New URL for NEMO forge!   http://forge.nemo-ocean.eu

Since March 2022 along with NEMO 4.2 release, the code development moved to a self-hosted GitLab.
This present forge is now archived and remained online for history.
namelist_cfg in branches/2015/dev_r5721_CNRS9_NOC3_LDF/NEMOGCM/CONFIG/GYRE_PISCES/EXP00 – NEMO

source: branches/2015/dev_r5721_CNRS9_NOC3_LDF/NEMOGCM/CONFIG/GYRE_PISCES/EXP00/namelist_cfg @ 5778

Last change on this file since 5778 was 5778, checked in by gm, 8 years ago

#1593: LDF-ADV, III. Phasing of the improvements/simplifications of ADV & LDF momentum trends: associated namelist & cpp

File size: 16.6 KB
Line 
1!!>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
2!! NEMO/OPA  : GYRE_PISCES Configuration namelist to overwrite reference dynamical namelist
3!!>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
4!-----------------------------------------------------------------------
5&namrun        !   parameters of the run
6!-----------------------------------------------------------------------
7   cn_exp      =  "GYRE"   !  experience name
8   nn_it000    =       1   !  first time step
9   nn_itend    =    4320   !  last  time step
10   nn_leapy    =      30   !  Leap year calendar (1) or not (0)
11   nn_stock    =    4320   !  frequency of creation of a restart file (modulo referenced to 1)
12   nn_write    =      60   !  frequency of write in the output file   (modulo referenced to nn_it000)
13/
14!-----------------------------------------------------------------------
15&namcfg     !   parameters of the configuration   
16!-----------------------------------------------------------------------
17   cp_cfg      =  "gyre"                 !  name of the configuration
18   jp_cfg      =       1                 !  resolution of the configuration
19   jpidta      =      32                 !  1st lateral dimension ( >= jpi ) = 30*jp_cfg+2
20   jpjdta      =      22                 !  2nd    "         "    ( >= jpj ) = 20*jp_cfg+2
21   jpkdta      =      31                 !  number of levels      ( >= jpk )
22   jpiglo      =      32                 !  1st dimension of global domain --> i  = jpidta
23   jpjglo      =      22                 !  2nd    -                  -    --> j  = jpjdta
24   jpizoom     =       1                 !  left bottom (i,j) indices of the zoom
25   jpjzoom     =       1                 !  in data domain indices
26   jperio      =       0                 !  lateral cond. type (between 0 and 6)
27/
28!-----------------------------------------------------------------------
29&namzgr        !   vertical coordinate
30!-----------------------------------------------------------------------
31   ln_zco      = .true.    !  z-coordinate - full    steps   (T/F)      ("key_zco" may also be defined)
32   ln_zps      = .false.   !  z-coordinate - partial steps   (T/F)
33/
34!-----------------------------------------------------------------------
35&namdom        !   space and time domain (bathymetry, mesh, timestep)
36!-----------------------------------------------------------------------
37   nn_bathy    =    0      !  compute (=0) or read (=1) the bathymetry file
38   rn_rdt      = 7200.     !  time step for the dynamics (and tracer if nn_acc=0)
39   rn_rdtmin   = 7200.           !  minimum time step on tracers (used if nn_acc=1)
40   rn_rdtmax   = 7200.           !  maximum time step on tracers (used if nn_acc=1)
41   jphgr_msh   =       5                 !  type of horizontal mesh
42   ppglam0     =       0.0               !  longitude of first raw and column T-point (jphgr_msh = 1)
43   ppgphi0     =      29.0               ! latitude  of first raw and column T-point (jphgr_msh = 1)
44   ppe1_deg    =  999999.0               !  zonal      grid-spacing (degrees)
45   ppe2_deg    =  999999.0               !  meridional grid-spacing (degrees)
46   ppe1_m      =  999999.0               !  zonal      grid-spacing (degrees)
47   ppe2_m      =  999999.0               !  meridional grid-spacing (degrees)
48   ppsur       =   -2033.194295283385    !  ORCA r4, r2 and r05 coefficients
49   ppa0        =     155.8325369664153   ! (default coefficients)
50   ppa1        =     146.3615918601890   !
51   ppkth       =      17.28520372419791  !
52   ppacr       =       5.0               !
53   ppdzmin     =  999999.0               !  Minimum vertical spacing
54   pphmax      =  999999.0               !  Maximum depth
55   ldbletanh   =  .FALSE.                !  Use/do not use double tanf function for vertical coordinates
56   ppa2        =  999999.0               !  Double tanh function parameters
57   ppkth2      =  999999.0               !
58   ppacr2      =  999999.0               !
59/
60!-----------------------------------------------------------------------
61&namsplit      !   time splitting parameters                            ("key_dynspg_ts")
62!-----------------------------------------------------------------------
63/
64!-----------------------------------------------------------------------
65&namcrs        !   Grid coarsening for dynamics output and/or
66               !   passive tracer coarsened online simulations
67!-----------------------------------------------------------------------
68/
69!-----------------------------------------------------------------------
70&namtsd    !   data : Temperature  & Salinity
71!-----------------------------------------------------------------------
72   cn_dir        = './'      !  root directory for the location of the runoff files
73   ln_tsd_init   = .false.   !  Initialisation of ocean T & S with T &S input data (T) or not (F)
74   ln_tsd_tradmp = .false.   !  damping of ocean T & S toward T &S input data (T) or not (F)
75/
76!-----------------------------------------------------------------------
77&namsbc        !   Surface Boundary Condition (surface module)
78!-----------------------------------------------------------------------
79   nn_fsbc     = 1         !  frequency of surface boundary condition computation
80                           !     (also = the frequency of sea-ice model call)
81   ln_ana      = .true.    !  analytical formulation                    (T => fill namsbc_ana )
82   ln_blk_core = .false.   !  CORE bulk formulation                     (T => fill namsbc_core)
83   nn_ice      = 0         !  =0 no ice boundary condition   ,
84   ln_rnf      = .false.   !  runoffs                                   (T => fill namsbc_rnf)
85   ln_ssr      = .false.   !  Sea Surface Restoring on T and/or S       (T => fill namsbc_ssr)
86   nn_fwb      = 0         !  FreshWater Budget: =0 unchecked
87/
88!-----------------------------------------------------------------------
89&namtra_qsr    !   penetrative solar radiation
90!-----------------------------------------------------------------------
91   ln_qsr_rgb  = .false.   !  RGB (Red-Green-Blue) light penetration
92   ln_qsr_2bd  = .true.    !  2 bands              light penetration
93   nn_chldta   =      0    !  RGB : Chl data (=1) or cst value (=0)
94/
95
96!-----------------------------------------------------------------------
97&namberg       !   iceberg parameters
98!-----------------------------------------------------------------------
99/
100!-----------------------------------------------------------------------
101&namlbc        !   lateral momentum boundary condition
102!-----------------------------------------------------------------------
103   rn_shlat    =    0.     !  shlat = 0  !  0 < shlat < 2  !  shlat = 2  !  2 < shlat
104/
105!-----------------------------------------------------------------------
106&nambfr        !   bottom friction
107!-----------------------------------------------------------------------
108   nn_bfr      =    2      !  type of bottom friction :   = 0 : free slip,  = 1 : linear friction
109/
110!-----------------------------------------------------------------------
111&nambbc        !   bottom temperature boundary condition
112!-----------------------------------------------------------------------
113   ln_trabbc   = .false.   !  Apply a geothermal heating at the ocean bottom
114   nn_geoflx   =    0      !  geothermal heat flux: = 0 no flux
115/
116!-----------------------------------------------------------------------
117&nameos        !   ocean physical parameters
118!-----------------------------------------------------------------------
119   nn_eos      =  0       !  type of equation of state and Brunt-Vaisala frequency
120                                 !  =-1, TEOS-10
121                                 !  = 0, EOS-80
122                                 !  = 1, S-EOS   (simplified eos)
123   ln_useCT    = .false.  ! use of Conservative Temp. ==> surface CT converted in Pot. Temp. in sbcssm
124   !                             !
125   !                      ! S-EOS coefficients :
126   !                             !  rd(T,S,Z)*rau0 = -a0*(1+.5*lambda*dT+mu*Z+nu*dS)*dT+b0*dS
127   rn_a0       =  1.6550e-1      !  thermal expension coefficient (nn_eos= 1)
128   rn_b0       =  7.6554e-1      !  saline  expension coefficient (nn_eos= 1)
129   rn_lambda1  =  5.9520e-2      !  cabbeling coeff in T^2  (=0 for linear eos)
130   rn_lambda2  =  7.4914e-4      !  cabbeling coeff in S^2  (=0 for linear eos)
131   rn_mu1      =  1.4970e-4      !  thermobaric coeff. in T (=0 for linear eos)
132   rn_mu2      =  1.1090e-5      !  thermobaric coeff. in S (=0 for linear eos)
133   rn_nu       =  2.4341e-3      !  cabbeling coeff in T*S  (=0 for linear eos)
134!!org GYRE   rn_alpha    =   2.0e-4  !  thermal expension coefficient (nn_eos= 1 or 2)
135!!org GYRE   rn_beta     =   7.7e-4  !  saline  expension coefficient (nn_eos= 2)
136!!org  caution  now a0 = alpha / rau0   with rau0 = 1026
137/
138!-----------------------------------------------------------------------
139&namtra_adv    !   advection scheme for tracer
140!-----------------------------------------------------------------------
141   ln_traadv_fct =  .true.   !  FCT scheme
142      nn_fct_h   =  2               !  =2/4, horizontal 2nd / 4th order
143      nn_fct_v   =  2               !  =2/4, vertical   2nd / COMPACT 4th order
144      nn_fct_zts =  0               !  >=1,  2nd order FCT scheme with vertical sub-timestepping
145      !                             !        (number of sub-timestep = nn_fct_zts)
146/
147!----------------------------------------------------------------------------------
148&namtra_ldf    !   lateral diffusion scheme for tracers
149!----------------------------------------------------------------------------------
150   !                       !  Operator type:
151   ln_traldf_lap   =  .true.   !    laplacian operator
152   ln_traldf_blp   =  .false.  !  bilaplacian operator
153   !                       !  Direction of action:
154   ln_traldf_lev   =  .false.  !  iso-level
155   ln_traldf_hor   =  .false.  !  horizontal (geopotential)
156   ln_traldf_iso   =  .true.   !  iso-neutral (standard operator)
157   ln_traldf_triad =  .false.  !  iso-neutral (triad    operator)
158   !
159   !                       !  iso-neutral options:       
160   ln_traldf_msc   =  .true.   !  Method of Stabilizing Correction (both operators)
161   rn_slpmax       =   0.01    !  slope limit                      (both operators)
162   ln_triad_iso    =  .false.  !  pure horizontal mixing in ML              (triad only)
163   rn_sw_triad     =  1        !  =1 switching triad ; =0 all 4 triads used (triad only)
164   ln_botmix_triad =  .false.  !  lateral mixing on bottom                  (triad only)
165   !
166   !                       !  Coefficients:
167   nn_aht_ijk_t    = 0         !  space/time variation of eddy coef
168   !                                !   =-20 (=-30)    read in eddy_diffusivity_2D.nc (..._3D.nc) file
169   !                                !   =  0           constant
170   !                                !   = 10 F(k)      =ldf_c1d
171   !                                !   = 20 F(i,j)    =ldf_c2d
172   !                                !   = 21 F(i,j,t)  =Treguier et al. JPO 1997 formulation
173   !                                !   = 30 F(i,j,k)  =ldf_c2d + ldf_c1d
174   !                                !   = 31 F(i,j,k,t)=F(local velocity)
175   rn_aht_0        = 1000.     !  lateral eddy diffusivity   (lap. operator) [m2/s]
176   rn_bht_0        = 1.e+12    !  lateral eddy diffusivity (bilap. operator) [m4/s]
177/
178!----------------------------------------------------------------------------------
179&namtra_ldfeiv !   eddy induced velocity param.
180!----------------------------------------------------------------------------------
181   ln_ldfeiv     =.false.   ! use eddy induced velocity parameterization
182/
183!-----------------------------------------------------------------------
184&namtra_dmp    !   tracer: T & S newtonian damping
185!-----------------------------------------------------------------------
186   ln_tradmp   =  .false.  !  add a damping termn (T) or not (F)
187/
188!-----------------------------------------------------------------------
189&namdyn_adv    !   formulation of the momentum advection
190!-----------------------------------------------------------------------
191/
192!-----------------------------------------------------------------------
193&namdyn_vor    !   option of physics/algorithm (not control by CPP keys)
194!-----------------------------------------------------------------------
195   ln_dynvor_ene = .true.  !  enstrophy conserving scheme
196   ln_dynvor_ens = .false. !  energy conserving scheme
197   ln_dynvor_mix = .false. !  mixed scheme
198   ln_dynvor_een = .false. !  energy & enstrophy scheme
199      nn_een_e3f = 1             !  e3f = masked averaging of e3t divided by 4 (=0) or by the sum of mask (=1)
200   ln_dynvor_msk = .false. !  vorticity multiplied by fmask (=T) or not (=F) (all vorticity schemes)
201/
202!-----------------------------------------------------------------------
203&namdyn_hpg    !   Hydrostatic pressure gradient option
204!-----------------------------------------------------------------------
205   ln_hpg_zco  = .true.    !  z-coordinate - full steps
206   ln_hpg_zps  = .false.   !  z-coordinate - partial steps (interpolation)
207/
208!-----------------------------------------------------------------------
209&namdyn_ldf    !   lateral diffusion on momentum
210!-----------------------------------------------------------------------
211   !                       !  Type of the operator :
212   !                           !  no diffusion: set ln_dynldf_lap=..._blp=F
213   ln_dynldf_lap =  .true.    !    laplacian operator
214   ln_dynldf_blp =  .false.    !  bilaplacian operator
215   !                       !  Direction of action  :
216   ln_dynldf_lev =  .true.    !  iso-level
217   ln_dynldf_hor =  .false.    !  horizontal (geopotential)
218   ln_dynldf_iso =  .false.    !  iso-neutral
219   !                       !  Coefficient
220   nn_ahm_ijk_t  = 0           !  space/time variation of eddy coef
221   !                                !  =-30  read in eddy_viscosity_3D.nc file
222   !                                !  =-20  read in eddy_viscosity_2D.nc file
223   !                                !  =  0  constant
224   !                                !  = 10  F(k)=c1d
225   !                                !  = 20  F(i,j)=F(grid spacing)=c2d
226   !                                !  = 30  F(i,j,k)=c2d*c1d
227   !                                !  = 31  F(i,j,k)=F(grid spacing and local velocity)
228   rn_ahm_0      = 100000.     !  horizontal laplacian eddy viscosity   [m2/s]
229   rn_ahm_b      =      0.     !  background eddy viscosity for ldf_iso [m2/s]
230   rn_bhm_0      =      0.      !  horizontal bilaplacian eddy viscosity [m4/s]
231   !
232   ! Caution in 20 and 30 cases the coefficient have to be given for a 1 degree grid (~111km)
233/
234   rn_ahm_0_lap     = 100000.   !  horizontal laplacian eddy viscosity   [m2/s]
235/
236!-----------------------------------------------------------------------
237&namzdf        !   vertical physics
238!-----------------------------------------------------------------------
239   nn_evdm     =    1      !  evd apply on tracer (=0) or on tracer and momentum (=1)
240/
241!-----------------------------------------------------------------------
242&namzdf_tke    !   turbulent eddy kinetic dependent vertical diffusion  ("key_zdftke")
243!-----------------------------------------------------------------------
244   nn_etau     =   0       !  penetration of tke below the mixed layer (ML) due to internal & intertial waves
245/
246!-----------------------------------------------------------------------
247&namsol        !   elliptic solver / island / free surface
248!-----------------------------------------------------------------------
249   nn_solv     =      2    !  elliptic solver: =1 preconditioned conjugate gradient (pcg)
250   nn_nmin     =    210    !  minimum of iterations for the SOR solver
251   rn_sor      =  1.96     !  optimal coefficient for SOR solver (to be adjusted with the domain)
252/
253!-----------------------------------------------------------------------
254&nammpp        !   Massively Parallel Processing                        ("key_mpp_mpi)
255!-----------------------------------------------------------------------
256/
257!-----------------------------------------------------------------------
258&namctl        !   Control prints & Benchmark
259!-----------------------------------------------------------------------
260/
261!-----------------------------------------------------------------------
262&namptr       !   Poleward Transport Diagnostic
263!-----------------------------------------------------------------------
264/
265!-----------------------------------------------------------------------
266&namhsb       !  Heat and salt budgets
267!-----------------------------------------------------------------------
268/
269!-----------------------------------------------------------------------
270&namdyn_nept  !   Neptune effect (simplified: lateral and vertical diffusions removed)
271!-----------------------------------------------------------------------
272   ln_neptramp       = .false.  ! ramp down Neptune velocity in shallow water
273/
Note: See TracBrowser for help on using the repository browser.