jpj ) CALL tab_1d_2d( nbpb, sfx_bom , npb, sfx_bom_1d(1:nbpb) , jpi, jpj ) CALL tab_1d_2d( nbpb, sfx_sum , npb, sfx_sum_1d(1:nbpb) , jpi, jpj ) CALL tab_1d_2d( nbpb, sfx_sni , npb, sfx_sni_1d(1:nbpb) , jpi, jpj ) CALL tab_1d_2d( nbpb, sfx_res , npb, sfx_res_1d(1:nbpb) , jpi, jpj ) CALL tab_1d_2d( nbpb, sfx_bri , npb, sfx_bri_1d(1:nbpb) , jpi, jpj ) CALL tab_1d_2d( nbpb, hfx_thd , npb, hfx_thd_1d(1:nbpb) , jpi, jpj ) CALL tab_1d_2d( nbpb, hfx_spr , npb, hfx_spr_1d(1:nbpb) , jpi, jpj ) CALL tab_1d_2d( nbpb, hfx_sum , npb, hfx_sum_1d(1:nbpb) , jpi, jpj ) CALL tab_1d_2d( nbpb, hfx_bom , npb, hfx_bom_1d(1:nbpb) , jpi, jpj ) CALL tab_1d_2d( nbpb, hfx_bog , npb, hfx_bog_1d(1:nbpb) , jpi, jpj ) CALL tab_1d_2d( nbpb, hfx_dif , npb, hfx_dif_1d(1:nbpb) , jpi, jpj ) CALL tab_1d_2d( nbpb, hfx_opw , npb, hfx_opw_1d(1:nbpb) , jpi, jpj ) CALL tab_1d_2d( nbpb, hfx_snw , npb, hfx_snw_1d(1:nbpb) , jpi, jpj ) CALL tab_1d_2d( nbpb, hfx_sub , npb, hfx_sub_1d(1:nbpb) , jpi, jpj ) CALL tab_1d_2d( nbpb, hfx_err , npb, hfx_err_1d(1:nbpb) , jpi, jpj ) CALL tab_1d_2d( nbpb, hfx_res , npb, hfx_res_1d(1:nbpb) , jpi, jpj ) CALL tab_1d_2d( nbpb, hfx_err_rem , npb, hfx_err_rem_1d(1:nbpb), jpi, jpj ) ! CALL tab_1d_2d( nbpb, qns_ice(:,:,jl), npb, qns_ice_1d(1:nbpb) , jpi, jpj) CALL tab_1d_2d( nbpb, ftr_ice(:,:,jl), npb, ftr_ice_1d(1:nbpb) , jpi, jpj ) END SELECT END SUBROUTINE lim_thd_1d2d SUBROUTINE lim_thd_init !!----------------------------------------------------------------------- !! *** ROUTINE lim_thd_init *** !! !! ** Purpose : Physical constants and parameters linked to the ice !! thermodynamics !! !! ** Method : Read the namicethd namelist and check the ice-thermo !! parameter values called at the first timestep (nit000) !! !! ** input : Namelist namicether !!------------------------------------------------------------------- INTEGER :: ios ! Local integer output status for namelist read NAMELIST/namicethd/ rn_hnewice, ln_frazil, rn_maxfrazb, rn_vfrazb, rn_Cfrazb, & & rn_himin, parsub, rn_betas, rn_kappa_i, nn_conv_dif, rn_terr_dif, nn_ice_thcon, & & nn_monocat !!------------------------------------------------------------------- ! IF(lwp) THEN WRITE(numout,*) WRITE(numout,*) 'lim_thd : Ice Thermodynamics' WRITE(numout,*) '~~~~~~~' ENDIF ! REWIND( numnam_ice_ref ) ! Namelist namicethd in reference namelist : Ice thermodynamics READ ( numnam_ice_ref, namicethd, IOSTAT = ios, ERR = 901) 901 IF( ios /= 0 ) CALL ctl_nam ( ios , 'namicethd in reference namelist', lwp ) REWIND( numnam_ice_cfg ) ! Namelist namicethd in configuration namelist : Ice thermodynamics READ ( numnam_ice_cfg, namicethd, IOSTAT = ios, ERR = 902 ) 902 IF( ios /= 0 ) CALL ctl_nam ( ios , 'namicethd in configuration namelist', lwp ) IF(lwm) WRITE ( numoni, namicethd ) ! IF ( ( jpl > 1 ) .AND. ( nn_monocat == 1 ) ) THEN nn_monocat = 0 IF(lwp) WRITE(numout, *) ' nn_monocat must be 0 in multi-category case ' ENDIF IF( lk_cpl .AND. parsub /= 0.0 ) CALL ctl_stop( 'In coupled mode, use parsub = 0. or send dqla' ) ! IF(lwp) THEN ! control print WRITE(numout,*) WRITE(numout,*)' Namelist of ice parameters for ice thermodynamic computation ' WRITE(numout,*)' ice thick. for lateral accretion rn_hnewice = ', rn_hnewice WRITE(numout,*)' Frazil ice thickness as a function of wind or not ln_frazil = ', ln_frazil WRITE(numout,*)' Maximum proportion of frazil ice collecting at bottom rn_maxfrazb = ', rn_maxfrazb WRITE(numout,*)' Thresold relative drift speed for collection of frazil rn_vfrazb = ', rn_vfrazb WRITE(numout,*)' Squeezing coefficient for collection of frazil rn_Cfrazb = ', rn_Cfrazb WRITE(numout,*)' minimum ice thickness rn_himin = ', rn_himin WRITE(numout,*)' numerical carac. of the scheme for diffusion in ice ' WRITE(numout,*)' switch for snow sublimation (=1) or not (=0) parsub = ', parsub WRITE(numout,*)' coefficient for ice-lead partition of snowfall rn_betas = ', rn_betas WRITE(numout,*)' extinction radiation parameter in sea ice rn_kappa_i = ', rn_kappa_i WRITE(numout,*)' maximal n. of iter. for heat diffusion computation nn_conv_dif = ', nn_conv_dif WRITE(numout,*)' maximal err. on T for heat diffusion computation rn_terr_dif = ', rn_terr_dif WRITE(numout,*)' switch for comp. of thermal conductivity in the ice nn_ice_thcon = ', nn_ice_thcon WRITE(numout,*)' check heat conservation in the ice/snow con_i = ', con_i WRITE(numout,*)' virtual ITD mono-category parameterizations (1) or not nn_monocat = ', nn_monocat ENDIF ! END SUBROUTINE lim_thd_init #else !!---------------------------------------------------------------------- !! Default option Dummy module NO LIM3 sea-ice model !!---------------------------------------------------------------------- #endif !!====================================================================== END MODULE limthd