MODULE sbcwave !!====================================================================== !! *** MODULE sbcwave *** !! Wave module !!====================================================================== !! History : 3.3 ! 2011-09 (Adani M) Original code: Drag Coefficient !! : 3.4 ! 2012-10 (Adani M) Stokes Drift !! 3.6 ! 2014-09 (Clementi E, Oddo P)New Stokes Drift Computation !!---------------------------------------------------------------------- !!---------------------------------------------------------------------- !! sbc_wave : wave data from wave model in netcdf files !!---------------------------------------------------------------------- USE oce ! USE sbc_oce ! Surface boundary condition: ocean fields USE bdy_oce ! USE domvvl ! ! USE iom ! I/O manager library USE in_out_manager ! I/O manager USE lib_mpp ! distribued memory computing library USE fldread ! read input fields USE wrk_nemo ! USE phycst ! physical constants IMPLICIT NONE PRIVATE PUBLIC sbc_wave ! routine called in sbcmod INTEGER , PARAMETER :: jpfld = 4 ! number of files to read for stokes drift INTEGER , PARAMETER :: jp_usd = 1 ! index of stokes drift (i-component) (m/s) at T-point INTEGER , PARAMETER :: jp_vsd = 2 ! index of stokes drift (j-component) (m/s) at T-point INTEGER , PARAMETER :: jp_swh = 3 ! index of significant wave hight (m) at T-point INTEGER , PARAMETER :: jp_wmp = 4 ! index of mean wave period (s) at T-point TYPE(FLD), ALLOCATABLE, DIMENSION(:) :: sf_cd ! structure of input fields (file informations, fields read) Drag Coefficient TYPE(FLD), ALLOCATABLE, DIMENSION(:) :: sf_sd ! structure of input fields (file informations, fields read) Stokes Drift TYPE(FLD), ALLOCATABLE, DIMENSION(:) :: sf_wn ! structure of input fields (file informations, fields read) wave number for Qiao TYPE(FLD), ALLOCATABLE, DIMENSION(:) :: sf_tauoc ! structure of input fields (file informations, fields read) normalized wave stress into the ocean REAL(wp), PUBLIC, ALLOCATABLE, DIMENSION(:,:) :: cdn_wave REAL(wp), PUBLIC, ALLOCATABLE, DIMENSION(:,:) :: swh,wmp, wnum REAL(wp), PUBLIC, ALLOCATABLE, DIMENSION(:,:) :: tauoc_wave REAL(wp), PUBLIC, ALLOCATABLE, DIMENSION(:,:) :: tsd2d REAL(wp), PUBLIC, ALLOCATABLE, DIMENSION(:,:) :: usd2d, vsd2d REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: usd3d, vsd3d, wsd3d REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: usd3dt, vsd3dt REAL(wp), PUBLIC, ALLOCATABLE, DIMENSION(:,:) :: zusd2dt, zvsd2dt !! * Substitutions # include "domzgr_substitute.h90" # include "vectopt_loop_substitute.h90" !!---------------------------------------------------------------------- !! NEMO/OPA 3.7 , NEMO Consortium (2014) !! $Id$ !! Software governed by the CeCILL licence (NEMOGCM/NEMO_CeCILL.txt) !!---------------------------------------------------------------------- CONTAINS SUBROUTINE sbc_wave( kt ) !!--------------------------------------------------------------------- !! *** ROUTINE sbc_wave *** !! !! ** Purpose : read wave parameters from wave model in netcdf files. !! !! ** Method : - Read namelist namsbc_wave !! - Read Cd_n10 fields in netcdf files !! - Read stokes drift 2d in netcdf files !! - Read wave number in netcdf files !! - Compute 3d stokes drift using Breivik et al.,2014 !! formulation !! ** action !!--------------------------------------------------------------------- USE zdf_oce, ONLY : ln_zdfqiao INTEGER, INTENT( in ) :: kt ! ocean time step ! INTEGER :: ierror ! return error code INTEGER :: ifpr, jj,ji,jk INTEGER :: ios ! Local integer output status for namelist read ! CHARACTER(len=100) :: cn_dir ! Root directory for location of drag coefficient files REAL(wp) :: ztransp, zsp0, zk, zus, zvs REAL(wp), DIMENSION(jpi,jpj) :: zfac REAL(wp), DIMENSION(:,:,:), POINTER :: ze3hdiv ! 3D workspace TYPE(FLD_N), DIMENSION(jpfld) :: slf_i ! array of namelist informations on the fields to read TYPE(FLD_N) :: sn_cdg, sn_usd, sn_vsd, & & sn_swh, sn_wmp, sn_wnum, sn_tauoc ! informations about the fields to be read !! NAMELIST/namsbc_wave/ sn_cdg, cn_dir, sn_usd, sn_vsd, sn_swh, sn_wmp, sn_wnum, sn_tauoc !!--------------------------------------------------------------------- ! ! ! -------------------- ! IF( kt == nit000 ) THEN ! First call kt=nit000 ! ! ! -------------------- ! REWIND( numnam_ref ) ! Namelist namsbc_wave in reference namelist : File for drag coeff. from wave model READ ( numnam_ref, namsbc_wave, IOSTAT = ios, ERR = 901) 901 IF( ios /= 0 ) CALL ctl_nam ( ios , 'namsbc_wave in reference namelist', lwp ) REWIND( numnam_cfg ) ! Namelist namsbc_wave in configuration namelist : File for drag coeff. from wave model READ ( numnam_cfg, namsbc_wave, IOSTAT = ios, ERR = 902 ) 902 IF( ios /= 0 ) CALL ctl_nam ( ios , 'namsbc_wave in configuration namelist', lwp ) IF(lwm) WRITE ( numond, namsbc_wave ) ! IF ( ln_cdgw ) THEN ALLOCATE( sf_cd(1), STAT=ierror ) !* allocate and fill sf_wave with sn_cdg IF( ierror > 0 ) CALL ctl_stop( 'STOP', 'sbc_wave: unable to allocate sf_wave structure' ) ! ALLOCATE( sf_cd(1)%fnow(jpi,jpj,1) ) IF( sn_cdg%ln_tint ) ALLOCATE( sf_cd(1)%fdta(jpi,jpj,1,2) ) CALL fld_fill( sf_cd, (/ sn_cdg /), cn_dir, 'sbc_wave', 'Wave module ', 'namsbc_wave' ) ALLOCATE( cdn_wave(jpi,jpj) ) cdn_wave(:,:) = 0.0 ENDIF IF ( ln_tauoc ) THEN ALLOCATE( sf_tauoc(1), STAT=ierror ) !* allocate and fill sf_wave with sn_tauoc IF( ierror > 0 ) CALL ctl_stop( 'STOP', 'sbc_wave: unable to allocate sf_wave structure' ) ! ALLOCATE( sf_tauoc(1)%fnow(jpi,jpj,1) ) IF( sn_tauoc%ln_tint ) ALLOCATE( sf_tauoc(1)%fdta(jpi,jpj,1,2) ) CALL fld_fill( sf_tauoc, (/ sn_tauoc /), cn_dir, 'sbc_wave', 'Wave module', 'namsbc_wave' ) ALLOCATE( tauoc_wave(jpi,jpj) ) tauoc_wave(:,:) = 0.0 ENDIF IF ( ln_sdw ) THEN slf_i(jp_usd) = sn_usd ; slf_i(jp_vsd) = sn_vsd; slf_i(jp_swh) = sn_swh ; slf_i(jp_wmp) = sn_wmp; ALLOCATE( sf_sd(jpfld), STAT=ierror ) !* allocate and fill sf_sd with stokes drift IF( ierror > 0 ) CALL ctl_stop( 'STOP', 'sbc_wave: unable to allocate sf_wave structure' ) ! DO ifpr= 1, jpfld ALLOCATE( sf_sd(ifpr)%fnow(jpi,jpj,1) ) IF( slf_i(ifpr)%ln_tint ) ALLOCATE( sf_sd(ifpr)%fdta(jpi,jpj,1,2) ) END DO CALL fld_fill( sf_sd, slf_i, cn_dir, 'sbc_wave', 'Wave module ', 'namsbc_wave' ) ALLOCATE( usd2d(jpi,jpj),vsd2d(jpi,jpj) ) ALLOCATE( usd3d(jpi,jpj,jpk),vsd3d(jpi,jpj,jpk),wsd3d(jpi,jpj,jpk) ) ALLOCATE( usd3dt(jpi,jpj,jpk),vsd3dt(jpi,jpj,jpk) ) ALLOCATE( swh(jpi,jpj), wmp(jpi,jpj) ) ALLOCATE( zusd2dt(jpi,jpj), zvsd2dt(jpi,jpj) ) usd3d(:,:,:) = 0._wp ; usd2d(:,:) = 0._wp ; vsd3d(:,:,:) = 0._wp ; vsd2d(:,:) = 0._wp ; wsd3d(:,:,:) = 0._wp ; usd3dt(:,:,:) = 0._wp ; vsd3dt(:,:,:) = 0._wp ; swh (:,:) = 0._wp ; wmp (:,:) = 0._wp ; IF ( ln_zdfqiao ) THEN !== Vertical mixing enhancement using Qiao,2010 ==! ALLOCATE( sf_wn(1), STAT=ierror ) !* allocate and fill sf_wave with sn_wnum IF( ierror > 0 ) CALL ctl_stop( 'STOP', 'sbc_wave: unable toallocate sf_wave structure' ) ALLOCATE( sf_wn(1)%fnow(jpi,jpj,1) ) IF( sn_wnum%ln_tint ) ALLOCATE( sf_wn(1)%fdta(jpi,jpj,1,2) ) CALL fld_fill( sf_wn, (/ sn_wnum /), cn_dir, 'sbc_wave', 'Wave module', 'namsbc_wave' ) ALLOCATE( wnum(jpi,jpj),tsd2d(jpi,jpj) ) wnum(:,:) = 0._wp ; tsd2d(:,:) = 0._wp ENDIF ENDIF ENDIF ! IF ( ln_cdgw ) THEN !== Neutral drag coefficient ==! CALL fld_read( kt, nn_fsbc, sf_cd ) ! read from external forcing cdn_wave(:,:) = sf_cd(1)%fnow(:,:,1) ENDIF IF ( ln_tauoc ) THEN !== Wave induced stress ==! CALL fld_read( kt, nn_fsbc, sf_tauoc ) !* read wave norm stress from external forcing tauoc_wave(:,:) = sf_tauoc(1)%fnow(:,:,1) ENDIF IF ( ln_sdw ) THEN !== Computation of the 3d Stokes Drift ==! ! CALL fld_read( kt, nn_fsbc, sf_sd ) !* read wave parameters from external forcing swh(:,:) = sf_sd(jp_swh)%fnow(:,:,1) ! significant wave height wmp(:,:) = sf_sd(jp_wmp)%fnow(:,:,1) ! wave mean period zusd2dt(:,:) = sf_sd(jp_usd)%fnow(:,:,1) ! 2D zonal Stokes Drift at T point zvsd2dt(:,:) = sf_sd(jp_vsd)%fnow(:,:,1) ! 2D meridional Stokes Drift at T point ! !== Computation of the 3d Stokes Drift according to Breivik et al.,2014 !(DOI: 10.1175/JPO-D-14-0020.1)==! ! CALL wrk_alloc( jpi,jpj,jpk, ze3hdiv ) DO jk = 1, jpk DO jj = 1, jpj DO ji = 1, jpi ! On T grid ! Stokes transport speed estimated from Hs and Tmean ztransp = 2.0_wp*rpi*swh(ji,jj)**2.0_wp/(16.0_wp*MAX(wmp(ji,jj),0.0000001_wp)) ! Stokes surface speed zsp0 = SQRT( zusd2dt(ji,jj)**2 + zvsd2dt(ji,jj)**2) ! Wavenumber scale zk = ABS(zsp0)/MAX(ABS(5.97_wp*ztransp),0.0000001_wp) ! Depth attenuation zfac(ji,jj) = EXP(-2.0_wp*zk*fsdept(ji,jj,jk))/(1.0_wp+8.0_wp*zk*fsdept(ji,jj,jk)) END DO END DO ! DO jj = 1, jpj DO ji = 1, jpi usd3dt(ji,jj,jk) = zfac(ji,jj) * zusd2dt (ji,jj) * tmask(ji,jj,jk) vsd3dt(ji,jj,jk) = zfac(ji,jj) * zvsd2dt (ji,jj) * tmask(ji,jj,jk) END DO END DO END DO ! Into the U and V Grid DO jk = 1, jpkm1 DO jj = 1, jpjm1 DO ji = 1, jpim1 usd3d(ji,jj,jk) = 0.5 * umask(ji,jj,jk) * & & (usd3dt(ji,jj,jk) + usd3dt(ji+1,jj,jk)) vsd3d(ji,jj,jk) = 0.5 * vmask(ji,jj,jk) * & & (vsd3dt(ji,jj,jk) + vsd3dt(ji,jj+1,jk)) END DO END DO END DO ! CALL lbc_lnk( usd3d(:,:,:), 'U', -1. ) CALL lbc_lnk( vsd3d(:,:,:), 'V', -1. ) ! DO jk = 1, jpkm1 ! e3t * Horizontal divergence DO jj = 2, jpjm1 DO ji = fs_2, fs_jpim1 ! vector opt. ze3hdiv(ji,jj,jk) = ( e2u(ji ,jj) * fse3u_n(ji ,jj,jk) * usd3d(ji ,jj,jk) & & - e2u(ji-1,jj) * fse3u_n(ji-1,jj,jk) * usd3d(ji-1,jj,jk) & & + e1v(ji,jj ) * fse3v_n(ji,jj ,jk) * vsd3d(ji,jj ,jk) & & - e1v(ji,jj-1) * fse3v_n(ji,jj-1,jk) * vsd3d(ji,jj-1,jk) ) * r1_e1e2t(ji,jj) END DO END DO IF( .NOT. AGRIF_Root() ) THEN IF( nbondi == 1 .OR. nbondi == 2 ) ze3hdiv(nlci-1, : ,jk) = 0._wp ! east IF( nbondi == -1 .OR. nbondi == 2 ) ze3hdiv( 2 , : ,jk) = 0._wp ! west IF( nbondj == 1 .OR. nbondj == 2 ) ze3hdiv( : ,nlcj-1,jk) = 0._wp ! north IF( nbondj == -1 .OR. nbondj == 2 ) ze3hdiv( : , 2 ,jk) = 0._wp ! south ENDIF END DO CALL lbc_lnk( ze3hdiv, 'T', 1. ) ! DO jk = jpkm1, 1, -1 !* integrate from the bottom the e3t * hor. divergence wsd3d(:,:,jk) = wsd3d(:,:,jk+1) - ze3hdiv(:,:,jk) END DO #if defined key_bdy IF( lk_bdy ) THEN DO jk = 1, jpkm1 wsd3d(:,:,jk) = wsd3d(:,:,jk) * bdytmask(:,:) END DO ENDIF #endif CALL wrk_dealloc( jpi,jpj,jpk, ze3hdiv ) IF ( ln_zdfqiao ) THEN wnum(:,:) = sf_wn(1)%fnow(:,:,1) ! Calculate the module of the stokes drift on T grid !------------------------------------------------- DO jj = 1, jpj DO ji = 1, jpi tsd2d(ji,jj) = SQRT( zusd2dt(ji,jj)**2 + zvsd2dt(ji,jj)**2) END DO END DO ENDIF ! ENDIF ! END SUBROUTINE sbc_wave !!====================================================================== END MODULE sbcwave