New URL for NEMO forge!   http://forge.nemo-ocean.eu

Since March 2022 along with NEMO 4.2 release, the code development moved to a self-hosted GitLab.
This present forge is now archived and remained online for history.
Chap_STP.tex in branches/2015/nemo_v3_6_STABLE/DOC/TexFiles/Chapters – NEMO

source: branches/2015/nemo_v3_6_STABLE/DOC/TexFiles/Chapters/Chap_STP.tex @ 6992

Last change on this file since 6992 was 6992, checked in by nicolasmartin, 8 years ago

Global reorganisation of DOC directory to ensure the export of NEMO Reference Manual both in PDF & HTML

  • Move 'Figures' and 'Namelists' from ./TexFiles? to the root, create 'Styles' directory in ./TexFiles? with corresponding files and generate EPS version of all figures
  • Fix LaTex? typos, add the possibility to compile each chapter separately with 'subfiles' package and clean the main LaTeX file by creating 'Preamble.tex' & 'Top_Matter.tex' in ./TexFiles?
  • Provide LaTeX2HTML.sh script for producing HTML output (LaTeX2HTML tool needed with patch)
  • Remove PDF files from versionned files
File size: 22.8 KB
Line 
1%\documentclass[NEMO_book]{subfiles}
2%\begin{document}
3
4% ================================================================
5% Chapter 2 � Time Domain (step.F90)
6% ================================================================
7\chapter{Time Domain (STP) }
8\label{STP}
9\minitoc
10
11% Missing things:
12%  - daymod: definition of the time domain (nit000, nitend andd the calendar)
13
14
15\gmcomment{STEVEN :maybe a picture of the directory structure in the introduction
16which could be referred to here, would help  ==> to be added}
17%%%%
18
19
20\newpage
21$\ $\newline    % force a new ligne
22
23
24Having defined the continuous equations in Chap.~\ref{PE}, we need now to choose
25a time discretization. In the present chapter, we provide a general description of the \NEMO 
26time stepping strategy and the consequences for the order in which the equations are
27solved.
28
29$\ $\newline    % force a new ligne
30% ================================================================
31% Time Discretisation
32% ================================================================
33\section{Time stepping environment}
34\label{STP_environment}
35
36The time stepping used in \NEMO is a three level scheme that can be
37represented as follows:
38\begin{equation} \label{Eq_STP}
39   x^{t+\rdt} = x^{t-\rdt} + 2 \, \rdt \  \text{RHS}_x^{t-\rdt,\,t,\,t+\rdt}
40\end{equation} 
41where $x$ stands for $u$, $v$, $T$ or $S$; RHS is the Right-Hand-Side of the
42corresponding time evolution equation; $\rdt$ is the time step; and the
43superscripts indicate the time at which a quantity is evaluated. Each term of the
44RHS is evaluated at a specific time step depending on the physics with which
45it is associated.
46
47The choice of the time step used for this evaluation is discussed below as
48well as the implications for starting or restarting a model
49simulation. Note that the time stepping calculation is generally performed in a single
50operation. With such a complex and nonlinear system of equations it would be
51dangerous to let a prognostic variable evolve in time for each term separately.
52
53The three level scheme requires three arrays for each prognostic variable.
54For each variable $x$ there is $x_b$ (before), $x_n$ (now) and $x_a$. The third array,
55although referred to as $x_a$ (after) in the code, is usually not the variable at
56the after time step; but rather it is used to store the time derivative (RHS in
57\eqref{Eq_STP}) prior to time-stepping the equation. Generally, the time
58stepping is performed once at each time step in the \mdl{tranxt} and \mdl{dynnxt} 
59modules, except when using implicit vertical diffusion or calculating sea surface height
60in which case time-splitting options are used.
61
62% -------------------------------------------------------------------------------------------------------------
63%        Non-Diffusive Part---Leapfrog Scheme
64% -------------------------------------------------------------------------------------------------------------
65\section{Non-Diffusive Part --- Leapfrog Scheme}
66\label{STP_leap_frog}
67
68The time stepping used for processes other than diffusion is the well-known leapfrog
69scheme \citep{Mesinger_Arakawa_Bk76}.  This scheme is widely used for advection
70processes in low-viscosity fluids. It is a time centred scheme, $i.e.$ 
71the RHS in \eqref{Eq_STP} is evaluated at time step $t$, the now time step.
72It may be used for momentum and tracer advection,
73pressure gradient, and Coriolis terms, but not for diffusion terms.
74It is an efficient method that achieves
75second-order accuracy with just one right hand side evaluation per time step.
76Moreover, it does not artificially damp linear oscillatory motion nor does it produce
77instability by amplifying the oscillations. These advantages are somewhat diminished
78by the large phase-speed error of the leapfrog scheme, and the unsuitability
79of leapfrog differencing for the representation of diffusion and Rayleigh
80damping processes. However, the scheme allows the coexistence of a numerical
81and a physical mode due to its leading third order dispersive error. In other words a
82divergence of odd and even time steps may occur. To prevent it, the leapfrog scheme
83is often used in association with a Robert-Asselin time filter (hereafter the LF-RA scheme).
84This filter, first designed by \citet{Robert_JMSJ66} and more comprehensively studied
85by \citet{Asselin_MWR72}, is a kind of laplacian diffusion in time that mixes odd and
86even time steps:
87\begin{equation} \label{Eq_STP_asselin}
88x_F^t  = x^t + \gamma \, \left[ x_F^{t-\rdt} - 2 x^t + x^{t+\rdt} \right]
89\end{equation} 
90where the subscript $F$ denotes filtered values and $\gamma$ is the Asselin
91coefficient. $\gamma$ is initialized as \np{rn\_atfp} (namelist parameter).
92Its default value is \np{rn\_atfp}=$10^{-3}$ (see \S~\ref{STP_mLF}),
93causing only a weak dissipation of high frequency motions (\citep{Farge1987}).
94The addition of a time filter degrades the accuracy of the
95calculation from second to first order. However, the second order truncation
96error is proportional to $\gamma$, which is small compared to 1. Therefore,
97the LF-RA is a quasi second order accurate scheme. The LF-RA scheme
98is preferred to other time differencing schemes such as
99predictor corrector or trapezoidal schemes, because the user has an explicit
100and simple control of the magnitude of the time diffusion of the scheme.
101When used with the 2nd order space centred discretisation of the
102advection terms in the momentum and tracer equations, LF-RA avoids implicit
103numerical diffusion: diffusion is set explicitly by the user through the Robert-Asselin
104filter parameter and the viscosity and diffusion coefficients.
105
106% -------------------------------------------------------------------------------------------------------------
107%        Diffusive Part---Forward or Backward Scheme
108% -------------------------------------------------------------------------------------------------------------
109\section{Diffusive Part --- Forward or Backward Scheme}
110\label{STP_forward_imp}
111
112The leapfrog differencing scheme is unsuitable for the representation of
113diffusion and damping processes. For a tendancy $D_x$, representing a
114diffusion term or a restoring term to a tracer climatology
115(when present, see \S~\ref{TRA_dmp}), a forward time differencing scheme
116 is used :
117\begin{equation} \label{Eq_STP_euler}
118   x^{t+\rdt} = x^{t-\rdt} + 2 \, \rdt \ {D_x}^{t-\rdt}
119\end{equation} 
120
121This is diffusive in time and conditionally stable. The
122conditions for stability of second and fourth order horizontal diffusion schemes are \citep{Griffies_Bk04}:
123\begin{equation} \label{Eq_STP_euler_stability}
124A^h < \left\{
125\begin{aligned}
126                    &\frac{e^2}{  8 \; \rdt }   &&\quad \text{laplacian diffusion}  \\
127                    &\frac{e^4}{64 \; \rdt }    &&\quad \text{bilaplacian diffusion} 
128            \end{aligned}
129\right.
130\end{equation}
131where $e$ is the smallest grid size in the two horizontal directions and $A^h$ is
132the mixing coefficient. The linear constraint \eqref{Eq_STP_euler_stability} 
133is a necessary condition, but not sufficient. If it is not satisfied, even mildly,
134then the model soon becomes wildly unstable. The instability can be removed
135by either reducing the length of the time steps or reducing the mixing coefficient.
136
137For the vertical diffusion terms, a forward time differencing scheme can be
138used, but usually the numerical stability condition imposes a strong
139constraint on the time step. Two solutions are available in \NEMO to overcome
140the stability constraint: $(a)$ a forward time differencing scheme using a
141time splitting technique (\np{ln\_zdfexp} = true) or $(b)$ a backward (or implicit)
142time differencing scheme (\np{ln\_zdfexp} = false). In $(a)$, the master
143time step $\Delta $t is cut into $N$ fractional time steps so that the
144stability criterion is reduced by a factor of $N$. The computation is performed as
145follows:
146\begin{equation} \label{Eq_STP_ts}
147\begin{split}
148& x_\ast ^{t-\rdt} = x^{t-\rdt}   \\
149& x_\ast ^{t-\rdt+L\frac{2\rdt}{N}}=x_\ast ^{t-\rdt+\left( {L-1} 
150\right)\frac{2\rdt}{N}}+\frac{2\rdt}{N}\;\text{DF}^{t-\rdt+\left( {L-1} \right)\frac{2\rdt}{N}}
151        \quad \text{for $L=1$ to $N$}      \\
152& x^{t+\rdt} = x_\ast^{t+\rdt}
153\end{split}
154\end{equation}
155with DF a vertical diffusion term. The number of fractional time steps, $N$, is given
156by setting \np{nn\_zdfexp}, (namelist parameter). The scheme $(b)$ is unconditionally
157stable but diffusive. It can be written as follows:
158\begin{equation} \label{Eq_STP_imp}
159   x^{t+\rdt} = x^{t-\rdt} + 2 \, \rdt \  \text{RHS}_x^{t+\rdt}
160\end{equation} 
161
162This scheme is rather time consuming since it requires a matrix inversion,
163but it becomes attractive since a value of 3 or more is needed for N in
164the forward time differencing scheme. For example, the finite difference
165approximation of the temperature equation is:
166\begin{equation} \label{Eq_STP_imp_zdf}
167\frac{T(k)^{t+1}-T(k)^{t-1}}{2\;\rdt}\equiv \text{RHS}+\frac{1}{e_{3t} }\delta 
168_k \left[ {\frac{A_w^{vT} }{e_{3w} }\delta _{k+1/2} \left[ {T^{t+1}} \right]} 
169\right]
170\end{equation}
171where RHS is the right hand side of the equation except for the vertical diffusion term.
172We rewrite \eqref{Eq_STP_imp} as:
173\begin{equation} \label{Eq_STP_imp_mat}
174-c(k+1)\;T^{t+1}(k+1) + d(k)\;T^{t+1}(k) - \;c(k)\;T^{t+1}(k-1) \equiv b(k)
175\end{equation}
176where
177\begin{align*} 
178 c(k) &= A_w^{vT} (k) \, / \, e_{3w} (k)     \\
179 d(k) &= e_{3t} (k)       \, / \, (2\rdt) + c_k + c_{k+1}    \\
180 b(k) &= e_{3t} (k) \; \left( T^{t-1}(k) \, / \, (2\rdt) + \text{RHS} \right)   
181\end{align*}
182
183\eqref{Eq_STP_imp_mat} is a linear system of equations with an associated
184matrix which is tridiagonal. Moreover, $c(k)$ and $d(k)$ are positive and the diagonal
185term is greater than the sum of the two extra-diagonal terms, therefore a special
186adaptation of the Gauss elimination procedure is used to find the solution
187(see for example \citet{Richtmyer1967}).
188
189
190
191% -------------------------------------------------------------------------------------------------------------
192%        Hydrostatic Pressure gradient
193% -------------------------------------------------------------------------------------------------------------
194\section{Hydrostatic Pressure Gradient --- semi-implicit scheme}
195\label{STP_hpg_imp}
196
197%\gmcomment{
198%>>>>>>>>>>>>>>>>>>>>>>>>>>>>
199\begin{figure}[!t]     \begin{center}
200\includegraphics[width=0.7\textwidth]{Fig_TimeStepping_flowchart}
201\caption{   \label{Fig_TimeStep_flowchart}
202Sketch of the leapfrog time stepping sequence in \NEMO from \citet{Leclair_Madec_OM09}.
203The use of a semi-implicit computation of the hydrostatic pressure gradient requires
204the tracer equation to be stepped forward prior to the momentum equation.
205The need for knowledge of the vertical scale factor (here denoted as $h$)
206requires the sea surface height and the continuity equation to be stepped forward
207prior to the computation of the tracer equation.
208Note that the method for the evaluation of the surface pressure gradient $\nabla p_s$ is not presented here
209(see \S~\ref{DYN_spg}). }
210\end{center}   \end{figure}
211%>>>>>>>>>>>>>>>>>>>>>>>>>>>>
212%}
213
214The range of stability of the Leap-Frog scheme can be extended by a factor of two
215by introducing a semi-implicit computation of the hydrostatic pressure gradient term
216\citep{Brown_Campana_MWR78}. Instead of evaluating the pressure at $t$, a linear
217combination of values at $t-\rdt$, $t$ and $t+\rdt$ is used (see \S~\ref{DYN_hpg_imp}). 
218This technique, controlled by the \np{nn\_dynhpg\_rst} namelist parameter, does not
219introduce a significant additional computational cost when tracers and thus density
220is time stepped before the dynamics. This time step ordering is used in \NEMO 
221(Fig.\ref{Fig_TimeStep_flowchart}).
222
223
224This technique, used in several GCMs (\NEMO, POP or MOM for instance),
225makes the Leap-Frog scheme as efficient
226\footnote{The efficiency is defined as the maximum allowed Courant number of the time
227stepping scheme divided by the number of computations of the right-hand side per time step.} 
228as the Forward-Backward scheme used in MOM \citep{Griffies_al_OS05} and more
229efficient than the LF-AM3 scheme (leapfrog time stepping combined with a third order
230Adams-Moulthon interpolation for the predictor phase) used in ROMS
231\citep{Shchepetkin_McWilliams_OM05}.
232
233In fact, this technique is efficient when the physical phenomenon that
234limits the time-step is internal gravity waves (IGWs). Indeed, it is
235equivalent to applying a time filter to the pressure gradient to eliminate high
236frequency IGWs. Obviously, the doubling of the time-step is achievable only
237if no other factors control the time-step, such as the stability limits associated
238with advection, diffusion or Coriolis terms. For example, it is inefficient in low resolution
239global ocean configurations, since inertial oscillations in the vicinity of the North Pole
240are the limiting factor for the time step. It is also often inefficient in very high
241resolution configurations where strong currents and small grid cells exert
242the strongest constraint on the time step.
243
244% -------------------------------------------------------------------------------------------------------------
245%        The Modified Leapfrog -- Asselin Filter scheme
246% -------------------------------------------------------------------------------------------------------------
247\section{The Modified Leapfrog -- Asselin Filter scheme}
248\label{STP_mLF}
249
250Significant changes have been introduced by \cite{Leclair_Madec_OM09} in the
251LF-RA scheme in order to ensure tracer conservation and to allow the use of
252a much smaller value of the Asselin filter parameter. The modifications affect
253both the forcing and filtering treatments in the LF-RA scheme.
254
255In a classical LF-RA environment, the forcing term is centred in time, $i.e.$ 
256it is time-stepped over a $2\rdt$ period:  $x^t  = x^t + 2\rdt Q^t $ where $Q$ 
257is the forcing applied to $x$, and the time filter is given by \eqref{Eq_STP_asselin} 
258so that $Q$ is redistributed over several time step.
259In the modified LF-RA environment, these two formulations have been replaced by:
260\begin{align} 
261x^{t+\rdt}  &= x^{t-\rdt} + \rdt \left( Q^{t-\rdt/2} + Q^{t+\rdt/2} \right)                   \label{Eq_STP_forcing} \\
262%
263x_F^&= x^t + \gamma \, \left[ x_F^{t-\rdt} - 2 x^t + x^{t+\rdt} \right] 
264           - \gamma\,\rdt \, \left[ Q^{t+\rdt/2} -  Q^{t-\rdt/2} \right]                          \label{Eq_STP_RA}
265\end{align}
266The change in the forcing formulation given by \eqref{Eq_STP_forcing} 
267(see Fig.\ref{Fig_MLF_forcing}) has a significant effect: the forcing term no
268longer excites the divergence of odd and even time steps \citep{Leclair_Madec_OM09}.
269% forcing seen by the model....
270This property improves the LF-RA scheme in two respects.
271First, the LF-RA can now ensure the local and global conservation of tracers.
272Indeed, time filtering is no longer required on the forcing part. The influence of
273the Asselin filter on the forcing is be removed by adding a new term in the filter
274(last term in \eqref{Eq_STP_RA} compared to \eqref{Eq_STP_asselin}). Since
275the filtering of the forcing was the source of non-conservation in the classical
276LF-RA scheme, the modified formulation becomes conservative  \citep{Leclair_Madec_OM09}.
277Second, the LF-RA becomes a truly quasi-second order scheme. Indeed,
278\eqref{Eq_STP_forcing} used in combination with a careful treatment of static
279instability (\S\ref{ZDF_evd}) and of the TKE physics (\S\ref{ZDF_tke_ene}),
280the two other main sources of time step divergence, allows a reduction by
281two orders of magnitude of the Asselin filter parameter.
282
283Note that the forcing is now provided at the middle of a time step: $Q^{t+\rdt/2}$ 
284is the forcing applied over the $[t,t+\rdt]$ time interval. This and the change
285in the time filter, \eqref{Eq_STP_RA}, allows an exact evaluation of the
286contribution due to the forcing term between any two time steps,
287even if separated by only $\rdt$ since the time filter is no longer applied to the
288forcing term.
289
290%>>>>>>>>>>>>>>>>>>>>>>>>>>>>
291\begin{figure}[!t]     \begin{center}
292\includegraphics[width=0.90\textwidth]{Fig_MLF_forcing}
293\caption{   \label{Fig_MLF_forcing}
294Illustration of forcing integration methods.
295(top) ''Traditional'' formulation : the forcing is defined at the same time as the variable
296to which it is applied (integer value of the time step index) and it is applied over a $2\rdt$ period.
297(bottom)  modified formulation : the forcing is defined in the middle of the time (integer and a half
298value of the time step index) and the mean of two successive forcing values ($n-1/2$, $n+1/2$).
299is applied over a $2\rdt$ period.}
300\end{center}   \end{figure}
301%>>>>>>>>>>>>>>>>>>>>>>>>>>>>
302
303% -------------------------------------------------------------------------------------------------------------
304%        Start/Restart strategy
305% -------------------------------------------------------------------------------------------------------------
306\section{Start/Restart strategy}
307\label{STP_rst}
308%--------------------------------------------namrun-------------------------------------------
309\namdisplay{namrun}         
310%--------------------------------------------------------------------------------------------------------------
311
312The first time step of this three level scheme when starting from initial conditions
313is a forward step (Euler time integration):
314\begin{equation} \label{Eq_DOM_euler}
315   x^1 = x^0 + \rdt \ \text{RHS}^0
316\end{equation}
317This is done simply by keeping the leapfrog environment ($i.e.$ the \eqref{Eq_STP} 
318three level time stepping) but setting all $x^0$ (\textit{before}) and $x^{1}$ (\textit{now}) fields
319equal at the first time step and using half the value of $\rdt$.
320
321It is also possible to restart from a previous computation, by using a
322restart file. The restart strategy is designed to ensure perfect
323restartability of the code: the user should obtain the same results to
324machine precision either by running the model for $2N$ time steps in one go,
325or by performing two consecutive experiments of $N$ steps with a restart.
326This requires saving two time levels and many auxiliary data in the restart
327files in machine precision.
328
329Note that when a semi-implicit scheme is used to evaluate the hydrostatic pressure
330gradient (see \S\ref{DYN_hpg_imp}), an extra three-dimensional field has to be
331added to the restart file to ensure an exact restartability. This is done optionally
332via the  \np{nn\_dynhpg\_rst} namelist parameter, so that the size of the
333restart file can be reduced when restartability is not a key issue (operational
334oceanography or in ensemble simulations for seasonal forecasting).
335
336Note the size of the time step used, $\rdt$, is also saved in the restart file.
337When restarting, if the the time step has been changed, a restart using an Euler time
338stepping scheme is imposed.
339Options are defined through the  \ngn{namrun} namelist variables.
340%%%
341\gmcomment{
342add here how to force the restart to contain only one time step for operational purposes
343
344add also the idea of writing several restart for seasonal forecast : how is it done ?
345
346verify that all namelist pararmeters are truly described
347
348a word on the check of restart  .....
349}
350%%%
351
352\gmcomment{       % add a subsection here 
353
354%-------------------------------------------------------------------------------------------------------------
355%        Time Domain
356% -------------------------------------------------------------------------------------------------------------
357\subsection{Time domain}
358\label{STP_time}
359%--------------------------------------------namrun-------------------------------------------
360\namdisplay{namdom}         
361%--------------------------------------------------------------------------------------------------------------
362
363Options are defined through the  \ngn{namdom} namelist variables.
364 \colorbox{yellow}{add here a few word on nit000 and nitend}
365
366 \colorbox{yellow}{Write documentation on the calendar and the key variable adatrj}
367
368add a description of daymod, and the model calandar (leap-year and co)
369
370}        %% end add
371
372
373
374%%
375\gmcomment{       % add implicit in vvl case  and Crant-Nicholson scheme   
376
377Implicit time stepping in case of variable volume thickness.
378
379Tracer case (NB for momentum in vector invariant form take care!)
380
381\begin{flalign*}
382&\frac{\left( e_{3t}\,T \right)_k^{t+1}-\left( e_{3t}\,T \right)_k^{t-1}}{2\rdt}
383\equiv \text{RHS}+ \delta _k \left[ {\frac{A_w^{vt} }{e_{3w}^{t+1} }\delta _{k+1/2} \left[ {T^{t+1}} \right]} 
384\right]      \\
385&\left( e_{3t}\,T \right)_k^{t+1}-\left( e_{3t}\,T \right)_k^{t-1}
386\equiv {2\rdt} \ \text{RHS}+ {2\rdt} \ \delta _k \left[ {\frac{A_w^{vt} }{e_{3w}^{t+1} }\delta _{k+1/2} \left[ {T^{t+1}} \right]} 
387\right]      \\
388&\left( e_{3t}\,T \right)_k^{t+1}-\left( e_{3t}\,T \right)_k^{t-1}
389\equiv 2\rdt \ \text{RHS}
390+ 2\rdt \ \left\{ \left[ \frac{A_w^{vt}}{e_{3w}^{t+1}} \right]_{k+1/2} [ T_{k+1}^{t+1} - T_k      ^{t+1} ]
391                          - \left[ \frac{A_w^{vt}}{e_{3w}^{t+1}} \right]_{k-1/2} [ T_k       ^{t+1} - T_{k-1}^{t+1} ]  \right\}     \\
392&\\
393&\left( e_{3t}\,T \right)_k^{t+1}
394{2\rdt} \           \left[ \frac{A_w^{vt}}{e_{3w}^{t+1}} \right]_{k+1/2}                  T_{k+1}^{t+1} 
395+ {2\rdt} \ \left\{  \left[ \frac{A_w^{vt}}{e_{3w}^{t+1}} \right]_{k+1/2} 
396                            +  \left[ \frac{A_w^{vt}}{e_{3w}^{t+1}} \right]_{k-1/2}     \right\}   T_{k    }^{t+1}
397{2\rdt} \           \left[ \frac{A_w^{vt}}{e_{3w}^{t+1}} \right]_{k-1/2}                  T_{k-1}^{t+1}      \\
398&\equiv \left( e_{3t}\,T \right)_k^{t-1} + {2\rdt} \ \text{RHS}    \\
399%
400\end{flalign*}
401
402\begin{flalign*}
403\allowdisplaybreaks
404\intertext{ Tracer case }
405%
406&  \qquad \qquad  \quad   -  {2\rdt}                  \ \left[ \frac{A_w^{vt}}{e_{3w}^{t+1}} \right]_{k+1/2}   
407                                                                                                      \qquad \qquad \qquad  \qquad  T_{k+1}^{t+1}   \\
408&+ {2\rdt} \ \biggl\{  (e_{3t})_{k   }^{t+1}  \bigg. +    \left[ \frac{A_w^{vt}}{e_{3w}^{t+1}} \right]_{k+1/2} 
409                                                                               +   \left[ \frac{A_w^{vt}}{e_{3w}^{t+1}} \right]_{k-1/2} \bigg. \biggr\}  \ \ \ T_{k   }^{t+1}  &&\\
410& \qquad \qquad  \qquad \qquad \qquad \quad \ \ {2\rdt} \                          \left[ \frac{A_w^{vt}}{e_{3w}^{t+1}} \right]_{k-1/2}                          \quad \ \ T_{k-1}^{t+1}     
411\ \equiv \ \left( e_{3t}\,T \right)_k^{t-1} + {2\rdt} \ \text{RHS}  \\
412%
413\end{flalign*}
414\begin{flalign*}
415\allowdisplaybreaks
416\intertext{ Tracer content case }
417%
418& -  {2\rdt} \              & \frac{(A_w^{vt})_{k+1/2}} {(e_{3w})_{k+1/2}^{t+1}\;(e_{3t})_{k+1}^{t+1}}  && \  \left( e_{3t}\,T \right)_{k+1}^{t+1}   &\\
419& + {2\rdt} \ \left[ 1  \right.+ & \frac{(A_w^{vt})_{k+1/2}} {(e_{3w})_{k+1/2}^{t+1}\;(e_{3t})_k^{t+1}} 
420                                    + & \frac{(A_w^{vt})_{k -1/2}} {(e_{3w})_{k -1/2}^{t+1}\;(e_{3t})_k^{t+1}}  \left\right& \left( e_{3t}\,T \right)_{k   }^{t+1}  &\\
421& -  {2\rdt} \               & \frac{(A_w^{vt})_{k -1/2}} {(e_{3w})_{k -1/2}^{t+1}\;(e_{3t})_{k-1}^{t+1}}     &\  \left( e_{3t}\,T \right)_{k-1}^{t+1}   
422\equiv \left( e_{3t}\,T \right)_k^{t-1} + {2\rdt} \ \text{RHS}  &
423\end{flalign*}
424
425%%
426}
427%%
428%\end{document}
Note: See TracBrowser for help on using the repository browser.