New URL for NEMO forge!   http://forge.nemo-ocean.eu

Since March 2022 along with NEMO 4.2 release, the code development moved to a self-hosted GitLab.
This present forge is now archived and remained online for history.
Chap_Conservation.tex in branches/2015/nemo_v3_6_STABLE/DOC/TexFiles/Chapters – NEMO

source: branches/2015/nemo_v3_6_STABLE/DOC/TexFiles/Chapters/Chap_Conservation.tex @ 6993

Last change on this file since 6993 was 6993, checked in by nicolasmartin, 8 years ago

Add missing files and modifications from previous commit

File size: 17.7 KB
Line 
1\documentclass[NEMO_book]{subfiles}
2\begin{document}
3
4% ================================================================
5% Invariant of the Equations
6% ================================================================
7\chapter{Invariants of the Primitive Equations}
8\label{Invariant}
9\minitoc
10
11The continuous equations of motion have many analytic properties. Many
12quantities (total mass, energy, enstrophy, etc.) are strictly conserved in
13the inviscid and unforced limit, while ocean physics conserve the total
14quantities on which they act (momentum, temperature, salinity) but dissipate
15their total variance (energy, enstrophy, etc.). Unfortunately, the finite
16difference form of these equations is not guaranteed to retain all these
17important properties. In constructing the finite differencing schemes, we
18wish to ensure that certain integral constraints will be maintained. In
19particular, it is desirable to construct the finite difference equations so
20that horizontal kinetic energy and/or potential enstrophy of horizontally
21non-divergent flow, and variance of temperature and salinity will be
22conserved in the absence of dissipative effects and forcing. \citet{Arakawa1966} 
23has first pointed out the advantage of this approach. He showed that if
24integral constraints on energy are maintained, the computation will be free
25of the troublesome "non linear" instability originally pointed out by
26\citet{Phillips1959}. A consistent formulation of the energetic properties is
27also extremely important in carrying out long-term numerical simulations for
28an oceanographic model. Such a formulation avoids systematic errors that
29accumulate with time \citep{Bryan1997}.
30
31The general philosophy of OPA which has led to the discrete formulation
32presented in {\S}II.2 and II.3 is to choose second order non-diffusive
33scheme for advective terms for both dynamical and tracer equations. At this
34level of complexity, the resulting schemes are dispersive schemes.
35Therefore, they require the addition of a diffusive operator to be stable.
36The alternative is to use diffusive schemes such as upstream or flux
37corrected schemes. This last option was rejected because we prefer a
38complete handling of the model diffusion, i.e. of the model physics rather
39than letting the advective scheme produces its own implicit diffusion
40without controlling the space and time structure of this implicit diffusion.
41Note that in some very specific cases as passive tracer studies, the
42positivity of the advective scheme is required. In that case, and in that
43case only, the advective scheme used for passive tracer is a flux correction
44scheme \citep{Marti1992, Levy1996, Levy1998}.
45
46% -------------------------------------------------------------------------------------------------------------
47%       Conservation Properties on Ocean Dynamics
48% -------------------------------------------------------------------------------------------------------------
49\section{Conservation Properties on Ocean Dynamics}
50\label{Invariant_dyn}
51
52The non linear term of the momentum equations has been split into a
53vorticity term, a gradient of horizontal kinetic energy and a vertical
54advection term. Three schemes are available for the former (see {\S}~II.2)
55according to the CPP variable defined (default option\textbf{ 
56}or \textbf{key{\_}vorenergy } or \textbf{key{\_}vorcombined
57} defined). They differ in their conservative
58properties (energy or enstrophy conserving scheme). The two latter terms
59preserve the total kinetic energy: the large scale kinetic energy is also
60preserved in practice. The remaining non-diffusive terms of the momentum
61equation (namely the hydrostatic and surface pressure gradient terms) also
62preserve the total kinetic energy and have no effect on the vorticity of the
63flow.
64
65\textbf{* relative, planetary and total vorticity term:}
66
67Let us define as either the relative, planetary and total potential
68vorticity, i.e. , , and , respectively. The continuous formulation of the
69vorticity term satisfies following integral constraints:
70\begin{equation} \label{Eq_vor_vorticity}
71\int_D {{\textbf {k}}\cdot \frac{1}{e_3 }\nabla \times \left( {\varsigma 
72\;{\rm {\bf k}}\times {\textbf {U}}_h } \right)\;dv} =0
73\end{equation}
74
75\begin{equation} \label{Eq_vor_enstrophy}
76if\quad \chi =0\quad \quad \int\limits_D {\varsigma \;{\textbf{k}}\cdot 
77\frac{1}{e_3 }\nabla \times \left( {\varsigma {\textbf{k}}\times {\textbf{U}}_h } \right)\;dv} =-\int\limits_D {\frac{1}{2}\varsigma ^2\,\chi \;dv} 
78=0
79\end{equation}
80
81\begin{equation} \label{Eq_vor_energy}
82\int_D {{\textbf{U}}_h \times \left( {\varsigma \;{\textbf{k}}\times {\textbf{U}}_h } \right)\;dv} =0
83\end{equation}
84where $dv = e_1\, e_2\, e_3\, di\, dj\, dk$ is the volume element.
85(II.4.1a) means that $\varsigma $ is conserved. (II.4.1b) is obtained by an
86integration by part. It means that $\varsigma^2$ is conserved for a horizontally
87non-divergent flow.
88(II.4.1c) is even satisfied locally since the vorticity term is orthogonal
89to the horizontal velocity. It means that the vorticity term has no
90contribution to the evolution of the total kinetic energy. (II.4.1a) is
91obviously always satisfied, but (II.4.1b) and (II.4.1c) cannot be satisfied
92simultaneously with a second order scheme. Using the symmetry or
93anti-symmetry properties of the operators (Eqs II.1.10 and 11), it can be
94shown that the scheme (II.2.11) satisfies (II.4.1b) but not (II.4.1c), while
95scheme (II.2.12) satisfies (II.4.1c) but not (II.4.1b) (see appendix C).
96Note that the enstrophy conserving scheme on total vorticity has been chosen
97as the standard discrete form of the vorticity term.
98
99\textbf{* Gradient of kinetic energy / vertical advection}
100
101In continuous formulation, the gradient of horizontal kinetic energy has no
102contribution to the evolution of the vorticity as the curl of a gradient is
103zero. This property is satisfied locally with the discrete form of both the
104gradient and the curl operator we have made (property (II.1.9)~). Another
105continuous property is that the change of horizontal kinetic energy due to
106vertical advection is exactly balanced by the change of horizontal kinetic
107energy due to the horizontal gradient of horizontal kinetic energy:
108
109\begin{equation} \label{Eq_keg_zad}
110\int_D {{\textbf{U}}_h \cdot \nabla _h \left( {1/2\;{\textbf{U}}_h ^2} \right)\;dv} =-\int_D {{\textbf{U}}_h \cdot \frac{w}{e_3 }\;\frac{\partial 
111{\textbf{U}}_h }{\partial k}\;dv}
112\end{equation}
113
114Using the discrete form given in {\S}II.2-a and the symmetry or
115anti-symmetry properties of the mean and difference operators, \eqref{Eq_keg_zad} is
116demonstrated in the Appendix C. The main point here is that satisfying
117\eqref{Eq_keg_zad} links the choice of the discrete forms of the vertical advection
118and of the horizontal gradient of horizontal kinetic energy. Choosing one
119imposes the other. The discrete form of the vertical advection given in
120{\S}II.2-a is a direct consequence of formulating the horizontal kinetic
121energy as $1/2 \left( \overline{u^2}^i + \overline{v^2}^j \right) $ in the gradient term.
122
123\textbf{* hydrostatic pressure gradient term}
124
125In continuous formulation, a pressure gradient has no contribution to the
126evolution of the vorticity as the curl of a gradient is zero. This
127properties is satisfied locally with the choice of discretization we have
128made (property (II.1.9)~). In addition, when the equation of state is linear
129(i.e. when an advective-diffusive equation for density can be derived from
130those of temperature and salinity) the change of horizontal kinetic energy
131due to the work of pressure forces is balanced by the change of potential
132energy due to buoyancy forces:
133
134\begin{equation} \label{Eq_hpg_pe}
135\int_D {-\frac{1}{\rho _o }\left. {\nabla p^h} \right|_z \cdot {\textbf {U}}_h \;dv} \;=\;\int_D {\nabla .\left( {\rho \,{\textbf{U}}} \right)\;g\;z\;\;dv}
136\end{equation}
137
138Using the discrete form given in {\S}~II.2-a and the symmetry or
139anti-symmetry properties of the mean and difference operators, (II.4.3) is
140demonstrated in the Appendix C. The main point here is that satisfying
141(II.4.3) strongly constraints the discrete expression of the depth of
142$T$-points and of the term added to the pressure gradient in $s-$coordinates: the
143depth of a $T$-point, $z_T$, is defined as the sum the vertical scale
144factors at $w$-points starting from the surface.
145
146\textbf{* surface pressure gradient term}
147
148In continuous formulation, the surface pressure gradient has no contribution
149to the evolution of vorticity. This properties is trivially satisfied
150locally as (II.2.3) (the equation verified by $\psi$ has been
151derived from the discrete formulation of the momentum equations, vertical
152sum and curl. Nevertheless, the $\psi$-equation is solved numerically by an
153iterative solver (see {\S}~III.5), thus the property is only satisfied with
154the accuracy required on the solver. In addition, with the rigid-lid
155approximation, the change of horizontal kinetic energy due to the work of
156surface pressure forces is exactly zero:
157\begin{equation} \label{Eq_spg}
158\int_D {-\frac{1}{\rho _o }\nabla _h } \left( {p_s } \right)\cdot {\textbf{U}}_h \;dv=0
159\end{equation}
160
161(II.4.4) is satisfied in discrete form only if the discrete barotropic
162streamfunction time evolution equation is given by (II.2.3) (see appendix
163C). This shows that (II.2.3) is the only way to compute the streamfunction,
164otherwise there is no guarantee that the surface pressure force work
165vanishes.
166
167% -------------------------------------------------------------------------------------------------------------
168%       Conservation Properties on Ocean Thermodynamics
169% -------------------------------------------------------------------------------------------------------------
170\section{Conservation Properties on Ocean Thermodynamics}
171\label{Invariant_tra}
172
173In continuous formulation, the advective terms of the tracer equations
174conserve the tracer content and the quadratic form of the tracer, i.e.
175\begin{equation} \label{Eq_tra_tra2}
176\int_D {\nabla .\left( {T\;{\textbf{U}}} \right)\;dv} =0
177\;\text{and}
178\int_D {T\;\nabla .\left( {T\;{\textbf{U}}} \right)\;dv} =0
179\end{equation}
180
181The numerical scheme used ({\S}II.2-b) (equations in flux form, second order
182centred finite differences) satisfies (II.4.5) (see appendix C). Note that
183in both continuous and discrete formulations, there is generally no strict
184conservation of mass, since the equation of state is non linear with respect
185to $T$ and $S$. In practice, the mass is conserved with a very good accuracy.
186
187% -------------------------------------------------------------------------------------------------------------
188%       Conservation Properties on Momentum Physics
189% -------------------------------------------------------------------------------------------------------------
190\subsection{Conservation Properties on Momentum Physics}
191\label{Invariant_dyn_physics}
192
193\textbf{* lateral momentum diffusion term}
194
195The continuous formulation of the horizontal diffusion of momentum satisfies
196the following integral constraints~:
197\begin{equation} \label{Eq_dynldf_dyn}
198\int\limits_D {\frac{1}{e_3 }{\rm {\bf k}}\cdot \nabla \times \left[ {\nabla 
199_h \left( {A^{lm}\;\chi } \right)-\nabla _h \times \left( {A^{lm}\;\zeta 
200\;{\rm {\bf k}}} \right)} \right]\;dv} =0
201\end{equation}
202
203\begin{equation} \label{Eq_dynldf_div}
204\int\limits_D {\nabla _h \cdot \left[ {\nabla _h \left( {A^{lm}\;\chi } 
205\right)-\nabla _h \times \left( {A^{lm}\;\zeta \;{\rm {\bf k}}} \right)} 
206\right]\;dv} =0
207\end{equation}
208
209\begin{equation} \label{Eq_dynldf_curl}
210\int_D {{\rm {\bf U}}_h \cdot \left[ {\nabla _h \left( {A^{lm}\;\chi } 
211\right)-\nabla _h \times \left( {A^{lm}\;\zeta \;{\rm {\bf k}}} \right)} 
212\right]\;dv} \leqslant 0
213\end{equation}
214
215\begin{equation} \label{Eq_dynldf_curl2}
216\mbox{if}\quad A^{lm}=cste\quad \quad \int_D {\zeta \;{\rm {\bf k}}\cdot 
217\nabla \times \left[ {\nabla _h \left( {A^{lm}\;\chi } \right)-\nabla _h
218\times \left( {A^{lm}\;\zeta \;{\rm {\bf k}}} \right)} \right]\;dv} 
219\leqslant 0
220\end{equation}
221
222\begin{equation} \label{Eq_dynldf_div2}
223\mbox{if}\quad A^{lm}=cste\quad \quad \int_D {\chi \;\nabla _h \cdot \left[
224{\nabla _h \left( {A^{lm}\;\chi } \right)-\nabla _h \times \left(
225{A^{lm}\;\zeta \;{\rm {\bf k}}} \right)} \right]\;dv} \leqslant 0
226\end{equation}
227
228
229(II.4.6a) and (II.4.6b) means that the horizontal diffusion of momentum
230conserve both the potential vorticity and the divergence of the flow, while
231Eqs (II.4.6c) to (II.4.6e) mean that it dissipates the energy, the enstrophy
232and the square of the divergence. The two latter properties are only
233satisfied when the eddy coefficients are horizontally uniform.
234
235Using (II.1.8) and (II.1.9), and the symmetry or anti-symmetry properties of
236the mean and difference operators, it is shown that the discrete form of the
237lateral momentum diffusion given in {\S}II.2-c satisfies all the integral
238constraints (II.4.6) (see appendix C). In particular, when the eddy
239coefficients are horizontally uniform, a complete separation of vorticity
240and horizontal divergence fields is ensured, so that diffusion (dissipation)
241of vorticity (enstrophy) does not generate horizontal divergence (variance
242of the horizontal divergence) and \textit{vice versa}. When the vertical curl of the horizontal
243diffusion of momentum (discrete sense) is taken, the term associated to the
244horizontal gradient of the divergence is zero locally. When the horizontal
245divergence of the horizontal diffusion of momentum (discrete sense) is
246taken, the term associated to the vertical curl of the vorticity is zero
247locally. The resulting term conserves $\chi$ and dissipates
248$\chi^2$ when the
249eddy coefficient is horizontally uniform.
250
251\textbf{* vertical momentum diffusion term}
252
253As for the lateral momentum physics, the continuous form of the vertical
254diffusion of momentum satisfies following integral constraints~:
255
256conservation of momentum, dissipation of horizontal kinetic energy
257
258\begin{equation} \label{Eq_dynzdf_dyn}
259\begin{aligned}
260& \int_D {\frac{1}{e_3 }}  \frac{\partial }{\partial k}\left( \frac{A^{vm}}{e_3 }\frac{\partial {\textbf{U}}_h }{\partial k} \right) \;dv = \overrightarrow{\textbf{0}} \\ 
261& \int_D \textbf{U}_h \cdot \frac{1}{e_3} \frac{\partial}{\partial k} \left( {\frac{A^{vm}}{e_3 }}{\frac{\partial \textbf{U}_h }{\partial k}} \right) \;dv \leq 0 \\ 
262 \end{aligned} 
263 \end{equation}
264conservation of vorticity, dissipation of enstrophy
265\begin{equation} \label{Eq_dynzdf_vor}
266\begin{aligned}
267& \int_D {\frac{1}{e_3 }{\rm {\bf k}}\cdot \nabla \times \left( {\frac{1}{e_3
268}\frac{\partial }{\partial k}\left( {\frac{A^{vm}}{e_3 }\frac{\partial {\rm 
269{\bf U}}_h }{\partial k}} \right)} \right)\;dv} =0 \\ 
270& \int_D {\zeta \,{\rm {\bf k}}\cdot \nabla \times \left( {\frac{1}{e_3
271}\frac{\partial }{\partial k}\left( {\frac{A^{vm}}{e_3 }\frac{\partial {\rm 
272{\bf U}}_h }{\partial k}} \right)} \right)\;dv} \leq 0 \\ 
273\end{aligned}
274\end{equation}
275conservation of horizontal divergence, dissipation of square of the
276horizontal divergence
277\begin{equation} \label{Eq_dynzdf_div}
278\begin{aligned}
279 &\int_D {\nabla \cdot \left( {\frac{1}{e_3 }\frac{\partial }{\partial 
280k}\left( {\frac{A^{vm}}{e_3 }\frac{\partial {\rm {\bf U}}_h }{\partial k}} 
281\right)} \right)\;dv} =0 \\ 
282& \int_D {\chi \;\nabla \cdot \left( {\frac{1}{e_3 }\frac{\partial }{\partial 
283k}\left( {\frac{A^{vm}}{e_3 }\frac{\partial {\rm {\bf U}}_h }{\partial k}} 
284\right)} \right)\;dv} \leq 0 \\ 
285\end{aligned}
286\end{equation}
287
288In discrete form, all these properties are satisfied in $z$-coordinate (see
289Appendix C). In $s$-coordinates, only first order properties can be
290demonstrated, i.e. the vertical momentum physics conserve momentum,
291potential vorticity, and horizontal divergence.
292
293% -------------------------------------------------------------------------------------------------------------
294%       Conservation Properties on Tracer Physics
295% -------------------------------------------------------------------------------------------------------------
296\subsection{Conservation Properties on Tracer Physics}
297\label{Invariant_tra_physics}
298
299The numerical schemes used for tracer subgridscale physics are written in
300such a way that the heat and salt contents are conserved (equations in flux
301form, second order centred finite differences). As a form flux is used to
302compute the temperature and salinity, the quadratic form of these quantities
303(i.e. their variance) globally tends to diminish. As for the advective term,
304there is generally no strict conservation of mass even if, in practice, the
305mass is conserved with a very good accuracy.
306
307\textbf{* lateral physics: }conservation of tracer, dissipation of tracer
308variance, i.e.
309
310\begin{equation} \label{Eq_traldf_t_t2}
311\begin{aligned}
312&\int_D \nabla\, \cdot\, \left( A^{lT} \,\Re \,\nabla \,T \right)\;dv = 0 \\ 
313&\int_D \,T\, \nabla\, \cdot\, \left( A^{lT} \,\Re \,\nabla \,T \right)\;dv \leq 0 \\ 
314\end{aligned}
315\end{equation}
316
317\textbf{* vertical physics: }conservation of tracer, dissipation of tracer
318variance, i.e.
319
320\begin{equation} \label{Eq_trazdf_t_t2}
321\begin{aligned}
322& \int_D \frac{1}{e_3 } \frac{\partial }{\partial k}\left( \frac{A^{vT}}{e_3 }  \frac{\partial T}{\partial k}  \right)\;dv = 0 \\ 
323& \int_D \,T \frac{1}{e_3 } \frac{\partial }{\partial k}\left( \frac{A^{vT}}{e_3 }  \frac{\partial T}{\partial k}  \right)\;dv \leq 0 \\ 
324\end{aligned}
325\end{equation}
326
327Using the symmetry or anti-symmetry properties of the mean and difference
328operators, it is shown that the discrete form of tracer physics given in
329{\S}~II.2-c satisfies all the integral constraints (II.4.8) and (II.4.9)
330except the dissipation of the square of the tracer when non-geopotential
331diffusion is used (see appendix C). A discrete form of the lateral tracer
332physics can be derived which satisfies these last properties. Nevertheless,
333it requires a horizontal averaging of the vertical component of the lateral
334physics that prevents the use of implicit resolution in the vertical. It has
335not been implemented.
336
337\end{document}
Note: See TracBrowser for help on using the repository browser.