New URL for NEMO forge!   http://forge.nemo-ocean.eu

Since March 2022 along with NEMO 4.2 release, the code development moved to a self-hosted GitLab.
This present forge is now archived and remained online for history.
Chap_DIU.tex in branches/2015/dev_r5656_Met_Office_3_diurnalSST/DOC/TexFiles/Chapters – NEMO

source: branches/2015/dev_r5656_Met_Office_3_diurnalSST/DOC/TexFiles/Chapters/Chap_DIU.tex @ 5859

Last change on this file since 5859 was 5859, checked in by jwhile, 8 years ago

Added DIU chapter to documentation

File size: 7.6 KB
Line 
1% ================================================================
2% Diurnal SST models (DIU)
3% Edited by James While
4% ================================================================
5\chapter{Diurnal SST models (DIU)}
6\label{DIU}
7
8\minitoc
9
10
11\newpage
12$\ $\newline % force a new line
13
14Code to produce an estimate of the diurnal warming and cooling of the sea surface skin
15temperature (skin SST) is found in the DIU directory.  The skin
16temperature can be split into three parts:
17\begin{itemize}
18\item A foundation SST which is free from diurnal warming.
19\item A warm layer, typically ~3\,m thick, where heating from solar radiation can
20cause a warm stably stratified layer during the daytime
21\item A cool skin, a thin layer, approximately ~1\,mm thick, where long wave cooling
22is dominant and cools the immediate ocean surface.
23\end{itemize}
24
25Models are provided for both the warm layer, diurnal\_bulk.F90, and the cool skin,
26cool\_skin.F90.  Foundation SST is not considered as it can be obtained
27either from the main NEMO model (i.e. from the temperature of the top few model levels)
28or from
29some other source.  It must be noted that both the cool skin and
30warm layer models produce estimates of the change in temperature ($\Delta T_{\rm{cs}}$
31and $\Delta T_{\rm{wl}}$) and both must
32be added to a foundation SST to obtain the true skin temperature.
33
34Both the cool skin and warm layer models are controlled through the namelist `namdiu':
35\namdisplay{namdiu}
36This namelist contains only two variables:
37\begin{description}
38\item[ln\_diurnal] A logical switch for turning on/off both the cool skin and warm layer.
39\item[ln\_diurnal\_only] A logical switch which if .TRUE. will run the diurnal model
40without the other dynamical parts of NEMO.  ln\_diurnal\_only must be
41.FALSE. if ln\_diurnal is .FALSE.
42\end{description}
43
44Output for the diurnal model is through the variables `sst\_wl' (warm\_layer) and
45`sst\_cs' (cool skin).  These are 2-D variables which will be included in the model
46output if they are specified in the iodef.xml file.
47
48Initialisation is through the restart file.  Specifically the code will expect the presence of the 2-D variable ``Dsst'' to initialise the warm layer.  The cool skin model, which is determined purely by the instantaneous fluxes, has no initialisation variable. 
49
50%===============================================================
51
52\section{Warm Layer model}
53\label{warm_layer_sec}
54
55%===============================================================
56
57The warm layer is calculated using the model of \citet{Takaya_al_JGR10} (TAKAYA10 model
58hereafter).  This is a simple flux based model that is defined by the equations
59\begin{eqnarray}
60\frac{\partial{\Delta T_{\rm{wl}}}}{\partial{t}}&=&\frac{Q(\nu+1)}{D_T\rho_w c_p
61\nu}-\frac{(\nu+1)ku^*_{w}f(L_a)\Delta T}{D_T\Phi\!\left(\frac{D_T}{L}\right)} \mbox{,}
62\label{ecmwf1} \\
63L&=&\frac{\rho_w c_p u^{*^3}_{w}}{\kappa g \alpha_w Q }\mbox{,}\label{ecmwf2}
64\end{eqnarray}
65where $\Delta T_{\rm{wl}}$ is the temperature difference between the top of the warm
66layer and the depth $D_T=3$\,m at which there is assumed to be no diurnal signal. In
67equation (\ref{ecmwf1}) $\alpha_w=2\times10^{-4}$ is the thermal expansion
68coefficient of water, $\kappa=0.4$ is von K\'{a}rm\'{a}n's constant, $c_p$ is the heat
69capacity at constant pressure of sea water, $\rho_w$ is the
70water density, and $L$ is the Monin-Obukhov length. The tunable
71variable $\nu$ is a shape parameter that defines the expected
72subskin temperature profile via $T(z)=T(0)-\left(\frac{z}{D_T}\right)^\nu\Delta
73T_{\rm{wl}}$,
74where $T$ is the absolute temperature and $z\le D_T$ is the depth
75below the top of the warm layer.
76The influence of wind on TAKAYA10 comes through the magnitude of the friction velocity
77of the water
78$u^*_{w}$, which can be related to the 10\,m wind speed $u_{10}$ through the relationship
79$u^*_{w} = u_{10}\sqrt{\frac{C_d\rho_a}{\rho_w}}$, where $C_d$ is
80the drag coefficient, and $\rho_a$ is the density of air.  The symbol $Q$ in equation
81(\ref{ecmwf1}) is the instantaneous total thermal energy
82flux into
83the diurnal layer, i.e.
84\begin{equation}
85Q = Q_{\rm{sol}} + Q_{\rm{lw}} + Q_{\rm{h}}\mbox{,} \label{e_flux_eqn}
86\end{equation}
87where $Q_{\rm{h}}$ is the sensible and latent heat flux, $Q_{\rm{lw}}$ is the long
88wave flux, and $Q_{\rm{sol}}$ is the solar flux absorbed
89within the diurnal warm layer. For $Q_{\rm{sol}}$ the 9 term
90representation of \citet{Gentemann_al_JGR09} is used.  In equation \ref{ecmwf1}
91the function $f(L_a)=\max(1,L_a^{\frac{2}{3}})$, where $L_a=0.3$\footnote{This
92is a global average value, more accurately $L_a$ could be computed as
93$L_a=(u^*_{w}/u_s)^{\frac{1}{2}}$, where $u_s$ is the stokes drift, but this is not
94currently done} is the turbulent Langmuir number and is a
95parametrization of the effect of waves.
96The function $\Phi\!\left(\frac{D_T}{L}\right)$ is the similarity function that
97parametrizes the stability of the water column and
98is given by:
99\begin{equation}
100\Phi(\zeta) = \left\{ \begin{array}{cc} 1 + \frac{5\zeta +
1014\zeta^2}{1+3\zeta+0.25\zeta^2} &(\zeta \ge 0) \\
102                                    (1 - 16\zeta)^{-\frac{1}{2}} & (\zeta < 0) \mbox{,}
103                                    \end{array} \right. \label{stab_func_eqn}
104\end{equation}
105where $\zeta=\frac{D_T}{L}$.  It is clear that the first derivative of
106(\ref{stab_func_eqn}), and thus of (\ref{ecmwf1}),
107is discontinuous at $\zeta=0$ (i.e. $Q\rightarrow0$ in equation (\ref{ecmwf2})).
108
109The two terms on the right hand side of (\ref{ecmwf1}) represent different processes.
110The first term is simply the diabatic heating or cooling of the
111diurnal warm
112layer due to thermal energy
113fluxes into and out of the layer.  The second term
114parametrizes turbulent fluxes of heat out of the diurnal warm layer due to wind
115induced mixing. In practice the second term acts as a relaxation
116on the temperature.
117
118%===============================================================
119
120\section{Cool Skin model}
121\label{cool_skin_sec}
122
123%===============================================================
124
125The cool skin is modelled using the framework of \citet{Saunders_JAS82} who used a
126formulation of the near surface temperature difference based upon the heat flux and
127the friction velocity $u^*_{w}$.  As the cool skin
128is so thin (~1\,mm) we ignore the solar flux component to the heat flux and the
129Saunders equation for the cool skin temperature difference $\Delta T_{\rm{cs}}$ becomes
130\begin{equation}
131\label{sunders_eqn}
132\Delta T_{\rm{cs}}=\frac{Q_{\rm{ns}}\delta}{k_t} \mbox{,}
133\end{equation}
134where $Q_{\rm{ns}}$ is the, usually negative, non-solar heat flux into the ocean and
135$k_t$ is the thermal conductivity of sea water. $\delta$ is the thickness of the
136skin layer and is given by
137\begin{equation}
138\label{sunders_thick_eqn}
139\delta=\frac{\lambda \mu}{u^*_{w}} \mbox{,}
140\end{equation}
141where $\mu$ is the kinematic viscosity of sea water and $\lambda$ is a constant of
142proportionality which \citet{Saunders_JAS82} suggested varied between 5 and 10.
143
144The value of $\lambda$ used in equation (\ref{sunders_thick_eqn}) is that of
145\citet{Artale_al_JGR02},
146which is shown in \citet{Tu_Tsuang_GRL05} to outperform a number of other
147parametrisations at both low and high wind speeds. Specifically,
148\begin{equation}
149\label{artale_lambda_eqn}
150\lambda = \frac{ 8.64\times10^4 u^*_{w} k_t }{ \rho c_p h \mu \gamma }\mbox{,}
151\end{equation}
152where $h=10$\,m is a reference depth and
153$\gamma$ is a dimensionless function of wind speed $u$:
154\begin{equation}
155\label{artale_gamma_eqn}
156\gamma = \left\{ \begin{matrix}
157                     0.2u+0.5\mbox{,} & u \le 7.5\,\mbox{ms}^{-1} \\
158                     1.6u-10\mbox{,} & 7.5 < u < 10\,\mbox{ms}^{-1} \\
159                     6\mbox{,} & \ge 10\,\mbox{ms}^{-1} \\
160                 \end{matrix}
161          \right.
162\end{equation}
163
164
Note: See TracBrowser for help on using the repository browser.