MODULE domzgr !!============================================================================== !! *** MODULE domzgr *** !! Ocean domain : definition of the vertical coordinate system !!============================================================================== !! History : OPA ! 1995-12 (G. Madec) Original code : s vertical coordinate !! ! 1997-07 (G. Madec) lbc_lnk call !! ! 1997-04 (J.-O. Beismann) !! 8.5 ! 2002-09 (A. Bozec, G. Madec) F90: Free form and module !! - ! 2002-09 (A. de Miranda) rigid-lid + islands !! NEMO 1.0 ! 2003-08 (G. Madec) F90: Free form and module !! - ! 2005-10 (A. Beckmann) modifications for hybrid s-ccordinates & new stretching function !! 2.0 ! 2006-04 (R. Benshila, G. Madec) add zgr_zco !! 3.0 ! 2008-06 (G. Madec) insertion of domzgr_zps.h90 & conding style !! 3.2 ! 2009-07 (R. Benshila) Suppression of rigid-lid option !! 3.3 ! 2010-11 (G. Madec) add mbk. arrays associated to the deepest ocean level !! 3.4 ! 2012-08 (J. Siddorn) added Siddorn and Furner stretching function !! 3.4 ! 2012-12 (R. Bourdalle-Badie and G. Reffray) modify C1D case !! 3.6 ! 2014-11 (P. Mathiot and C. Harris) add ice shelf capabilitye !! 3.? ! 2015-11 (H. Liu) Modifications for Wetting/Drying !!---------------------------------------------------------------------- !!---------------------------------------------------------------------- !! dom_zgr : defined the ocean vertical coordinate system !! zgr_bat : bathymetry fields (levels and meters) !! zgr_bot_level: deepest ocean level for t-, u, and v-points !! zgr_z : reference z-coordinate !! zgr_zco : z-coordinate !! zgr_zps : z-coordinate with partial steps !! zgr_sco : s-coordinate !! fssig : tanh stretch function !! fssig1 : Song and Haidvogel 1994 stretch function !! fgamma : Siddorn and Furner 2012 stretching function !!--------------------------------------------------------------------- USE oce ! ocean variables USE dom_oce ! ocean domain USE wet_dry ! wetting and drying USE closea ! closed seas USE c1d ! 1D vertical configuration ! USE in_out_manager ! I/O manager USE iom ! I/O library USE lbclnk ! ocean lateral boundary conditions (or mpp link) USE lib_mpp ! distributed memory computing library USE wrk_nemo ! Memory allocation USE timing ! Timing IMPLICIT NONE PRIVATE PUBLIC dom_zgr ! called by dom_init.F90 ! !!* Namelist namzgr_sco * LOGICAL :: ln_s_sh94 ! use hybrid s-sig Song and Haidvogel 1994 stretching function fssig1 (ln_sco=T) LOGICAL :: ln_s_sf12 ! use hybrid s-z-sig Siddorn and Furner 2012 stretching function fgamma (ln_sco=T) ! REAL(wp) :: rn_sbot_min ! minimum depth of s-bottom surface (>0) (m) REAL(wp) :: rn_sbot_max ! maximum depth of s-bottom surface (= ocean depth) (>0) (m) REAL(wp) :: rn_rmax ! maximum cut-off r-value allowed (0 1 stretch towards surface, < 1 towards seabed) REAL(wp) :: rn_efold ! efold length scale for transition to stretched coord REAL(wp) :: rn_zs ! depth of surface grid box ! bottom cell depth (Zb) is a linear function of water depth Zb = H*a + b REAL(wp) :: rn_zb_a ! bathymetry scaling factor for calculating Zb REAL(wp) :: rn_zb_b ! offset for calculating Zb !! * Substitutions # include "vectopt_loop_substitute.h90" !!---------------------------------------------------------------------- !! NEMO/OPA 3.3.1 , NEMO Consortium (2011) !! $Id: domzgr.F90 6492 2016-04-22 13:04:31Z mathiot $ !! Software governed by the CeCILL licence (NEMOGCM/NEMO_CeCILL.txt) !!---------------------------------------------------------------------- CONTAINS SUBROUTINE dom_zgr !!---------------------------------------------------------------------- !! *** ROUTINE dom_zgr *** !! !! ** Purpose : set the depth of model levels and the resulting !! vertical scale factors. !! !! ** Method : - reference 1D vertical coordinate (gdep._1d, e3._1d) !! - read/set ocean depth and ocean levels (bathy, mbathy) !! - vertical coordinate (gdep., e3.) depending on the !! coordinate chosen : !! ln_zco=T z-coordinate !! ln_zps=T z-coordinate with partial steps !! ln_zco=T s-coordinate !! !! ** Action : define gdep., e3., mbathy and bathy !!---------------------------------------------------------------------- INTEGER :: ioptio, ibat ! local integer INTEGER :: ios ! NAMELIST/namzgr/ ln_zco, ln_zps, ln_sco, ln_isfcav, ln_linssh !!---------------------------------------------------------------------- ! IF( nn_timing == 1 ) CALL timing_start('dom_zgr') ! REWIND( numnam_ref ) ! Namelist namzgr in reference namelist : Vertical coordinate READ ( numnam_ref, namzgr, IOSTAT = ios, ERR = 901 ) 901 IF( ios /= 0 ) CALL ctl_nam ( ios , 'namzgr in reference namelist', lwp ) REWIND( numnam_cfg ) ! Namelist namzgr in configuration namelist : Vertical coordinate READ ( numnam_cfg, namzgr, IOSTAT = ios, ERR = 902 ) 902 IF( ios /= 0 ) CALL ctl_nam ( ios , 'namzgr in configuration namelist', lwp ) IF(lwm) WRITE ( numond, namzgr ) IF(lwp) THEN ! Control print WRITE(numout,*) WRITE(numout,*) 'dom_zgr : vertical coordinate' WRITE(numout,*) '~~~~~~~' WRITE(numout,*) ' Namelist namzgr : set vertical coordinate' WRITE(numout,*) ' z-coordinate - full steps ln_zco = ', ln_zco WRITE(numout,*) ' z-coordinate - partial steps ln_zps = ', ln_zps WRITE(numout,*) ' s- or hybrid z-s-coordinate ln_sco = ', ln_sco WRITE(numout,*) ' ice shelf cavities ln_isfcav = ', ln_isfcav WRITE(numout,*) ' linear free surface ln_linssh = ', ln_linssh ENDIF IF( ln_linssh .AND. lwp) WRITE(numout,*) ' linear free surface: the vertical mesh does not change in time' ioptio = 0 ! Check Vertical coordinate options IF( ln_zco ) ioptio = ioptio + 1 IF( ln_zps ) ioptio = ioptio + 1 IF( ln_sco ) ioptio = ioptio + 1 IF( ioptio /= 1 ) CALL ctl_stop( ' none or several vertical coordinate options used' ) ! ioptio = 0 IF ( ln_zco .AND. ln_isfcav ) ioptio = ioptio + 1 IF ( ln_sco .AND. ln_isfcav ) ioptio = ioptio + 1 IF( ioptio > 0 ) CALL ctl_stop( ' Cavity not tested/compatible with full step (zco) and sigma (ln_sco) ' ) ! ! Build the vertical coordinate system ! ------------------------------------ CALL zgr_z ! Reference z-coordinate system (always called) CALL zgr_bat ! Bathymetry fields (levels and meters) IF( lk_c1d ) CALL lbc_lnk( bathy , 'T', 1._wp ) ! 1D config.: same bathy value over the 3x3 domain IF( ln_zco ) CALL zgr_zco ! z-coordinate IF( ln_zps ) CALL zgr_zps ! Partial step z-coordinate IF( ln_sco ) CALL zgr_sco ! s-coordinate or hybrid z-s coordinate ! ! final adjustment of mbathy & check ! ----------------------------------- CALL zgr_bot_level ! deepest ocean level for t-, u- and v-points CALL zgr_top_level ! shallowest ocean level for T-, U-, V- points ! IF( lk_c1d ) THEN ! 1D config.: same mbathy value over the 3x3 domain ibat = mbathy(2,2) mbathy(:,:) = ibat END IF ! IF( nprint == 1 .AND. lwp ) THEN WRITE(numout,*) ' MIN val mbathy ', MINVAL( mbathy(:,:) ), ' MAX ', MAXVAL( mbathy(:,:) ) WRITE(numout,*) ' MIN val depth t ', MINVAL( gdept_0(:,:,:) ), & & ' w ', MINVAL( gdepw_0(:,:,:) ), '3w ', MINVAL( gde3w_0(:,:,:) ) WRITE(numout,*) ' MIN val e3 t ', MINVAL( e3t_0(:,:,:) ), ' f ', MINVAL( e3f_0(:,:,:) ), & & ' u ', MINVAL( e3u_0(:,:,:) ), ' u ', MINVAL( e3v_0(:,:,:) ), & & ' uw', MINVAL( e3uw_0(:,:,:) ), ' vw', MINVAL( e3vw_0(:,:,:)), & & ' w ', MINVAL( e3w_0(:,:,:) ) WRITE(numout,*) ' MAX val depth t ', MAXVAL( gdept_0(:,:,:) ), & & ' w ', MAXVAL( gdepw_0(:,:,:) ), '3w ', MAXVAL( gde3w_0(:,:,:) ) WRITE(numout,*) ' MAX val e3 t ', MAXVAL( e3t_0(:,:,:) ), ' f ', MAXVAL( e3f_0(:,:,:) ), & & ' u ', MAXVAL( e3u_0(:,:,:) ), ' u ', MAXVAL( e3v_0(:,:,:) ), & & ' uw', MAXVAL( e3uw_0(:,:,:) ), ' vw', MAXVAL( e3vw_0(:,:,:) ), & & ' w ', MAXVAL( e3w_0(:,:,:) ) ENDIF ! IF( nn_timing == 1 ) CALL timing_stop('dom_zgr') ! END SUBROUTINE dom_zgr SUBROUTINE zgr_z !!---------------------------------------------------------------------- !! *** ROUTINE zgr_z *** !! !! ** Purpose : set the depth of model levels and the resulting !! vertical scale factors. !! !! ** Method : z-coordinate system (use in all type of coordinate) !! The depth of model levels is defined from an analytical !! function the derivative of which gives the scale factors. !! both depth and scale factors only depend on k (1d arrays). !! w-level: gdepw_1d = gdep(k) !! e3w_1d(k) = dk(gdep)(k) = e3(k) !! t-level: gdept_1d = gdep(k+0.5) !! e3t_1d(k) = dk(gdep)(k+0.5) = e3(k+0.5) !! !! ** Action : - gdept_1d, gdepw_1d : depth of T- and W-point (m) !! - e3t_1d , e3w_1d : scale factors at T- and W-levels (m) !! !! Reference : Marti, Madec & Delecluse, 1992, JGR, 97, No8, 12,763-12,766. !!---------------------------------------------------------------------- INTEGER :: jk ! dummy loop indices REAL(wp) :: zt, zw ! temporary scalars REAL(wp) :: zsur, za0, za1, zkth ! Values set from parameters in REAL(wp) :: zacr, zdzmin, zhmax ! par_CONFIG_Rxx.h90 REAL(wp) :: zrefdep ! depth of the reference level (~10m) REAL(wp) :: za2, zkth2, zacr2 ! Values for optional double tanh function set from parameters !!---------------------------------------------------------------------- ! IF( nn_timing == 1 ) CALL timing_start('zgr_z') ! ! Set variables from parameters ! ------------------------------ zkth = ppkth ; zacr = ppacr zdzmin = ppdzmin ; zhmax = pphmax zkth2 = ppkth2 ; zacr2 = ppacr2 ! optional (ldbletanh=T) double tanh parameters ! If ppa1 and ppa0 and ppsur are et to pp_to_be_computed ! za0, za1, zsur are computed from ppdzmin , pphmax, ppkth, ppacr IF( ppa1 == pp_to_be_computed .AND. & & ppa0 == pp_to_be_computed .AND. & & ppsur == pp_to_be_computed ) THEN ! #if defined key_agrif za1 = ( ppdzmin - pphmax / FLOAT(jpkdta-1) ) & & / ( TANH((1-ppkth)/ppacr) - ppacr/FLOAT(jpkdta-1) * ( LOG( COSH( (jpkdta - ppkth) / ppacr) )& & - LOG( COSH( ( 1 - ppkth) / ppacr) ) ) ) #else za1 = ( ppdzmin - pphmax / FLOAT(jpkm1) ) & & / ( TANH((1-ppkth)/ppacr) - ppacr/FLOAT(jpk-1) * ( LOG( COSH( (jpk - ppkth) / ppacr) ) & & - LOG( COSH( ( 1 - ppkth) / ppacr) ) ) ) #endif za0 = ppdzmin - za1 * TANH( (1-ppkth) / ppacr ) zsur = - za0 - za1 * ppacr * LOG( COSH( (1-ppkth) / ppacr ) ) ELSE za1 = ppa1 ; za0 = ppa0 ; zsur = ppsur za2 = ppa2 ! optional (ldbletanh=T) double tanh parameter ENDIF IF(lwp) THEN ! Parameter print WRITE(numout,*) WRITE(numout,*) ' zgr_z : Reference vertical z-coordinates' WRITE(numout,*) ' ~~~~~~~' IF( ppkth == 0._wp ) THEN WRITE(numout,*) ' Uniform grid with ',jpk-1,' layers' WRITE(numout,*) ' Total depth :', zhmax #if defined key_agrif WRITE(numout,*) ' Layer thickness:', zhmax/(jpkdta-1) #else WRITE(numout,*) ' Layer thickness:', zhmax/(jpk-1) #endif ELSE IF( ppa1 == 0._wp .AND. ppa0 == 0._wp .AND. ppsur == 0._wp ) THEN WRITE(numout,*) ' zsur, za0, za1 computed from ' WRITE(numout,*) ' zdzmin = ', zdzmin WRITE(numout,*) ' zhmax = ', zhmax ENDIF WRITE(numout,*) ' Value of coefficients for vertical mesh:' WRITE(numout,*) ' zsur = ', zsur WRITE(numout,*) ' za0 = ', za0 WRITE(numout,*) ' za1 = ', za1 WRITE(numout,*) ' zkth = ', zkth WRITE(numout,*) ' zacr = ', zacr IF( ldbletanh ) THEN WRITE(numout,*) ' (Double tanh za2 = ', za2 WRITE(numout,*) ' parameters) zkth2= ', zkth2 WRITE(numout,*) ' zacr2= ', zacr2 ENDIF ENDIF ENDIF ! Reference z-coordinate (depth - scale factor at T- and W-points) ! ====================== IF( ppkth == 0._wp ) THEN ! uniform vertical grid #if defined key_agrif za1 = zhmax / FLOAT(jpkdta-1) #else za1 = zhmax / FLOAT(jpk-1) #endif DO jk = 1, jpk zw = FLOAT( jk ) zt = FLOAT( jk ) + 0.5_wp gdepw_1d(jk) = ( zw - 1 ) * za1 gdept_1d(jk) = ( zt - 1 ) * za1 e3w_1d (jk) = za1 e3t_1d (jk) = za1 END DO WRITE(numout,*) ' uniform vertical resolution : e3 =', za1, ' meters' ! ELSE ! Madec & Imbard 1996 function IF( .NOT. ldbletanh ) THEN DO jk = 1, jpk zw = REAL( jk , wp ) zt = REAL( jk , wp ) + 0.5_wp gdepw_1d(jk) = ( zsur + za0 * zw + za1 * zacr * LOG ( COSH( (zw-zkth) / zacr ) ) ) gdept_1d(jk) = ( zsur + za0 * zt + za1 * zacr * LOG ( COSH( (zt-zkth) / zacr ) ) ) e3w_1d (jk) = za0 + za1 * TANH( (zw-zkth) / zacr ) e3t_1d (jk) = za0 + za1 * TANH( (zt-zkth) / zacr ) END DO ELSE DO jk = 1, jpk zw = FLOAT( jk ) zt = FLOAT( jk ) + 0.5_wp ! Double tanh function gdepw_1d(jk) = ( zsur + za0 * zw + za1 * zacr * LOG ( COSH( (zw-zkth ) / zacr ) ) & & + za2 * zacr2* LOG ( COSH( (zw-zkth2) / zacr2 ) ) ) gdept_1d(jk) = ( zsur + za0 * zt + za1 * zacr * LOG ( COSH( (zt-zkth ) / zacr ) ) & & + za2 * zacr2* LOG ( COSH( (zt-zkth2) / zacr2 ) ) ) e3w_1d (jk) = za0 + za1 * TANH( (zw-zkth ) / zacr ) & & + za2 * TANH( (zw-zkth2) / zacr2 ) e3t_1d (jk) = za0 + za1 * TANH( (zt-zkth ) / zacr ) & & + za2 * TANH( (zt-zkth2) / zacr2 ) END DO ENDIF gdepw_1d(1) = 0._wp ! force first w-level to be exactly at zero ENDIF IF ( ln_isfcav ) THEN ! need to be like this to compute the pressure gradient with ISF. If not, level beneath the ISF are not aligned (sum(e3t) /= depth) ! define e3t_0 and e3w_0 as the differences between gdept and gdepw respectively DO jk = 1, jpkm1 e3t_1d(jk) = gdepw_1d(jk+1)-gdepw_1d(jk) END DO e3t_1d(jpk) = e3t_1d(jpk-1) ! we don't care because this level is masked in NEMO DO jk = 2, jpk e3w_1d(jk) = gdept_1d(jk) - gdept_1d(jk-1) END DO e3w_1d(1 ) = 2._wp * (gdept_1d(1) - gdepw_1d(1)) END IF !!gm BUG in s-coordinate this does not work! ! deepest/shallowest W level Above/Below ~10m zrefdep = 10._wp - 0.1_wp * MINVAL( e3w_1d ) ! ref. depth with tolerance (10% of minimum layer thickness) nlb10 = MINLOC( gdepw_1d, mask = gdepw_1d > zrefdep, dim = 1 ) ! shallowest W level Below ~10m nla10 = nlb10 - 1 ! deepest W level Above ~10m !!gm end bug IF(lwp) THEN ! control print WRITE(numout,*) WRITE(numout,*) ' Reference z-coordinate depth and scale factors:' WRITE(numout, "(9x,' level gdept_1d gdepw_1d e3t_1d e3w_1d ')" ) WRITE(numout, "(10x, i4, 4f9.2)" ) ( jk, gdept_1d(jk), gdepw_1d(jk), e3t_1d(jk), e3w_1d(jk), jk = 1, jpk ) ENDIF DO jk = 1, jpk ! control positivity IF( e3w_1d (jk) <= 0._wp .OR. e3t_1d (jk) <= 0._wp ) CALL ctl_stop( 'dom:zgr_z: e3w_1d or e3t_1d =< 0 ' ) IF( gdepw_1d(jk) < 0._wp .OR. gdept_1d(jk) < 0._wp ) CALL ctl_stop( 'dom:zgr_z: gdepw_1d or gdept_1d < 0 ' ) END DO ! IF( nn_timing == 1 ) CALL timing_stop('zgr_z') ! END SUBROUTINE zgr_z SUBROUTINE zgr_bat !!---------------------------------------------------------------------- !! *** ROUTINE zgr_bat *** !! !! ** Purpose : set bathymetry both in levels and meters !! !! ** Method : read or define mbathy and bathy arrays !! * level bathymetry: !! The ocean basin geometry is given by a two-dimensional array, !! mbathy, which is defined as follow : !! mbathy(ji,jj) = 1, ..., jpk-1, the number of ocean level !! at t-point (ji,jj). !! = 0 over the continental t-point. !! The array mbathy is checked to verified its consistency with !! model option. in particular: !! mbathy must have at least 1 land grid-points (mbathy<=0) !! along closed boundary. !! mbathy must be cyclic IF jperio=1. !! mbathy must be lower or equal to jpk-1. !! isolated ocean grid points are suppressed from mbathy !! since they are only connected to remaining !! ocean through vertical diffusion. !! ntopo=-1 : rectangular channel or bassin with a bump !! ntopo= 0 : flat rectangular channel or basin !! ntopo= 1 : mbathy is read in 'bathy_level.nc' NetCDF file !! bathy is read in 'bathy_meter.nc' NetCDF file !! !! ** Action : - mbathy: level bathymetry (in level index) !! - bathy : meter bathymetry (in meters) !!---------------------------------------------------------------------- INTEGER :: ji, jj, jk ! dummy loop indices INTEGER :: inum ! temporary logical unit INTEGER :: ierror ! error flag INTEGER :: ii_bump, ij_bump, ih ! bump center position INTEGER :: ii0, ii1, ij0, ij1, ik ! local indices REAL(wp) :: r_bump , h_bump , h_oce ! bump characteristics REAL(wp) :: zi, zj, zh, zhmin ! local scalars INTEGER , ALLOCATABLE, DIMENSION(:,:) :: idta ! global domain integer data REAL(wp), ALLOCATABLE, DIMENSION(:,:) :: zdta ! global domain scalar data !!---------------------------------------------------------------------- ! IF( nn_timing == 1 ) CALL timing_start('zgr_bat') ! IF(lwp) WRITE(numout,*) IF(lwp) WRITE(numout,*) ' zgr_bat : defines level and meter bathymetry' IF(lwp) WRITE(numout,*) ' ~~~~~~~' ! ! ================== ! ! ! defined by hand ! ! ! ================== ! ! ALLOCATE( idta(jpidta,jpjdta), STAT=ierror ) IF( ierror > 0 ) CALL ctl_stop( 'STOP', 'zgr_bat: unable to allocate idta array' ) ALLOCATE( zdta(jpidta,jpjdta), STAT=ierror ) IF( ierror > 0 ) CALL ctl_stop( 'STOP', 'zgr_bat: unable to allocate zdta array' ) ! !SF add overflow bathymetry: IF(lwp) WRITE(numout,*) ' sono in overflow' IF(lwp) WRITE(numout,*) IF(lwp) WRITE(numout,*) ' bathymetry field: slope' h_oce = gdepw_1d(jpk) ! background ocean depth (meters) ! zdta(:,:) = 0._wp DO jj = 1, jpjdta ! zdta : DO ji = 1, jpidta ! depth=2000; ! val1=500; ! x_dam=20e3; %location of the dam ! d(i,j)=-(val1+0.5*(depth-val1)*(1.0+tanh((lon(i,j)-40000.0)/7000.0))); ! !SF OK? zdta(ji,jj) = - ( 500. + 0.5 * 1500. * (1.0 + tanh( (REAL(ji , wp)*ppe1_m - 40000.) / 7000.))) zdta(ji,jj) = + ( 500. + 0.5 * 1500. * ( 1.0 + tanh( (glamt(ji,jj) - 40.) / 7. ) ) ) ! END DO END DO IF(lwp) WRITE(numout,*) ' zdta_1 = ', zdta(1,1) , ' meters' ! ! idta : IF( ln_sco ) THEN ! s-coordinate (zsc ): idta()=jpk idta(:,:) = jpkm1 IF(lwp) WRITE(numout,*) ' sto in ln_sco!!!! zdta_1 = ', zdta(1,1) , ' meters' ELSE ! z-coordinate (zco or zps): step-like topography idta(:,:) = jpkm1 DO jk = 1, jpkm1 WHERE( gdept_1d(jk) < zdta(:,:) .AND. zdta(:,:) <= gdept_1d(jk+1) ) idta(:,:) = jk END DO ENDIF ! ! ! ! set GLOBAL boundary conditions IF( .NOT.ln_sco ) THEN ih = 0 ; zh = 0._wp idta( : , 1 ) = ih ; zdta( : , 1 ) = zh idta( : ,jpjdta) = ih ; zdta( : ,jpjdta) = zh idta( 1 , : ) = ih ; zdta( 1 , : ) = zh idta(jpidta, : ) = ih ; zdta(jpidta, : ) = zh ENDIF IF( ln_sco ) THEN ih = 0 idta( : , 1 ) = ih idta( : ,jpjdta) = ih idta( 1 , : ) = ih idta(jpidta, : ) = ih ENDIF ! ! local domain level and meter bathymetries (mbathy,bathy) mbathy(:,:) = 0 ! set to zero extra halo points bathy (:,:) = 0._wp ! (require for mpp case) DO jj = 1, nlcj ! interior values DO ji = 1, nlci mbathy(ji,jj) = idta( mig(ji), mjg(jj) ) bathy (ji,jj) = zdta( mig(ji), mjg(jj) ) END DO END DO risfdep(:,:)=0.e0 misfdep(:,:)=1 ! DEALLOCATE( idta, zdta ) ! ! ! IF( nn_timing == 1 ) CALL timing_stop('zgr_bat') ! END SUBROUTINE zgr_bat SUBROUTINE zgr_bot_level !!---------------------------------------------------------------------- !! *** ROUTINE zgr_bot_level *** !! !! ** Purpose : defines the vertical index of ocean bottom (mbk. arrays) !! !! ** Method : computes from mbathy with a minimum value of 1 over land !! !! ** Action : mbkt, mbku, mbkv : vertical indices of the deeptest !! ocean level at t-, u- & v-points !! (min value = 1 over land) !!---------------------------------------------------------------------- INTEGER :: ji, jj ! dummy loop indices REAL(wp), POINTER, DIMENSION(:,:) :: zmbk !!---------------------------------------------------------------------- ! IF( nn_timing == 1 ) CALL timing_start('zgr_bot_level') ! CALL wrk_alloc( jpi, jpj, zmbk ) ! IF(lwp) WRITE(numout,*) IF(lwp) WRITE(numout,*) ' zgr_bot_level : ocean bottom k-index of T-, U-, V- and W-levels ' IF(lwp) WRITE(numout,*) ' ~~~~~~~~~~~~~' ! mbkt(:,:) = MAX( mbathy(:,:) , 1 ) ! bottom k-index of T-level (=1 over land) ! ! bottom k-index of W-level = mbkt+1 DO jj = 1, jpjm1 ! bottom k-index of u- (v-) level DO ji = 1, jpim1 mbku(ji,jj) = MIN( mbkt(ji+1,jj ) , mbkt(ji,jj) ) mbkv(ji,jj) = MIN( mbkt(ji ,jj+1) , mbkt(ji,jj) ) END DO END DO ! converte into REAL to use lbc_lnk ; impose a min value of 1 as a zero can be set in lbclnk zmbk(:,:) = REAL( mbku(:,:), wp ) ; CALL lbc_lnk(zmbk,'U',1.) ; mbku (:,:) = MAX( INT( zmbk(:,:) ), 1 ) zmbk(:,:) = REAL( mbkv(:,:), wp ) ; CALL lbc_lnk(zmbk,'V',1.) ; mbkv (:,:) = MAX( INT( zmbk(:,:) ), 1 ) ! CALL wrk_dealloc( jpi, jpj, zmbk ) ! IF( nn_timing == 1 ) CALL timing_stop('zgr_bot_level') ! END SUBROUTINE zgr_bot_level SUBROUTINE zgr_top_level !!---------------------------------------------------------------------- !! *** ROUTINE zgr_top_level *** !! !! ** Purpose : defines the vertical index of ocean top (mik. arrays) !! !! ** Method : computes from misfdep with a minimum value of 1 !! !! ** Action : mikt, miku, mikv : vertical indices of the shallowest !! ocean level at t-, u- & v-points !! (min value = 1) !!---------------------------------------------------------------------- INTEGER :: ji, jj ! dummy loop indices REAL(wp), POINTER, DIMENSION(:,:) :: zmik !!---------------------------------------------------------------------- ! IF( nn_timing == 1 ) CALL timing_start('zgr_top_level') ! CALL wrk_alloc( jpi, jpj, zmik ) ! IF(lwp) WRITE(numout,*) IF(lwp) WRITE(numout,*) ' zgr_top_level : ocean top k-index of T-, U-, V- and W-levels ' IF(lwp) WRITE(numout,*) ' ~~~~~~~~~~~~~' ! mikt(:,:) = MAX( misfdep(:,:) , 1 ) ! top k-index of T-level (=1) ! ! top k-index of W-level (=mikt) DO jj = 1, jpjm1 ! top k-index of U- (U-) level DO ji = 1, jpim1 miku(ji,jj) = MAX( mikt(ji+1,jj ) , mikt(ji,jj) ) mikv(ji,jj) = MAX( mikt(ji ,jj+1) , mikt(ji,jj) ) mikf(ji,jj) = MAX( mikt(ji ,jj+1) , mikt(ji,jj), mikt(ji+1,jj ), mikt(ji+1,jj+1) ) END DO END DO ! converte into REAL to use lbc_lnk ; impose a min value of 1 as a zero can be set in lbclnk zmik(:,:) = REAL( miku(:,:), wp ) ; CALL lbc_lnk(zmik,'U',1.) ; miku (:,:) = MAX( INT( zmik(:,:) ), 1 ) zmik(:,:) = REAL( mikv(:,:), wp ) ; CALL lbc_lnk(zmik,'V',1.) ; mikv (:,:) = MAX( INT( zmik(:,:) ), 1 ) zmik(:,:) = REAL( mikf(:,:), wp ) ; CALL lbc_lnk(zmik,'F',1.) ; mikf (:,:) = MAX( INT( zmik(:,:) ), 1 ) ! CALL wrk_dealloc( jpi, jpj, zmik ) ! IF( nn_timing == 1 ) CALL timing_stop('zgr_top_level') ! END SUBROUTINE zgr_top_level SUBROUTINE zgr_zco !!---------------------------------------------------------------------- !! *** ROUTINE zgr_zco *** !! !! ** Purpose : define the reference z-coordinate system !! !! ** Method : set 3D coord. arrays to reference 1D array !!---------------------------------------------------------------------- INTEGER :: jk !!---------------------------------------------------------------------- ! IF( nn_timing == 1 ) CALL timing_start('zgr_zco') ! DO jk = 1, jpk gdept_0(:,:,jk) = gdept_1d(jk) gdepw_0(:,:,jk) = gdepw_1d(jk) gde3w_0(:,:,jk) = gdepw_1d(jk) e3t_0 (:,:,jk) = e3t_1d (jk) e3u_0 (:,:,jk) = e3t_1d (jk) e3v_0 (:,:,jk) = e3t_1d (jk) e3f_0 (:,:,jk) = e3t_1d (jk) e3w_0 (:,:,jk) = e3w_1d (jk) e3uw_0 (:,:,jk) = e3w_1d (jk) e3vw_0 (:,:,jk) = e3w_1d (jk) END DO ! IF( nn_timing == 1 ) CALL timing_stop('zgr_zco') ! END SUBROUTINE zgr_zco SUBROUTINE zgr_zps !!---------------------------------------------------------------------- !! *** ROUTINE zgr_zps *** !! !! ** Purpose : the depth and vertical scale factor in partial step !! reference z-coordinate case !! !! ** Method : Partial steps : computes the 3D vertical scale factors !! of T-, U-, V-, W-, UW-, VW and F-points that are associated with !! a partial step representation of bottom topography. !! !! The reference depth of model levels is defined from an analytical !! function the derivative of which gives the reference vertical !! scale factors. !! From depth and scale factors reference, we compute there new value !! with partial steps on 3d arrays ( i, j, k ). !! !! w-level: gdepw_0(i,j,k) = gdep(k) !! e3w_0(i,j,k) = dk(gdep)(k) = e3(i,j,k) !! t-level: gdept_0(i,j,k) = gdep(k+0.5) !! e3t_0(i,j,k) = dk(gdep)(k+0.5) = e3(i,j,k+0.5) !! !! With the help of the bathymetric file ( bathymetry_depth_ORCA_R2.nc), !! we find the mbathy index of the depth at each grid point. !! This leads us to three cases: !! !! - bathy = 0 => mbathy = 0 !! - 1 < mbathy < jpkm1 !! - bathy > gdepw_0(jpk) => mbathy = jpkm1 !! !! Then, for each case, we find the new depth at t- and w- levels !! and the new vertical scale factors at t-, u-, v-, w-, uw-, vw- !! and f-points. !! !! This routine is given as an example, it must be modified !! following the user s desiderata. nevertheless, the output as !! well as the way to compute the model levels and scale factors !! must be respected in order to insure second order accuracy !! schemes. !! !! c a u t i o n : gdept_1d, gdepw_1d and e3._1d are positives !! - - - - - - - gdept_0, gdepw_0 and e3. are positives !! !! Reference : Pacanowsky & Gnanadesikan 1997, Mon. Wea. Rev., 126, 3248-3270. !!---------------------------------------------------------------------- INTEGER :: ji, jj, jk ! dummy loop indices INTEGER :: ik, it, ikb, ikt ! temporary integers REAL(wp) :: ze3tp , ze3wp ! Last ocean level thickness at T- and W-points REAL(wp) :: zdepwp, zdepth ! Ajusted ocean depth to avoid too small e3t REAL(wp) :: zdiff ! temporary scalar REAL(wp) :: zmax ! temporary scalar REAL(wp), POINTER, DIMENSION(:,:,:) :: zprt !!--------------------------------------------------------------------- ! IF( nn_timing == 1 ) CALL timing_start('zgr_zps') ! CALL wrk_alloc( jpi,jpj,jpk, zprt ) ! IF(lwp) WRITE(numout,*) IF(lwp) WRITE(numout,*) ' zgr_zps : z-coordinate with partial steps' IF(lwp) WRITE(numout,*) ' ~~~~~~~ ' IF(lwp) WRITE(numout,*) ' mbathy is recomputed : bathy_level file is NOT used' ! bathymetry in level (from bathy_meter) ! =================== zmax = gdepw_1d(jpk) + e3t_1d(jpk) ! maximum depth (i.e. the last ocean level thickness <= 2*e3t_1d(jpkm1) ) bathy(:,:) = MIN( zmax , bathy(:,:) ) ! bounded value of bathy (min already set at the end of zgr_bat) WHERE( bathy(:,:) == 0._wp ) ; mbathy(:,:) = 0 ! land : set mbathy to 0 ELSE WHERE ; mbathy(:,:) = jpkm1 ! ocean : initialize mbathy to the max ocean level END WHERE ! Compute mbathy for ocean points (i.e. the number of ocean levels) ! find the number of ocean levels such that the last level thickness ! is larger than the minimum of e3zps_min and e3zps_rat * e3t_1d (where ! e3t_1d is the reference level thickness DO jk = jpkm1, 1, -1 zdepth = gdepw_1d(jk) + MIN( e3zps_min, e3t_1d(jk)*e3zps_rat ) WHERE( 0._wp < bathy(:,:) .AND. bathy(:,:) <= zdepth ) mbathy(:,:) = jk-1 END DO ! Scale factors and depth at T- and W-points DO jk = 1, jpk ! intitialization to the reference z-coordinate gdept_0(:,:,jk) = gdept_1d(jk) gdepw_0(:,:,jk) = gdepw_1d(jk) e3t_0 (:,:,jk) = e3t_1d (jk) e3w_0 (:,:,jk) = e3w_1d (jk) END DO ! Bathy, iceshelf draft, scale factor and depth at T- and W- points in case of isf IF ( ln_isfcav ) CALL zgr_isf ! Scale factors and depth at T- and W-points IF ( .NOT. ln_isfcav ) THEN DO jj = 1, jpj DO ji = 1, jpi ik = mbathy(ji,jj) IF( ik > 0 ) THEN ! ocean point only ! max ocean level case IF( ik == jpkm1 ) THEN zdepwp = bathy(ji,jj) ze3tp = bathy(ji,jj) - gdepw_1d(ik) ze3wp = 0.5_wp * e3w_1d(ik) * ( 1._wp + ( ze3tp/e3t_1d(ik) ) ) e3t_0(ji,jj,ik ) = ze3tp e3t_0(ji,jj,ik+1) = ze3tp e3w_0(ji,jj,ik ) = ze3wp e3w_0(ji,jj,ik+1) = ze3tp gdepw_0(ji,jj,ik+1) = zdepwp gdept_0(ji,jj,ik ) = gdept_1d(ik-1) + ze3wp gdept_0(ji,jj,ik+1) = gdept_0(ji,jj,ik) + ze3tp ! ELSE ! standard case IF( bathy(ji,jj) <= gdepw_1d(ik+1) ) THEN ; gdepw_0(ji,jj,ik+1) = bathy(ji,jj) ELSE ; gdepw_0(ji,jj,ik+1) = gdepw_1d(ik+1) ENDIF !gm Bug? check the gdepw_1d ! ... on ik gdept_0(ji,jj,ik) = gdepw_1d(ik) + ( gdepw_0(ji,jj,ik+1) - gdepw_1d(ik) ) & & * ((gdept_1d( ik ) - gdepw_1d(ik) ) & & / ( gdepw_1d( ik+1) - gdepw_1d(ik) )) e3t_0 (ji,jj,ik) = e3t_1d (ik) * ( gdepw_0 (ji,jj,ik+1) - gdepw_1d(ik) ) & & / ( gdepw_1d( ik+1) - gdepw_1d(ik) ) e3w_0(ji,jj,ik) = 0.5_wp * ( gdepw_0(ji,jj,ik+1) + gdepw_1d(ik+1) - 2._wp * gdepw_1d(ik) ) & & * ( e3w_1d(ik) / ( gdepw_1d(ik+1) - gdepw_1d(ik) ) ) ! ... on ik+1 e3w_0 (ji,jj,ik+1) = e3t_0 (ji,jj,ik) e3t_0 (ji,jj,ik+1) = e3t_0 (ji,jj,ik) gdept_0(ji,jj,ik+1) = gdept_0(ji,jj,ik) + e3t_0(ji,jj,ik) ENDIF ENDIF END DO END DO ! it = 0 DO jj = 1, jpj DO ji = 1, jpi ik = mbathy(ji,jj) IF( ik > 0 ) THEN ! ocean point only e3tp (ji,jj) = e3t_0(ji,jj,ik) e3wp (ji,jj) = e3w_0(ji,jj,ik) ! test zdiff= gdepw_0(ji,jj,ik+1) - gdept_0(ji,jj,ik ) IF( zdiff <= 0._wp .AND. lwp ) THEN it = it + 1 WRITE(numout,*) ' it = ', it, ' ik = ', ik, ' (i,j) = ', ji, jj WRITE(numout,*) ' bathy = ', bathy(ji,jj) WRITE(numout,*) ' gdept_0 = ', gdept_0(ji,jj,ik), ' gdepw_0 = ', gdepw_0(ji,jj,ik+1), ' zdiff = ', zdiff WRITE(numout,*) ' e3tp = ', e3t_0 (ji,jj,ik), ' e3wp = ', e3w_0 (ji,jj,ik ) ENDIF ENDIF END DO END DO END IF ! ! Scale factors and depth at U-, V-, UW and VW-points DO jk = 1, jpk ! initialisation to z-scale factors e3u_0 (:,:,jk) = e3t_1d(jk) e3v_0 (:,:,jk) = e3t_1d(jk) e3uw_0(:,:,jk) = e3w_1d(jk) e3vw_0(:,:,jk) = e3w_1d(jk) END DO DO jk = 1,jpk ! Computed as the minimum of neighbooring scale factors DO jj = 1, jpjm1 DO ji = 1, fs_jpim1 ! vector opt. e3u_0 (ji,jj,jk) = MIN( e3t_0(ji,jj,jk), e3t_0(ji+1,jj,jk) ) e3v_0 (ji,jj,jk) = MIN( e3t_0(ji,jj,jk), e3t_0(ji,jj+1,jk) ) e3uw_0(ji,jj,jk) = MIN( e3w_0(ji,jj,jk), e3w_0(ji+1,jj,jk) ) e3vw_0(ji,jj,jk) = MIN( e3w_0(ji,jj,jk), e3w_0(ji,jj+1,jk) ) END DO END DO END DO IF ( ln_isfcav ) THEN ! (ISF) define e3uw (adapted for 2 cells in the water column) DO jj = 2, jpjm1 DO ji = 2, fs_jpim1 ! vector opt. ikb = MAX(mbathy (ji,jj),mbathy (ji+1,jj)) ikt = MAX(misfdep(ji,jj),misfdep(ji+1,jj)) IF (ikb == ikt+1) e3uw_0(ji,jj,ikb) = MIN( gdept_0(ji,jj,ikb ), gdept_0(ji+1,jj ,ikb ) ) & & - MAX( gdept_0(ji,jj,ikb-1), gdept_0(ji+1,jj ,ikb-1) ) ikb = MAX(mbathy (ji,jj),mbathy (ji,jj+1)) ikt = MAX(misfdep(ji,jj),misfdep(ji,jj+1)) IF (ikb == ikt+1) e3vw_0(ji,jj,ikb) = MIN( gdept_0(ji,jj,ikb ), gdept_0(ji ,jj+1,ikb ) ) & & - MAX( gdept_0(ji,jj,ikb-1), gdept_0(ji ,jj+1,ikb-1) ) END DO END DO END IF CALL lbc_lnk( e3u_0 , 'U', 1._wp ) ; CALL lbc_lnk( e3uw_0, 'U', 1._wp ) ! lateral boundary conditions CALL lbc_lnk( e3v_0 , 'V', 1._wp ) ; CALL lbc_lnk( e3vw_0, 'V', 1._wp ) ! DO jk = 1, jpk ! set to z-scale factor if zero (i.e. along closed boundaries) WHERE( e3u_0 (:,:,jk) == 0._wp ) e3u_0 (:,:,jk) = e3t_1d(jk) WHERE( e3v_0 (:,:,jk) == 0._wp ) e3v_0 (:,:,jk) = e3t_1d(jk) WHERE( e3uw_0(:,:,jk) == 0._wp ) e3uw_0(:,:,jk) = e3w_1d(jk) WHERE( e3vw_0(:,:,jk) == 0._wp ) e3vw_0(:,:,jk) = e3w_1d(jk) END DO ! Scale factor at F-point DO jk = 1, jpk ! initialisation to z-scale factors e3f_0(:,:,jk) = e3t_1d(jk) END DO DO jk = 1, jpk ! Computed as the minimum of neighbooring V-scale factors DO jj = 1, jpjm1 DO ji = 1, fs_jpim1 ! vector opt. e3f_0(ji,jj,jk) = MIN( e3v_0(ji,jj,jk), e3v_0(ji+1,jj,jk) ) END DO END DO END DO CALL lbc_lnk( e3f_0, 'F', 1._wp ) ! Lateral boundary conditions ! DO jk = 1, jpk ! set to z-scale factor if zero (i.e. along closed boundaries) WHERE( e3f_0(:,:,jk) == 0._wp ) e3f_0(:,:,jk) = e3t_1d(jk) END DO !!gm bug ? : must be a do loop with mj0,mj1 ! e3t_0(:,mj0(1),:) = e3t_0(:,mj0(2),:) ! we duplicate factor scales for jj = 1 and jj = 2 e3w_0(:,mj0(1),:) = e3w_0(:,mj0(2),:) e3u_0(:,mj0(1),:) = e3u_0(:,mj0(2),:) e3v_0(:,mj0(1),:) = e3v_0(:,mj0(2),:) e3f_0(:,mj0(1),:) = e3f_0(:,mj0(2),:) ! Control of the sign IF( MINVAL( e3t_0 (:,:,:) ) <= 0._wp ) CALL ctl_stop( ' zgr_zps : e r r o r e3t_0 <= 0' ) IF( MINVAL( e3w_0 (:,:,:) ) <= 0._wp ) CALL ctl_stop( ' zgr_zps : e r r o r e3w_0 <= 0' ) IF( MINVAL( gdept_0(:,:,:) ) < 0._wp ) CALL ctl_stop( ' zgr_zps : e r r o r gdept_0 < 0' ) IF( MINVAL( gdepw_0(:,:,:) ) < 0._wp ) CALL ctl_stop( ' zgr_zps : e r r o r gdepw_0 < 0' ) ! Compute gde3w_0 (vertical sum of e3w) IF ( ln_isfcav ) THEN ! if cavity WHERE( misfdep == 0 ) misfdep = 1 DO jj = 1,jpj DO ji = 1,jpi gde3w_0(ji,jj,1) = 0.5_wp * e3w_0(ji,jj,1) DO jk = 2, misfdep(ji,jj) gde3w_0(ji,jj,jk) = gde3w_0(ji,jj,jk-1) + e3w_0(ji,jj,jk) END DO IF( misfdep(ji,jj) >= 2 ) gde3w_0(ji,jj,misfdep(ji,jj)) = risfdep(ji,jj) + 0.5_wp * e3w_0(ji,jj,misfdep(ji,jj)) DO jk = misfdep(ji,jj) + 1, jpk gde3w_0(ji,jj,jk) = gde3w_0(ji,jj,jk-1) + e3w_0(ji,jj,jk) END DO END DO END DO ELSE ! no cavity gde3w_0(:,:,1) = 0.5_wp * e3w_0(:,:,1) DO jk = 2, jpk gde3w_0(:,:,jk) = gde3w_0(:,:,jk-1) + e3w_0(:,:,jk) END DO END IF ! CALL wrk_dealloc( jpi,jpj,jpk, zprt ) ! IF( nn_timing == 1 ) CALL timing_stop('zgr_zps') ! END SUBROUTINE zgr_zps SUBROUTINE zgr_isf !!---------------------------------------------------------------------- !! *** ROUTINE zgr_isf *** !! !! ** Purpose : check the bathymetry in levels !! !! ** Method : THe water column have to contained at least 2 cells !! Bathymetry and isfdraft are modified (dig/close) to respect !! this criterion. !! !! ** Action : - test compatibility between isfdraft and bathy !! - bathy and isfdraft are modified !!---------------------------------------------------------------------- INTEGER :: ji, jj, jl, jk ! dummy loop indices INTEGER :: ik, it ! temporary integers INTEGER :: icompt, ibtest ! (ISF) INTEGER :: ibtestim1, ibtestip1 ! (ISF) INTEGER :: ibtestjm1, ibtestjp1 ! (ISF) REAL(wp) :: zdepth ! Ajusted ocean depth to avoid too small e3t REAL(wp) :: zmax ! Maximum and minimum depth REAL(wp) :: zbathydiff ! isf temporary scalar REAL(wp) :: zrisfdepdiff ! isf temporary scalar REAL(wp) :: ze3tp , ze3wp ! Last ocean level thickness at T- and W-points REAL(wp) :: zdepwp ! Ajusted ocean depth to avoid too small e3t REAL(wp) :: zdiff ! temporary scalar REAL(wp), POINTER, DIMENSION(:,:) :: zrisfdep, zbathy, zmask ! 2D workspace (ISH) INTEGER , POINTER, DIMENSION(:,:) :: zmbathy, zmisfdep ! 2D workspace (ISH) !!--------------------------------------------------------------------- ! IF( nn_timing == 1 ) CALL timing_start('zgr_isf') ! CALL wrk_alloc( jpi,jpj, zbathy, zmask, zrisfdep) CALL wrk_alloc( jpi,jpj, zmisfdep, zmbathy ) ! (ISF) compute misfdep WHERE( risfdep(:,:) == 0._wp .AND. bathy(:,:) /= 0 ) ; misfdep(:,:) = 1 ! open water : set misfdep to 1 ELSEWHERE ; misfdep(:,:) = 2 ! iceshelf : initialize misfdep to second level END WHERE ! Compute misfdep for ocean points (i.e. first wet level) ! find the first ocean level such that the first level thickness ! is larger than the bot_level of e3zps_min and e3zps_rat * e3t_0 (where ! e3t_0 is the reference level thickness DO jk = 2, jpkm1 zdepth = gdepw_1d(jk+1) - MIN( e3zps_min, e3t_1d(jk)*e3zps_rat ) WHERE( 0._wp < risfdep(:,:) .AND. risfdep(:,:) >= zdepth ) misfdep(:,:) = jk+1 END DO WHERE ( 0._wp < risfdep(:,:) .AND. risfdep(:,:) <= e3t_1d(1) ) risfdep(:,:) = 0. ; misfdep(:,:) = 1 END WHERE ! remove very shallow ice shelf (less than ~ 10m if 75L) WHERE (risfdep(:,:) <= 10._wp .AND. misfdep(:,:) > 1) misfdep = 0; risfdep = 0.0_wp; mbathy = 0; bathy = 0.0_wp; END WHERE WHERE (bathy(:,:) <= 30.0_wp .AND. gphit < -60._wp) misfdep = 0; risfdep = 0.0_wp; mbathy = 0; bathy = 0.0_wp; END WHERE ! basic check for the compatibility of bathy and risfdep. I think it should be offline because it is not perfect and cannot solved all the situation icompt = 0 ! run the bathy check 10 times to be sure all the modif in the bathy or iceshelf draft are compatible together DO jl = 1, 10 ! check at each iteration if isf is grounded or not (1cm treshold have to be update after first coupling experiments) WHERE (bathy(:,:) <= risfdep(:,:) + rn_isfhmin) misfdep(:,:) = 0 ; risfdep(:,:) = 0._wp mbathy (:,:) = 0 ; bathy (:,:) = 0._wp END WHERE WHERE (mbathy(:,:) <= 0) misfdep(:,:) = 0; risfdep(:,:) = 0._wp mbathy (:,:) = 0; bathy (:,:) = 0._wp END WHERE IF( lk_mpp ) THEN zbathy(:,:) = FLOAT( misfdep(:,:) ) CALL lbc_lnk( zbathy, 'T', 1. ) misfdep(:,:) = INT( zbathy(:,:) ) CALL lbc_lnk( risfdep,'T', 1. ) CALL lbc_lnk( bathy, 'T', 1. ) zbathy(:,:) = FLOAT( mbathy(:,:) ) CALL lbc_lnk( zbathy, 'T', 1. ) mbathy(:,:) = INT( zbathy(:,:) ) ENDIF IF( nperio == 1 .OR. nperio == 4 .OR. nperio == 6 ) THEN misfdep( 1 ,:) = misfdep(jpim1,:) ! local domain is cyclic east-west misfdep(jpi,:) = misfdep( 2 ,:) mbathy( 1 ,:) = mbathy(jpim1,:) ! local domain is cyclic east-west mbathy(jpi,:) = mbathy( 2 ,:) ENDIF ! split last cell if possible (only where water column is 2 cell or less) ! if coupled to ice sheet, we do not modify the bathymetry (can be discuss). IF ( .NOT. ln_iscpl) THEN DO jk = jpkm1, 1, -1 zmax = gdepw_1d(jk) + MIN( e3zps_min, e3t_1d(jk)*e3zps_rat ) WHERE( gdepw_1d(jk) < bathy(:,:) .AND. bathy(:,:) <= zmax .AND. misfdep + 1 >= mbathy) mbathy(:,:) = jk bathy(:,:) = zmax END WHERE END DO END IF ! split top cell if possible (only where water column is 2 cell or less) DO jk = 2, jpkm1 zmax = gdepw_1d(jk+1) - MIN( e3zps_min, e3t_1d(jk)*e3zps_rat ) WHERE( gdepw_1d(jk+1) > risfdep(:,:) .AND. risfdep(:,:) >= zmax .AND. misfdep + 1 >= mbathy) misfdep(:,:) = jk risfdep(:,:) = zmax END WHERE END DO ! Case where bathy and risfdep compatible but not the level variable mbathy/misfdep because of partial cell condition DO jj = 1, jpj DO ji = 1, jpi ! find the minimum change option: ! test bathy IF (risfdep(ji,jj) > 1) THEN IF ( .NOT. ln_iscpl ) THEN zbathydiff =ABS(bathy(ji,jj) - (gdepw_1d(mbathy (ji,jj)+1) & & + MIN( e3zps_min, e3t_1d(mbathy (ji,jj)+1)*e3zps_rat ))) zrisfdepdiff=ABS(risfdep(ji,jj) - (gdepw_1d(misfdep(ji,jj) ) & & - MIN( e3zps_min, e3t_1d(misfdep(ji,jj)-1)*e3zps_rat ))) IF (bathy(ji,jj) > risfdep(ji,jj) .AND. mbathy(ji,jj) < misfdep(ji,jj)) THEN IF (zbathydiff <= zrisfdepdiff) THEN bathy(ji,jj) = gdepw_1d(mbathy(ji,jj)) + MIN( e3zps_min, e3t_1d(mbathy(ji,jj)+1)*e3zps_rat ) mbathy(ji,jj)= mbathy(ji,jj) + 1 ELSE risfdep(ji,jj) = gdepw_1d(misfdep(ji,jj)) - MIN( e3zps_min, e3t_1d(misfdep(ji,jj)-1)*e3zps_rat ) misfdep(ji,jj) = misfdep(ji,jj) - 1 END IF ENDIF ELSE IF (bathy(ji,jj) > risfdep(ji,jj) .AND. mbathy(ji,jj) < misfdep(ji,jj)) THEN risfdep(ji,jj) = gdepw_1d(misfdep(ji,jj)) - MIN( e3zps_min, e3t_1d(misfdep(ji,jj)-1)*e3zps_rat ) misfdep(ji,jj) = misfdep(ji,jj) - 1 END IF END IF END IF END DO END DO ! At least 2 levels for water thickness at T, U, and V point. DO jj = 1, jpj DO ji = 1, jpi ! find the minimum change option: ! test bathy IF( misfdep(ji,jj) == mbathy(ji,jj) .AND. mbathy(ji,jj) > 1) THEN IF ( .NOT. ln_iscpl ) THEN zbathydiff =ABS(bathy(ji,jj) - ( gdepw_1d(mbathy (ji,jj)+1) & & + MIN( e3zps_min,e3t_1d(mbathy (ji,jj)+1)*e3zps_rat ))) zrisfdepdiff=ABS(risfdep(ji,jj) - ( gdepw_1d(misfdep(ji,jj) ) & & - MIN( e3zps_min,e3t_1d(misfdep(ji,jj)-1)*e3zps_rat ))) IF (zbathydiff <= zrisfdepdiff) THEN mbathy(ji,jj) = mbathy(ji,jj) + 1 bathy(ji,jj) = gdepw_1d(mbathy (ji,jj)) + MIN( e3zps_min, e3t_1d(mbathy(ji,jj) +1)*e3zps_rat ) ELSE misfdep(ji,jj)= misfdep(ji,jj) - 1 risfdep(ji,jj) = gdepw_1d(misfdep(ji,jj)+1) - MIN( e3zps_min, e3t_1d(misfdep(ji,jj))*e3zps_rat ) END IF ELSE misfdep(ji,jj)= misfdep(ji,jj) - 1 risfdep(ji,jj)= gdepw_1d(misfdep(ji,jj)+1) - MIN( e3zps_min, e3t_1d(misfdep(ji,jj))*e3zps_rat ) END IF ENDIF END DO END DO ! point V mbathy(ji,jj) == misfdep(ji,jj+1) DO jj = 1, jpjm1 DO ji = 1, jpim1 IF( misfdep(ji,jj+1) == mbathy(ji,jj) .AND. mbathy(ji,jj) > 1) THEN IF ( .NOT. ln_iscpl ) THEN zbathydiff =ABS(bathy(ji,jj ) - ( gdepw_1d(mbathy (ji,jj)+1) & & + MIN( e3zps_min, e3t_1d(mbathy (ji,jj )+1)*e3zps_rat ))) zrisfdepdiff=ABS(risfdep(ji,jj+1) - ( gdepw_1d(misfdep(ji,jj+1)) & & - MIN( e3zps_min, e3t_1d(misfdep(ji,jj+1)-1)*e3zps_rat ))) IF (zbathydiff <= zrisfdepdiff) THEN mbathy(ji,jj) = mbathy(ji,jj) + 1 bathy(ji,jj) = gdepw_1d(mbathy (ji,jj )) + MIN( e3zps_min, e3t_1d(mbathy(ji,jj )+1)*e3zps_rat ) ELSE misfdep(ji,jj+1) = misfdep(ji,jj+1) - 1 risfdep (ji,jj+1) = gdepw_1d(misfdep(ji,jj+1)+1) - MIN( e3zps_min, e3t_1d(misfdep(ji,jj+1))*e3zps_rat ) END IF ELSE misfdep(ji,jj+1) = misfdep(ji,jj+1) - 1 risfdep (ji,jj+1) = gdepw_1d(misfdep(ji,jj+1)+1) - MIN( e3zps_min, e3t_1d(misfdep(ji,jj+1))*e3zps_rat ) END IF ENDIF END DO END DO IF( lk_mpp ) THEN zbathy(:,:) = FLOAT( misfdep(:,:) ) CALL lbc_lnk( zbathy, 'T', 1. ) misfdep(:,:) = INT( zbathy(:,:) ) CALL lbc_lnk( risfdep,'T', 1. ) CALL lbc_lnk( bathy, 'T', 1. ) zbathy(:,:) = FLOAT( mbathy(:,:) ) CALL lbc_lnk( zbathy, 'T', 1. ) mbathy(:,:) = INT( zbathy(:,:) ) ENDIF ! point V misdep(ji,jj) == mbathy(ji,jj+1) DO jj = 1, jpjm1 DO ji = 1, jpim1 IF( misfdep(ji,jj) == mbathy(ji,jj+1) .AND. mbathy(ji,jj) > 1) THEN IF ( .NOT. ln_iscpl ) THEN zbathydiff =ABS( bathy(ji,jj+1) - ( gdepw_1d(mbathy (ji,jj+1)+1) & & + MIN( e3zps_min, e3t_1d(mbathy (ji,jj+1)+1)*e3zps_rat ))) zrisfdepdiff=ABS(risfdep(ji,jj ) - ( gdepw_1d(misfdep(ji,jj ) ) & & - MIN( e3zps_min, e3t_1d(misfdep(ji,jj )-1)*e3zps_rat ))) IF (zbathydiff <= zrisfdepdiff) THEN mbathy (ji,jj+1) = mbathy(ji,jj+1) + 1 bathy (ji,jj+1) = gdepw_1d(mbathy (ji,jj+1) ) + MIN( e3zps_min, e3t_1d(mbathy (ji,jj+1)+1)*e3zps_rat ) ELSE misfdep(ji,jj) = misfdep(ji,jj) - 1 risfdep(ji,jj) = gdepw_1d(misfdep(ji,jj )+1) - MIN( e3zps_min, e3t_1d(misfdep(ji,jj ) )*e3zps_rat ) END IF ELSE misfdep(ji,jj) = misfdep(ji,jj) - 1 risfdep(ji,jj) = gdepw_1d(misfdep(ji,jj )+1) - MIN( e3zps_min, e3t_1d(misfdep(ji,jj ) )*e3zps_rat ) END IF ENDIF END DO END DO IF( lk_mpp ) THEN zbathy(:,:) = FLOAT( misfdep(:,:) ) CALL lbc_lnk( zbathy, 'T', 1. ) misfdep(:,:) = INT( zbathy(:,:) ) CALL lbc_lnk( risfdep,'T', 1. ) CALL lbc_lnk( bathy, 'T', 1. ) zbathy(:,:) = FLOAT( mbathy(:,:) ) CALL lbc_lnk( zbathy, 'T', 1. ) mbathy(:,:) = INT( zbathy(:,:) ) ENDIF ! point U mbathy(ji,jj) == misfdep(ji,jj+1) DO jj = 1, jpjm1 DO ji = 1, jpim1 IF( misfdep(ji+1,jj) == mbathy(ji,jj) .AND. mbathy(ji,jj) > 1) THEN IF ( .NOT. ln_iscpl ) THEN zbathydiff =ABS( bathy(ji ,jj) - ( gdepw_1d(mbathy (ji,jj)+1) & & + MIN( e3zps_min, e3t_1d(mbathy (ji ,jj)+1)*e3zps_rat ))) zrisfdepdiff=ABS(risfdep(ji+1,jj) - ( gdepw_1d(misfdep(ji+1,jj)) & & - MIN( e3zps_min, e3t_1d(misfdep(ji+1,jj)-1)*e3zps_rat ))) IF (zbathydiff <= zrisfdepdiff) THEN mbathy(ji,jj) = mbathy(ji,jj) + 1 bathy(ji,jj) = gdepw_1d(mbathy (ji,jj)) + MIN( e3zps_min, e3t_1d(mbathy(ji,jj) +1)*e3zps_rat ) ELSE misfdep(ji+1,jj)= misfdep(ji+1,jj) - 1 risfdep(ji+1,jj) = gdepw_1d(misfdep(ji+1,jj)+1) - MIN( e3zps_min, e3t_1d(misfdep(ji+1,jj))*e3zps_rat ) END IF ELSE misfdep(ji+1,jj)= misfdep(ji+1,jj) - 1 risfdep(ji+1,jj) = gdepw_1d(misfdep(ji+1,jj)+1) - MIN( e3zps_min, e3t_1d(misfdep(ji+1,jj))*e3zps_rat ) ENDIF ENDIF ENDDO ENDDO IF( lk_mpp ) THEN zbathy(:,:) = FLOAT( misfdep(:,:) ) CALL lbc_lnk( zbathy, 'T', 1. ) misfdep(:,:) = INT( zbathy(:,:) ) CALL lbc_lnk( risfdep,'T', 1. ) CALL lbc_lnk( bathy, 'T', 1. ) zbathy(:,:) = FLOAT( mbathy(:,:) ) CALL lbc_lnk( zbathy, 'T', 1. ) mbathy(:,:) = INT( zbathy(:,:) ) ENDIF ! point U misfdep(ji,jj) == bathy(ji,jj+1) DO jj = 1, jpjm1 DO ji = 1, jpim1 IF( misfdep(ji,jj) == mbathy(ji+1,jj) .AND. mbathy(ji,jj) > 1) THEN IF ( .NOT. ln_iscpl ) THEN zbathydiff =ABS( bathy(ji+1,jj) - ( gdepw_1d(mbathy (ji+1,jj)+1) & & + MIN( e3zps_min, e3t_1d(mbathy (ji+1,jj)+1)*e3zps_rat ))) zrisfdepdiff=ABS(risfdep(ji ,jj) - ( gdepw_1d(misfdep(ji ,jj) ) & & - MIN( e3zps_min, e3t_1d(misfdep(ji ,jj)-1)*e3zps_rat ))) IF (zbathydiff <= zrisfdepdiff) THEN mbathy(ji+1,jj) = mbathy (ji+1,jj) + 1 bathy (ji+1,jj) = gdepw_1d(mbathy (ji+1,jj) ) + MIN( e3zps_min, e3t_1d(mbathy (ji+1,jj) +1)*e3zps_rat ) ELSE misfdep(ji,jj) = misfdep(ji ,jj) - 1 risfdep(ji,jj) = gdepw_1d(misfdep(ji ,jj)+1) - MIN( e3zps_min, e3t_1d(misfdep(ji ,jj) )*e3zps_rat ) END IF ELSE misfdep(ji,jj) = misfdep(ji ,jj) - 1 risfdep(ji,jj) = gdepw_1d(misfdep(ji ,jj)+1) - MIN( e3zps_min, e3t_1d(misfdep(ji ,jj) )*e3zps_rat ) ENDIF ENDIF ENDDO ENDDO IF( lk_mpp ) THEN zbathy(:,:) = FLOAT( misfdep(:,:) ) CALL lbc_lnk( zbathy, 'T', 1. ) misfdep(:,:) = INT( zbathy(:,:) ) CALL lbc_lnk( risfdep,'T', 1. ) CALL lbc_lnk( bathy, 'T', 1. ) zbathy(:,:) = FLOAT( mbathy(:,:) ) CALL lbc_lnk( zbathy, 'T', 1. ) mbathy(:,:) = INT( zbathy(:,:) ) ENDIF END DO ! end dig bathy/ice shelf to be compatible ! now fill single point in "coastline" of ice shelf, bathy, hole, and test again one cell tickness DO jl = 1,20 ! remove single point "bay" on isf coast line in the ice shelf draft' DO jk = 2, jpk WHERE (misfdep==0) misfdep=jpk zmask=0._wp WHERE (misfdep <= jk) zmask=1 DO jj = 2, jpjm1 DO ji = 2, jpim1 IF (misfdep(ji,jj) == jk) THEN ibtest = zmask(ji-1,jj) + zmask(ji+1,jj) + zmask(ji,jj-1) + zmask(ji,jj+1) IF (ibtest <= 1) THEN risfdep(ji,jj)=gdepw_1d(jk+1) ; misfdep(ji,jj)=jk+1 IF (misfdep(ji,jj) > mbathy(ji,jj)) misfdep(ji,jj) = jpk END IF END IF END DO END DO END DO WHERE (misfdep==jpk) misfdep=0 ; risfdep=0._wp ; mbathy=0 ; bathy=0._wp END WHERE IF( lk_mpp ) THEN zbathy(:,:) = FLOAT( misfdep(:,:) ) CALL lbc_lnk( zbathy, 'T', 1. ) misfdep(:,:) = INT( zbathy(:,:) ) CALL lbc_lnk( risfdep,'T', 1. ) CALL lbc_lnk( bathy, 'T', 1. ) zbathy(:,:) = FLOAT( mbathy(:,:) ) CALL lbc_lnk( zbathy, 'T', 1. ) mbathy(:,:) = INT( zbathy(:,:) ) ENDIF ! remove single point "bay" on bathy coast line beneath an ice shelf' DO jk = jpk,1,-1 zmask=0._wp WHERE (mbathy >= jk ) zmask=1 DO jj = 2, jpjm1 DO ji = 2, jpim1 IF (mbathy(ji,jj) == jk .AND. misfdep(ji,jj) >= 2) THEN ibtest = zmask(ji-1,jj) + zmask(ji+1,jj) + zmask(ji,jj-1) + zmask(ji,jj+1) IF (ibtest <= 1) THEN bathy(ji,jj)=gdepw_1d(jk) ; mbathy(ji,jj)=jk-1 IF (misfdep(ji,jj) > mbathy(ji,jj)) mbathy(ji,jj) = 0 END IF END IF END DO END DO END DO WHERE (mbathy==0) misfdep=0 ; risfdep=0._wp ; mbathy=0 ; bathy=0._wp END WHERE IF( lk_mpp ) THEN zbathy(:,:) = FLOAT( misfdep(:,:) ) CALL lbc_lnk( zbathy, 'T', 1. ) misfdep(:,:) = INT( zbathy(:,:) ) CALL lbc_lnk( risfdep,'T', 1. ) CALL lbc_lnk( bathy, 'T', 1. ) zbathy(:,:) = FLOAT( mbathy(:,:) ) CALL lbc_lnk( zbathy, 'T', 1. ) mbathy(:,:) = INT( zbathy(:,:) ) ENDIF ! fill hole in ice shelf zmisfdep = misfdep zrisfdep = risfdep WHERE (zmisfdep <= 1._wp) zmisfdep=jpk DO jj = 2, jpjm1 DO ji = 2, jpim1 ibtestim1 = zmisfdep(ji-1,jj ) ; ibtestip1 = zmisfdep(ji+1,jj ) ibtestjm1 = zmisfdep(ji ,jj-1) ; ibtestjp1 = zmisfdep(ji ,jj+1) IF( zmisfdep(ji,jj) >= mbathy(ji-1,jj ) ) ibtestim1 = jpk IF( zmisfdep(ji,jj) >= mbathy(ji+1,jj ) ) ibtestip1 = jpk IF( zmisfdep(ji,jj) >= mbathy(ji ,jj-1) ) ibtestjm1 = jpk IF( zmisfdep(ji,jj) >= mbathy(ji ,jj+1) ) ibtestjp1 = jpk ibtest=MIN(ibtestim1, ibtestip1, ibtestjm1, ibtestjp1) IF( ibtest == jpk .AND. misfdep(ji,jj) >= 2) THEN mbathy(ji,jj) = 0 ; bathy(ji,jj) = 0.0_wp ; misfdep(ji,jj) = 0 ; risfdep(ji,jj) = 0.0_wp END IF IF( zmisfdep(ji,jj) < ibtest .AND. misfdep(ji,jj) >= 2) THEN misfdep(ji,jj) = ibtest risfdep(ji,jj) = gdepw_1d(ibtest) ENDIF ENDDO ENDDO IF( lk_mpp ) THEN zbathy(:,:) = FLOAT( misfdep(:,:) ) CALL lbc_lnk( zbathy, 'T', 1. ) misfdep(:,:) = INT( zbathy(:,:) ) CALL lbc_lnk( risfdep, 'T', 1. ) CALL lbc_lnk( bathy, 'T', 1. ) zbathy(:,:) = FLOAT( mbathy(:,:) ) CALL lbc_lnk( zbathy, 'T', 1. ) mbathy(:,:) = INT( zbathy(:,:) ) ENDIF ! !! fill hole in bathymetry zmbathy (:,:)=mbathy (:,:) DO jj = 2, jpjm1 DO ji = 2, jpim1 ibtestim1 = zmbathy(ji-1,jj ) ; ibtestip1 = zmbathy(ji+1,jj ) ibtestjm1 = zmbathy(ji ,jj-1) ; ibtestjp1 = zmbathy(ji ,jj+1) IF( zmbathy(ji,jj) < misfdep(ji-1,jj ) ) ibtestim1 = 0 IF( zmbathy(ji,jj) < misfdep(ji+1,jj ) ) ibtestip1 = 0 IF( zmbathy(ji,jj) < misfdep(ji ,jj-1) ) ibtestjm1 = 0 IF( zmbathy(ji,jj) < misfdep(ji ,jj+1) ) ibtestjp1 = 0 ibtest=MAX(ibtestim1, ibtestip1, ibtestjm1, ibtestjp1) IF( ibtest == 0 .AND. misfdep(ji,jj) >= 2) THEN mbathy(ji,jj) = 0 ; bathy(ji,jj) = 0.0_wp ; misfdep(ji,jj) = 0 ; risfdep(ji,jj) = 0.0_wp ; END IF IF( ibtest < zmbathy(ji,jj) .AND. misfdep(ji,jj) >= 2) THEN mbathy(ji,jj) = ibtest bathy(ji,jj) = gdepw_1d(ibtest+1) ENDIF END DO END DO IF( lk_mpp ) THEN zbathy(:,:) = FLOAT( misfdep(:,:) ) CALL lbc_lnk( zbathy, 'T', 1. ) misfdep(:,:) = INT( zbathy(:,:) ) CALL lbc_lnk( risfdep, 'T', 1. ) CALL lbc_lnk( bathy, 'T', 1. ) zbathy(:,:) = FLOAT( mbathy(:,:) ) CALL lbc_lnk( zbathy, 'T', 1. ) mbathy(:,:) = INT( zbathy(:,:) ) ENDIF ! if not compatible after all check (ie U point water column less than 2 cells), mask U DO jj = 1, jpjm1 DO ji = 1, jpim1 IF (mbathy(ji,jj) == misfdep(ji+1,jj) .AND. mbathy(ji,jj) >= 1 .AND. mbathy(ji+1,jj) >= 1) THEN mbathy(ji,jj) = mbathy(ji,jj) - 1 ; bathy(ji,jj) = gdepw_1d(mbathy(ji,jj)+1) ; END IF END DO END DO IF( lk_mpp ) THEN zbathy(:,:) = FLOAT( misfdep(:,:) ) CALL lbc_lnk( zbathy, 'T', 1. ) misfdep(:,:) = INT( zbathy(:,:) ) CALL lbc_lnk( risfdep, 'T', 1. ) CALL lbc_lnk( bathy, 'T', 1. ) zbathy(:,:) = FLOAT( mbathy(:,:) ) CALL lbc_lnk( zbathy, 'T', 1. ) mbathy(:,:) = INT( zbathy(:,:) ) ENDIF ! if not compatible after all check (ie U point water column less than 2 cells), mask U DO jj = 1, jpjm1 DO ji = 1, jpim1 IF (misfdep(ji,jj) == mbathy(ji+1,jj) .AND. mbathy(ji,jj) >= 1 .AND. mbathy(ji+1,jj) >= 1) THEN mbathy(ji+1,jj) = mbathy(ji+1,jj) - 1; bathy(ji+1,jj) = gdepw_1d(mbathy(ji+1,jj)+1) ; END IF END DO END DO IF( lk_mpp ) THEN zbathy(:,:) = FLOAT( misfdep(:,:) ) CALL lbc_lnk( zbathy, 'T', 1. ) misfdep(:,:) = INT( zbathy(:,:) ) CALL lbc_lnk( risfdep,'T', 1. ) CALL lbc_lnk( bathy, 'T', 1. ) zbathy(:,:) = FLOAT( mbathy(:,:) ) CALL lbc_lnk( zbathy, 'T', 1. ) mbathy(:,:) = INT( zbathy(:,:) ) ENDIF ! if not compatible after all check (ie V point water column less than 2 cells), mask V DO jj = 1, jpjm1 DO ji = 1, jpi IF (mbathy(ji,jj) == misfdep(ji,jj+1) .AND. mbathy(ji,jj) >= 1 .AND. mbathy(ji,jj+1) >= 1) THEN mbathy(ji,jj) = mbathy(ji,jj) - 1 ; bathy(ji,jj) = gdepw_1d(mbathy(ji,jj)+1) ; END IF END DO END DO IF( lk_mpp ) THEN zbathy(:,:) = FLOAT( misfdep(:,:) ) CALL lbc_lnk( zbathy, 'T', 1. ) misfdep(:,:) = INT( zbathy(:,:) ) CALL lbc_lnk( risfdep,'T', 1. ) CALL lbc_lnk( bathy, 'T', 1. ) zbathy(:,:) = FLOAT( mbathy(:,:) ) CALL lbc_lnk( zbathy, 'T', 1. ) mbathy(:,:) = INT( zbathy(:,:) ) ENDIF ! if not compatible after all check (ie V point water column less than 2 cells), mask V DO jj = 1, jpjm1 DO ji = 1, jpi IF (misfdep(ji,jj) == mbathy(ji,jj+1) .AND. mbathy(ji,jj) >= 1 .AND. mbathy(ji,jj+1) >= 1) THEN mbathy(ji,jj+1) = mbathy(ji,jj+1) - 1 ; bathy(ji,jj+1) = gdepw_1d(mbathy(ji,jj+1)+1) ; END IF END DO END DO IF( lk_mpp ) THEN zbathy(:,:) = FLOAT( misfdep(:,:) ) CALL lbc_lnk( zbathy, 'T', 1. ) misfdep(:,:) = INT( zbathy(:,:) ) CALL lbc_lnk( risfdep,'T', 1. ) CALL lbc_lnk( bathy, 'T', 1. ) zbathy(:,:) = FLOAT( mbathy(:,:) ) CALL lbc_lnk( zbathy, 'T', 1. ) mbathy(:,:) = INT( zbathy(:,:) ) ENDIF ! if not compatible after all check, mask T DO jj = 1, jpj DO ji = 1, jpi IF (mbathy(ji,jj) <= misfdep(ji,jj)) THEN misfdep(ji,jj) = 0 ; risfdep(ji,jj) = 0._wp ; mbathy(ji,jj) = 0 ; bathy(ji,jj) = 0._wp ; END IF END DO END DO WHERE (mbathy(:,:) == 1) mbathy = 0; bathy = 0.0_wp ; misfdep = 0 ; risfdep = 0.0_wp END WHERE END DO ! end check compatibility ice shelf/bathy ! remove very shallow ice shelf (less than ~ 10m if 75L) WHERE (risfdep(:,:) <= 10._wp) misfdep = 1; risfdep = 0.0_wp; END WHERE IF( icompt == 0 ) THEN IF(lwp) WRITE(numout,*)' no points with ice shelf too close to bathymetry' ELSE IF(lwp) WRITE(numout,*)' ',icompt,' ocean grid points with ice shelf thickness reduced to avoid bathymetry' ENDIF ! compute scale factor and depth at T- and W- points DO jj = 1, jpj DO ji = 1, jpi ik = mbathy(ji,jj) IF( ik > 0 ) THEN ! ocean point only ! max ocean level case IF( ik == jpkm1 ) THEN zdepwp = bathy(ji,jj) ze3tp = bathy(ji,jj) - gdepw_1d(ik) ze3wp = 0.5_wp * e3w_1d(ik) * ( 1._wp + ( ze3tp/e3t_1d(ik) ) ) e3t_0(ji,jj,ik ) = ze3tp e3t_0(ji,jj,ik+1) = ze3tp e3w_0(ji,jj,ik ) = ze3wp e3w_0(ji,jj,ik+1) = ze3tp gdepw_0(ji,jj,ik+1) = zdepwp gdept_0(ji,jj,ik ) = gdept_1d(ik-1) + ze3wp gdept_0(ji,jj,ik+1) = gdept_0(ji,jj,ik) + ze3tp ! ELSE ! standard case IF( bathy(ji,jj) <= gdepw_1d(ik+1) ) THEN ; gdepw_0(ji,jj,ik+1) = bathy(ji,jj) ELSE ; gdepw_0(ji,jj,ik+1) = gdepw_1d(ik+1) ENDIF ! gdepw_0(ji,jj,ik+1) = gdepw_1d(ik+1) !gm Bug? check the gdepw_1d ! ... on ik gdept_0(ji,jj,ik) = gdepw_1d(ik) + ( gdepw_0(ji,jj,ik+1) - gdepw_1d(ik) ) & & * ((gdept_1d( ik ) - gdepw_1d(ik) ) & & / ( gdepw_1d( ik+1) - gdepw_1d(ik) )) e3t_0 (ji,jj,ik ) = gdepw_0(ji,jj,ik+1) - gdepw_1d(ik ) e3w_0 (ji,jj,ik ) = gdept_0(ji,jj,ik ) - gdept_1d(ik-1) ! ... on ik+1 e3w_0 (ji,jj,ik+1) = e3t_0 (ji,jj,ik) e3t_0 (ji,jj,ik+1) = e3t_0 (ji,jj,ik) ENDIF ENDIF END DO END DO ! it = 0 DO jj = 1, jpj DO ji = 1, jpi ik = mbathy(ji,jj) IF( ik > 0 ) THEN ! ocean point only e3tp (ji,jj) = e3t_0(ji,jj,ik) e3wp (ji,jj) = e3w_0(ji,jj,ik) ! test zdiff= gdepw_0(ji,jj,ik+1) - gdept_0(ji,jj,ik ) IF( zdiff <= 0._wp .AND. lwp ) THEN it = it + 1 WRITE(numout,*) ' it = ', it, ' ik = ', ik, ' (i,j) = ', ji, jj WRITE(numout,*) ' bathy = ', bathy(ji,jj) WRITE(numout,*) ' gdept_0 = ', gdept_0(ji,jj,ik), ' gdepw_0 = ', gdepw_0(ji,jj,ik+1), ' zdiff = ', zdiff WRITE(numout,*) ' e3tp = ', e3t_0 (ji,jj,ik), ' e3wp = ', e3w_0 (ji,jj,ik ) ENDIF ENDIF END DO END DO ! ! (ISF) Definition of e3t, u, v, w for ISF case DO jj = 1, jpj DO ji = 1, jpi ik = misfdep(ji,jj) IF( ik > 1 ) THEN ! ice shelf point only IF( risfdep(ji,jj) < gdepw_1d(ik) ) risfdep(ji,jj)= gdepw_1d(ik) gdepw_0(ji,jj,ik) = risfdep(ji,jj) !gm Bug? check the gdepw_0 ! ... on ik gdept_0(ji,jj,ik) = gdepw_1d(ik+1) - ( gdepw_1d(ik+1) - gdepw_0(ji,jj,ik) ) & & * ( gdepw_1d(ik+1) - gdept_1d(ik) ) & & / ( gdepw_1d(ik+1) - gdepw_1d(ik) ) e3t_0 (ji,jj,ik ) = gdepw_1d(ik+1) - gdepw_0(ji,jj,ik) e3w_0 (ji,jj,ik+1) = gdept_1d(ik+1) - gdept_0(ji,jj,ik) IF( ik + 1 == mbathy(ji,jj) ) THEN ! ice shelf point only (2 cell water column) e3w_0 (ji,jj,ik+1) = gdept_0(ji,jj,ik+1) - gdept_0(ji,jj,ik) ENDIF ! ... on ik / ik-1 e3w_0 (ji,jj,ik ) = e3t_0 (ji,jj,ik) !2._wp * (gdept_0(ji,jj,ik) - gdepw_0(ji,jj,ik)) e3t_0 (ji,jj,ik-1) = gdepw_0(ji,jj,ik) - gdepw_1d(ik-1) ! The next line isn't required and doesn't affect results - included for consistency with bathymetry code gdept_0(ji,jj,ik-1) = gdept_1d(ik-1) ENDIF END DO END DO it = 0 DO jj = 1, jpj DO ji = 1, jpi ik = misfdep(ji,jj) IF( ik > 1 ) THEN ! ice shelf point only e3tp (ji,jj) = e3t_0(ji,jj,ik ) e3wp (ji,jj) = e3w_0(ji,jj,ik+1 ) ! test zdiff= gdept_0(ji,jj,ik) - gdepw_0(ji,jj,ik ) IF( zdiff <= 0. .AND. lwp ) THEN it = it + 1 WRITE(numout,*) ' it = ', it, ' ik = ', ik, ' (i,j) = ', ji, jj WRITE(numout,*) ' risfdep = ', risfdep(ji,jj) WRITE(numout,*) ' gdept = ', gdept_0(ji,jj,ik), ' gdepw = ', gdepw_0(ji,jj,ik+1), ' zdiff = ', zdiff WRITE(numout,*) ' e3tp = ', e3tp(ji,jj), ' e3wp = ', e3wp(ji,jj) ENDIF ENDIF END DO END DO CALL wrk_dealloc( jpi, jpj, zmask, zbathy, zrisfdep ) CALL wrk_dealloc( jpi, jpj, zmisfdep, zmbathy ) ! IF( nn_timing == 1 ) CALL timing_stop('zgr_isf') ! END SUBROUTINE zgr_isf SUBROUTINE zgr_sco !!---------------------------------------------------------------------- !! *** ROUTINE zgr_sco *** !! !! ** Purpose : define the s-coordinate system !! !! ** Method : s-coordinate !! The depth of model levels is defined as the product of an !! analytical function by the local bathymetry, while the vertical !! scale factors are defined as the product of the first derivative !! of the analytical function by the bathymetry. !! (this solution save memory as depth and scale factors are not !! 3d fields) !! - Read bathymetry (in meters) at t-point and compute the !! bathymetry at u-, v-, and f-points. !! hbatu = mi( hbatt ) !! hbatv = mj( hbatt ) !! hbatf = mi( mj( hbatt ) ) !! - Compute z_gsigt, z_gsigw, z_esigt, z_esigw from an analytical !! function and its derivative given as function. !! z_gsigt(k) = fssig (k ) !! z_gsigw(k) = fssig (k-0.5) !! z_esigt(k) = fsdsig(k ) !! z_esigw(k) = fsdsig(k-0.5) !! Three options for stretching are give, and they can be modified !! following the users requirements. Nevertheless, the output as !! well as the way to compute the model levels and scale factors !! must be respected in order to insure second order accuracy !! schemes. !! !! The three methods for stretching available are: !! !! s_sh94 (Song and Haidvogel 1994) !! a sinh/tanh function that allows sigma and stretched sigma !! !! s_sf12 (Siddorn and Furner 2012?) !! allows the maintenance of fixed surface and or !! bottom cell resolutions (cf. geopotential coordinates) !! within an analytically derived stretched S-coordinate framework. !! !! s_tanh (Madec et al 1996) !! a cosh/tanh function that gives stretched coordinates !! !!---------------------------------------------------------------------- INTEGER :: ji, jj, jk, jl ! dummy loop argument INTEGER :: iip1, ijp1, iim1, ijm1 ! temporary integers INTEGER :: ios ! Local integer output status for namelist read REAL(wp) :: zrmax, ztaper ! temporary scalars REAL(wp) :: zrfact, z1_km1 ! REAL(wp), POINTER, DIMENSION(:,: ) :: ztmpi1, ztmpi2, ztmpj1, ztmpj2 REAL(wp), POINTER, DIMENSION(:,: ) :: zenv, ztmp, zmsk, zri, zrj, zhbat !! NAMELIST/namzgr_sco/ln_s_sh94, ln_s_sf12, ln_sigcrit, rn_sbot_min, rn_sbot_max, rn_hc, rn_rmax,rn_theta, & & rn_thetb, rn_bb, rn_alpha, rn_efold, rn_zs, rn_zb_a, rn_zb_b !!---------------------------------------------------------------------- ! IF( nn_timing == 1 ) CALL timing_start('zgr_sco') ! CALL wrk_alloc( jpi,jpj, zenv, ztmp, zmsk, zri, zrj, zhbat , ztmpi1, ztmpi2, ztmpj1, ztmpj2 ) ! REWIND( numnam_ref ) ! Namelist namzgr_sco in reference namelist : Sigma-stretching parameters READ ( numnam_ref, namzgr_sco, IOSTAT = ios, ERR = 901) 901 IF( ios /= 0 ) CALL ctl_nam ( ios , 'namzgr_sco in reference namelist', lwp ) REWIND( numnam_cfg ) ! Namelist namzgr_sco in configuration namelist : Sigma-stretching parameters READ ( numnam_cfg, namzgr_sco, IOSTAT = ios, ERR = 902 ) 902 IF( ios /= 0 ) CALL ctl_nam ( ios , 'namzgr_sco in configuration namelist', lwp ) IF(lwm) WRITE ( numond, namzgr_sco ) IF(lwp) THEN ! control print WRITE(numout,*) WRITE(numout,*) 'domzgr_sco : s-coordinate or hybrid z-s-coordinate' WRITE(numout,*) '~~~~~~~~~~~' WRITE(numout,*) ' Namelist namzgr_sco' WRITE(numout,*) ' stretching coeffs ' WRITE(numout,*) ' maximum depth of s-bottom surface (>0) rn_sbot_max = ',rn_sbot_max WRITE(numout,*) ' minimum depth of s-bottom surface (>0) rn_sbot_min = ',rn_sbot_min WRITE(numout,*) ' Critical depth rn_hc = ',rn_hc WRITE(numout,*) ' maximum cut-off r-value allowed rn_rmax = ',rn_rmax WRITE(numout,*) ' Song and Haidvogel 1994 stretching ln_s_sh94 = ',ln_s_sh94 WRITE(numout,*) ' Song and Haidvogel 1994 stretching coefficients' WRITE(numout,*) ' surface control parameter (0<=rn_theta<=20) rn_theta = ',rn_theta WRITE(numout,*) ' bottom control parameter (0<=rn_thetb<= 1) rn_thetb = ',rn_thetb WRITE(numout,*) ' stretching parameter (song and haidvogel) rn_bb = ',rn_bb WRITE(numout,*) ' Siddorn and Furner 2012 stretching ln_s_sf12 = ',ln_s_sf12 WRITE(numout,*) ' switching to sigma (T) or Z (F) at H1 surface; <1 bottom) rn_alpha = ',rn_alpha WRITE(numout,*) ' e-fold length scale for transition region rn_efold = ',rn_efold WRITE(numout,*) ' Surface cell depth (Zs) (m) rn_zs = ',rn_zs WRITE(numout,*) ' Bathymetry multiplier for Zb rn_zb_a = ',rn_zb_a WRITE(numout,*) ' Offset for Zb rn_zb_b = ',rn_zb_b WRITE(numout,*) ' Bottom cell (Zb) (m) = H*rn_zb_a + rn_zb_b' ENDIF ! hbatt(:,:) = bathy(:,:) ! ! ============================== ! ! hbatu, hbatv, hbatf fields ! ! ============================== DO jj = 1, jpj DO ji = 1, jpim1 ! NO vector opt. hbatu(ji,jj) = 0.50_wp * ( hbatt(ji ,jj) + hbatt(ji+1,jj ) ) END DO END DO hbatu(jpi,:) = hbatu(jpim1,:) DO jj = 1, jpjm1 DO ji = 1, jpi ! NO vector opt. hbatv(ji,jj) = 0.50_wp * ( hbatt(ji ,jj) + hbatt(ji ,jj+1) ) END DO END DO hbatv(:,jpj) = hbatv(:,jpjm1) DO jj = 1, jpjm1 DO ji = 1, jpi ! NO vector opt. hbatf(ji,jj) = 0.5_wp * ( hbatu(ji ,jj) + hbatu(ji ,jj+1) ) END DO END DO hbatf(:,jpj) = hbatf(:,jpjm1) ! ! ======================= ! ! s-ccordinate fields (gdep., e3.) ! ! ======================= ! z1_km1 = 1._wp / REAL(jpkm1,wp) DO jk = 1, jpk e3t_0 (:,:,jk) = hbatt(:,:) * z1_km1 e3u_0 (:,:,jk) = hbatu(:,:) * z1_km1 e3v_0 (:,:,jk) = hbatv(:,:) * z1_km1 e3f_0 (:,:,jk) = hbatf(:,:) * z1_km1 e3w_0 (:,:,jk) = hbatt(:,:) * z1_km1 e3uw_0 (:,:,jk) = hbatu(:,:) * z1_km1 e3vw_0 (:,:,jk) = hbatv(:,:) * z1_km1 gdept_0(:,:,jk) = hbatt(:,:) * z1_km1 * ( REAL(jk) - 0.5_wp ) gdepw_0(:,:,jk) = hbatt(:,:) * z1_km1 * REAL(jk-1,wp) gde3w_0(:,:,jk) = gdept_0(:,:,jk) END DO !!gm I don't like that HERE we are supposed to set the reference coordinate (i.e. _0 arrays) !!gm and only that !!!!! !!gm THIS should be removed from here ! gdept_n(:,:,:) = gdept_0(:,:,:) gdepw_n(:,:,:) = gdepw_0(:,:,:) gde3w_n(:,:,:) = gde3w_0(:,:,:) e3t_n (:,:,:) = e3t_0 (:,:,:) e3u_n (:,:,:) = e3u_0 (:,:,:) e3v_n (:,:,:) = e3v_0 (:,:,:) e3f_n (:,:,:) = e3f_0 (:,:,:) e3w_n (:,:,:) = e3w_0 (:,:,:) e3uw_n (:,:,:) = e3uw_0 (:,:,:) e3vw_n (:,:,:) = e3vw_0 (:,:,:) !!gm and obviously in the following, use the _0 arrays until the end of this subroutine !! gm end !! IF( nprint == 1 .AND. lwp ) WRITE(numout,*) ' MIN val mbathy h90 ', MINVAL( mbathy(:,:) ), & & ' MAX ', MAXVAL( mbathy(:,:) ) IF( nprint == 1 .AND. lwp ) THEN ! min max values over the local domain WRITE(numout,*) ' MIN val mbathy ', MINVAL( mbathy(:,:) ), ' MAX ', MAXVAL( mbathy(:,:) ) WRITE(numout,*) ' MIN val depth t ', MINVAL( gdept_0(:,:,:) ), & & ' w ', MINVAL( gdepw_0(:,:,:) ), '3w ' , MINVAL( gde3w_0(:,:,:) ) WRITE(numout,*) ' MIN val e3 t ', MINVAL( e3t_0 (:,:,:) ), ' f ' , MINVAL( e3f_0 (:,:,:) ), & & ' u ', MINVAL( e3u_0 (:,:,:) ), ' u ' , MINVAL( e3v_0 (:,:,:) ), & & ' uw', MINVAL( e3uw_0 (:,:,:) ), ' vw' , MINVAL( e3vw_0 (:,:,:) ), & & ' w ', MINVAL( e3w_0 (:,:,:) ) WRITE(numout,*) ' MAX val depth t ', MAXVAL( gdept_0(:,:,:) ), & & ' w ', MAXVAL( gdepw_0(:,:,:) ), '3w ' , MAXVAL( gde3w_0(:,:,:) ) WRITE(numout,*) ' MAX val e3 t ', MAXVAL( e3t_0 (:,:,:) ), ' f ' , MAXVAL( e3f_0 (:,:,:) ), & & ' u ', MAXVAL( e3u_0 (:,:,:) ), ' u ' , MAXVAL( e3v_0 (:,:,:) ), & & ' uw', MAXVAL( e3uw_0 (:,:,:) ), ' vw' , MAXVAL( e3vw_0 (:,:,:) ), & & ' w ', MAXVAL( e3w_0 (:,:,:) ) ENDIF ! END DO IF(lwp) THEN ! selected vertical profiles WRITE(numout,*) WRITE(numout,*) ' domzgr: vertical coordinates : point (1,1,k) bathy = ', bathy(1,1), hbatt(1,1) WRITE(numout,*) ' ~~~~~~ --------------------' WRITE(numout,"(9x,' level gdept_0 gdepw_0 e3t_0 e3w_0')") WRITE(numout,"(10x,i4,4f9.2)") ( jk, gdept_0(1,1,jk), gdepw_0(1,1,jk), & & e3t_0 (1,1,jk) , e3w_0 (1,1,jk) , jk=1,jpk ) DO jj = mj0(2), mj1(2) DO ji = mi0(20), mi1(20) WRITE(numout,*) !SF WRITE(numout,*) ' domzgr: vertical coordinates : point (20,20,k) bathy = ', bathy(ji,jj), hbatt(ji,jj) WRITE(numout,*) ' domzgr: vertical coordinates : point (20,2,k) bathy = ', bathy(ji,jj), hbatt(ji,jj) WRITE(numout,*) ' ~~~~~~ --------------------' WRITE(numout,"(9x,' level gdept_0 gdepw_0 e3t_0 e3w_0')") WRITE(numout,"(10x,i4,4f9.2)") ( jk, gdept_0(ji,jj,jk), gdepw_0(ji,jj,jk), & & e3t_0 (ji,jj,jk) , e3w_0 (ji,jj,jk) , jk=1,jpk ) END DO END DO DO jj = mj0(2), mj1(2) DO ji = mi0(100), mi1(100) WRITE(numout,*) !SF WRITE(numout,*) ' domzgr: vertical coordinates : point (100,74,k) bathy = ', bathy(ji,jj), hbatt(ji,jj) WRITE(numout,*) ' domzgr: vertical coordinates : point (100,2,k) bathy = ', bathy(ji,jj), hbatt(ji,jj) WRITE(numout,*) ' ~~~~~~ --------------------' WRITE(numout,"(9x,' level gdept_0 gdepw_0 e3t_0 e3w_0')") WRITE(numout,"(10x,i4,4f9.2)") ( jk, gdept_0(ji,jj,jk), gdepw_0(ji,jj,jk), & & e3t_0 (ji,jj,jk) , e3w_0 (ji,jj,jk) , jk=1,jpk ) END DO END DO ENDIF ! !================================================================================ ! check the coordinate makes sense !================================================================================ DO ji = 1, jpi DO jj = 1, jpj ! IF( hbatt(ji,jj) > 0._wp) THEN DO jk = 1, mbathy(ji,jj) ! check coordinate is monotonically increasing IF (e3w_n(ji,jj,jk) <= 0._wp .OR. e3t_n(ji,jj,jk) <= 0._wp ) THEN WRITE(ctmp1,*) 'ERROR zgr_sco : e3w or e3t =< 0 at point (i,j,k)= ', ji, jj, jk WRITE(numout,*) 'ERROR zgr_sco : e3w or e3t =< 0 at point (i,j,k)= ', ji, jj, jk WRITE(numout,*) 'e3w',e3w_n(ji,jj,:) WRITE(numout,*) 'e3t',e3t_n(ji,jj,:) CALL ctl_stop( ctmp1 ) ENDIF ! and check it has never gone negative IF( gdepw_n(ji,jj,jk) < 0._wp .OR. gdept_n(ji,jj,jk) < 0._wp ) THEN WRITE(ctmp1,*) 'ERROR zgr_sco : gdepw or gdept =< 0 at point (i,j,k)= ', ji, jj, jk WRITE(numout,*) 'ERROR zgr_sco : gdepw or gdept =< 0 at point (i,j,k)= ', ji, jj, jk WRITE(numout,*) 'gdepw',gdepw_n(ji,jj,:) WRITE(numout,*) 'gdept',gdept_n(ji,jj,:) CALL ctl_stop( ctmp1 ) ENDIF ! and check it never exceeds the total depth IF( gdepw_n(ji,jj,jk) > hbatt(ji,jj) ) THEN WRITE(ctmp1,*) 'ERROR zgr_sco : gdepw > hbatt at point (i,j,k)= ', ji, jj, jk WRITE(numout,*) 'ERROR zgr_sco : gdepw > hbatt at point (i,j,k)= ', ji, jj, jk WRITE(numout,*) 'gdepw',gdepw_n(ji,jj,:) CALL ctl_stop( ctmp1 ) ENDIF END DO ! DO jk = 1, mbathy(ji,jj)-1 ! and check it never exceeds the total depth IF( gdept_n(ji,jj,jk) > hbatt(ji,jj) ) THEN WRITE(ctmp1,*) 'ERROR zgr_sco : gdept > hbatt at point (i,j,k)= ', ji, jj, jk WRITE(numout,*) 'ERROR zgr_sco : gdept > hbatt at point (i,j,k)= ', ji, jj, jk WRITE(numout,*) 'gdept',gdept_n(ji,jj,:) CALL ctl_stop( ctmp1 ) ENDIF END DO ENDIF END DO END DO ! CALL wrk_dealloc( jpi, jpj, zenv, ztmp, zmsk, zri, zrj, zhbat , ztmpi1, ztmpi2, ztmpj1, ztmpj2 ) ! IF( nn_timing == 1 ) CALL timing_stop('zgr_sco') ! END SUBROUTINE zgr_sco SUBROUTINE s_sh94() !!---------------------------------------------------------------------- !! *** ROUTINE s_sh94 *** !! !! ** Purpose : stretch the s-coordinate system !! !! ** Method : s-coordinate stretch using the Song and Haidvogel 1994 !! mixed S/sigma coordinate !! !! Reference : Song and Haidvogel 1994. !!---------------------------------------------------------------------- INTEGER :: ji, jj, jk ! dummy loop argument REAL(wp) :: zcoeft, zcoefw ! temporary scalars REAL(wp) :: ztmpu, ztmpv, ztmpf REAL(wp) :: ztmpu1, ztmpv1, ztmpf1 ! REAL(wp), POINTER, DIMENSION(:,:,:) :: z_gsigw3, z_gsigt3, z_gsi3w3 REAL(wp), POINTER, DIMENSION(:,:,:) :: z_esigt3, z_esigw3, z_esigtu3, z_esigtv3, z_esigtf3, z_esigwu3, z_esigwv3 !!---------------------------------------------------------------------- CALL wrk_alloc( jpi,jpj,jpk, z_gsigw3, z_gsigt3, z_gsi3w3 ) CALL wrk_alloc( jpi,jpj,jpk, z_esigt3, z_esigw3, z_esigtu3, z_esigtv3, z_esigtf3, z_esigwu3, z_esigwv3 ) z_gsigw3 = 0._wp ; z_gsigt3 = 0._wp ; z_gsi3w3 = 0._wp z_esigt3 = 0._wp ; z_esigw3 = 0._wp z_esigtu3 = 0._wp ; z_esigtv3 = 0._wp ; z_esigtf3 = 0._wp z_esigwu3 = 0._wp ; z_esigwv3 = 0._wp ! DO ji = 1, jpi DO jj = 1, jpj ! IF( hbatt(ji,jj) > rn_hc ) THEN !deep water, stretched sigma DO jk = 1, jpk z_gsigw3(ji,jj,jk) = -fssig1( REAL(jk,wp)-0.5_wp, rn_bb ) z_gsigt3(ji,jj,jk) = -fssig1( REAL(jk,wp) , rn_bb ) END DO ELSE ! shallow water, uniform sigma DO jk = 1, jpk z_gsigw3(ji,jj,jk) = REAL(jk-1,wp) / REAL(jpk-1,wp) z_gsigt3(ji,jj,jk) = ( REAL(jk-1,wp) + 0.5_wp ) / REAL(jpk-1,wp) END DO ENDIF ! DO jk = 1, jpkm1 z_esigt3(ji,jj,jk ) = z_gsigw3(ji,jj,jk+1) - z_gsigw3(ji,jj,jk) z_esigw3(ji,jj,jk+1) = z_gsigt3(ji,jj,jk+1) - z_gsigt3(ji,jj,jk) END DO z_esigw3(ji,jj,1 ) = 2._wp * ( z_gsigt3(ji,jj,1 ) - z_gsigw3(ji,jj,1 ) ) z_esigt3(ji,jj,jpk) = 2._wp * ( z_gsigt3(ji,jj,jpk) - z_gsigw3(ji,jj,jpk) ) ! ! Coefficients for vertical depth as the sum of e3w scale factors z_gsi3w3(ji,jj,1) = 0.5_wp * z_esigw3(ji,jj,1) DO jk = 2, jpk z_gsi3w3(ji,jj,jk) = z_gsi3w3(ji,jj,jk-1) + z_esigw3(ji,jj,jk) END DO ! DO jk = 1, jpk zcoeft = ( REAL(jk,wp) - 0.5_wp ) / REAL(jpkm1,wp) zcoefw = ( REAL(jk,wp) - 1.0_wp ) / REAL(jpkm1,wp) gdept_0(ji,jj,jk) = ( scosrf(ji,jj) + (hbatt(ji,jj)-rn_hc)*z_gsigt3(ji,jj,jk)+rn_hc*zcoeft ) gdepw_0(ji,jj,jk) = ( scosrf(ji,jj) + (hbatt(ji,jj)-rn_hc)*z_gsigw3(ji,jj,jk)+rn_hc*zcoefw ) gde3w_0(ji,jj,jk) = ( scosrf(ji,jj) + (hbatt(ji,jj)-rn_hc)*z_gsi3w3(ji,jj,jk)+rn_hc*zcoeft ) END DO ! END DO ! for all jj's END DO ! for all ji's DO ji = 1, jpim1 DO jj = 1, jpjm1 ! extended for Wetting/Drying case ztmpu = hbatt(ji,jj)+hbatt(ji+1,jj) ztmpv = hbatt(ji,jj)+hbatt(ji,jj+1) ztmpf = hbatt(ji,jj)+hbatt(ji+1,jj)+hbatt(ji,jj+1)+hbatt(ji+1,jj+1) ztmpu1 = hbatt(ji,jj)*hbatt(ji+1,jj) ztmpv1 = hbatt(ji,jj)*hbatt(ji,jj+1) ztmpf1 = MIN(hbatt(ji,jj), hbatt(ji+1,jj), hbatt(ji,jj+1), hbatt(ji+1,jj+1)) * & & MAX(hbatt(ji,jj), hbatt(ji+1,jj), hbatt(ji,jj+1), hbatt(ji+1,jj+1)) DO jk = 1, jpk IF( ln_wd .AND. (ztmpu1 < 0._wp.OR.ABS(ztmpu) < rn_wdmin1) ) THEN z_esigtu3(ji,jj,jk) = 0.5_wp * ( z_esigt3(ji,jj,jk) + z_esigt3(ji+1,jj,jk) ) z_esigwu3(ji,jj,jk) = 0.5_wp * ( z_esigw3(ji,jj,jk) + z_esigw3(ji+1,jj,jk) ) ELSE z_esigtu3(ji,jj,jk) = ( hbatt(ji,jj)*z_esigt3(ji,jj,jk)+hbatt(ji+1,jj)*z_esigt3(ji+1,jj,jk) ) & & / ztmpu z_esigwu3(ji,jj,jk) = ( hbatt(ji,jj)*z_esigw3(ji,jj,jk)+hbatt(ji+1,jj)*z_esigw3(ji+1,jj,jk) ) & & / ztmpu END IF IF( ln_wd .AND. (ztmpv1 < 0._wp.OR.ABS(ztmpv) < rn_wdmin1) ) THEN z_esigtv3(ji,jj,jk) = 0.5_wp * ( z_esigt3(ji,jj,jk) + z_esigt3(ji,jj+1,jk) ) z_esigwv3(ji,jj,jk) = 0.5_wp * ( z_esigw3(ji,jj,jk) + z_esigw3(ji,jj+1,jk) ) ELSE z_esigtv3(ji,jj,jk) = ( hbatt(ji,jj)*z_esigt3(ji,jj,jk)+hbatt(ji,jj+1)*z_esigt3(ji,jj+1,jk) ) & & / ztmpv z_esigwv3(ji,jj,jk) = ( hbatt(ji,jj)*z_esigw3(ji,jj,jk)+hbatt(ji,jj+1)*z_esigw3(ji,jj+1,jk) ) & & / ztmpv END IF IF( ln_wd .AND. (ztmpf1 < 0._wp.OR.ABS(ztmpf) < rn_wdmin1) ) THEN z_esigtf3(ji,jj,jk) = 0.25_wp * ( z_esigt3(ji,jj ,jk) + z_esigt3(ji+1,jj ,jk) & & + z_esigt3(ji,jj+1,jk) + z_esigt3(ji+1,jj+1,jk) ) ELSE z_esigtf3(ji,jj,jk) = ( hbatt(ji ,jj )*z_esigt3(ji ,jj ,jk) & & + hbatt(ji+1,jj )*z_esigt3(ji+1,jj ,jk) & & + hbatt(ji ,jj+1)*z_esigt3(ji ,jj+1,jk) & & + hbatt(ji+1,jj+1)*z_esigt3(ji+1,jj+1,jk) ) / ztmpf END IF ! e3t_0(ji,jj,jk) = ( (hbatt(ji,jj)-rn_hc)*z_esigt3 (ji,jj,jk) + rn_hc/REAL(jpkm1,wp) ) e3u_0(ji,jj,jk) = ( (hbatu(ji,jj)-rn_hc)*z_esigtu3(ji,jj,jk) + rn_hc/REAL(jpkm1,wp) ) e3v_0(ji,jj,jk) = ( (hbatv(ji,jj)-rn_hc)*z_esigtv3(ji,jj,jk) + rn_hc/REAL(jpkm1,wp) ) e3f_0(ji,jj,jk) = ( (hbatf(ji,jj)-rn_hc)*z_esigtf3(ji,jj,jk) + rn_hc/REAL(jpkm1,wp) ) ! e3w_0 (ji,jj,jk) = ( (hbatt(ji,jj)-rn_hc)*z_esigw3 (ji,jj,jk) + rn_hc/REAL(jpkm1,wp) ) e3uw_0(ji,jj,jk) = ( (hbatu(ji,jj)-rn_hc)*z_esigwu3(ji,jj,jk) + rn_hc/REAL(jpkm1,wp) ) e3vw_0(ji,jj,jk) = ( (hbatv(ji,jj)-rn_hc)*z_esigwv3(ji,jj,jk) + rn_hc/REAL(jpkm1,wp) ) END DO END DO END DO ! CALL wrk_dealloc( jpi,jpj,jpk, z_gsigw3, z_gsigt3, z_gsi3w3 ) CALL wrk_dealloc( jpi,jpj,jpk, z_esigt3, z_esigw3, z_esigtu3, z_esigtv3, z_esigtf3, z_esigwu3, z_esigwv3 ) ! END SUBROUTINE s_sh94 SUBROUTINE s_sf12 !!---------------------------------------------------------------------- !! *** ROUTINE s_sf12 *** !! !! ** Purpose : stretch the s-coordinate system !! !! ** Method : s-coordinate stretch using the Siddorn and Furner 2012? !! mixed S/sigma/Z coordinate !! !! This method allows the maintenance of fixed surface and or !! bottom cell resolutions (cf. geopotential coordinates) !! within an analytically derived stretched S-coordinate framework. !! !! !! Reference : Siddorn and Furner 2012 (submitted Ocean modelling). !!---------------------------------------------------------------------- INTEGER :: ji, jj, jk ! dummy loop argument REAL(wp) :: zsmth ! smoothing around critical depth REAL(wp) :: zzs, zzb ! Surface and bottom cell thickness in sigma space REAL(wp) :: ztmpu, ztmpv, ztmpf REAL(wp) :: ztmpu1, ztmpv1, ztmpf1 ! REAL(wp), POINTER, DIMENSION(:,:,:) :: z_gsigw3, z_gsigt3, z_gsi3w3 REAL(wp), POINTER, DIMENSION(:,:,:) :: z_esigt3, z_esigw3, z_esigtu3, z_esigtv3, z_esigtf3, z_esigwu3, z_esigwv3 !!---------------------------------------------------------------------- ! CALL wrk_alloc( jpi, jpj, jpk, z_gsigw3, z_gsigt3, z_gsi3w3 ) CALL wrk_alloc( jpi, jpj, jpk, z_esigt3, z_esigw3, z_esigtu3, z_esigtv3, z_esigtf3, z_esigwu3, z_esigwv3 ) z_gsigw3 = 0._wp ; z_gsigt3 = 0._wp ; z_gsi3w3 = 0._wp z_esigt3 = 0._wp ; z_esigw3 = 0._wp z_esigtu3 = 0._wp ; z_esigtv3 = 0._wp ; z_esigtf3 = 0._wp z_esigwu3 = 0._wp ; z_esigwv3 = 0._wp DO ji = 1, jpi DO jj = 1, jpj IF (hbatt(ji,jj)>rn_hc) THEN !deep water, stretched sigma zzb = hbatt(ji,jj)*rn_zb_a + rn_zb_b ! this forces a linear bottom cell depth relationship with H,. ! could be changed by users but care must be taken to do so carefully zzb = 1.0_wp-(zzb/hbatt(ji,jj)) zzs = rn_zs / hbatt(ji,jj) IF (rn_efold /= 0.0_wp) THEN zsmth = tanh( (hbatt(ji,jj)- rn_hc ) / rn_efold ) ELSE zsmth = 1.0_wp ENDIF DO jk = 1, jpk z_gsigw3(ji,jj,jk) = REAL(jk-1,wp) /REAL(jpk-1,wp) z_gsigt3(ji,jj,jk) = (REAL(jk-1,wp)+0.5_wp)/REAL(jpk-1,wp) ENDDO z_gsigw3(ji,jj,:) = fgamma( z_gsigw3(ji,jj,:), zzb, zzs, zsmth ) z_gsigt3(ji,jj,:) = fgamma( z_gsigt3(ji,jj,:), zzb, zzs, zsmth ) ELSE IF (ln_sigcrit) THEN ! shallow water, uniform sigma DO jk = 1, jpk z_gsigw3(ji,jj,jk) = REAL(jk-1,wp) /REAL(jpk-1,wp) z_gsigt3(ji,jj,jk) = (REAL(jk-1,wp)+0.5)/REAL(jpk-1,wp) END DO ELSE ! shallow water, z coordinates DO jk = 1, jpk z_gsigw3(ji,jj,jk) = REAL(jk-1,wp) /REAL(jpk-1,wp)*(rn_hc/hbatt(ji,jj)) z_gsigt3(ji,jj,jk) = (REAL(jk-1,wp)+0.5_wp)/REAL(jpk-1,wp)*(rn_hc/hbatt(ji,jj)) END DO ENDIF DO jk = 1, jpkm1 z_esigt3(ji,jj,jk) = z_gsigw3(ji,jj,jk+1) - z_gsigw3(ji,jj,jk) z_esigw3(ji,jj,jk+1) = z_gsigt3(ji,jj,jk+1) - z_gsigt3(ji,jj,jk) END DO z_esigw3(ji,jj,1 ) = 2.0_wp * (z_gsigt3(ji,jj,1 ) - z_gsigw3(ji,jj,1 )) z_esigt3(ji,jj,jpk) = 2.0_wp * (z_gsigt3(ji,jj,jpk) - z_gsigw3(ji,jj,jpk)) ! Coefficients for vertical depth as the sum of e3w scale factors z_gsi3w3(ji,jj,1) = 0.5 * z_esigw3(ji,jj,1) DO jk = 2, jpk z_gsi3w3(ji,jj,jk) = z_gsi3w3(ji,jj,jk-1) + z_esigw3(ji,jj,jk) END DO DO jk = 1, jpk gdept_0(ji,jj,jk) = (scosrf(ji,jj)+hbatt(ji,jj))*z_gsigt3(ji,jj,jk) gdepw_0(ji,jj,jk) = (scosrf(ji,jj)+hbatt(ji,jj))*z_gsigw3(ji,jj,jk) gde3w_0(ji,jj,jk) = (scosrf(ji,jj)+hbatt(ji,jj))*z_gsi3w3(ji,jj,jk) END DO ENDDO ! for all jj's ENDDO ! for all ji's DO ji=1,jpi-1 DO jj=1,jpj-1 ! extend to suit for Wetting/Drying case ztmpu = hbatt(ji,jj)+hbatt(ji+1,jj) ztmpv = hbatt(ji,jj)+hbatt(ji,jj+1) ztmpf = hbatt(ji,jj)+hbatt(ji+1,jj)+hbatt(ji,jj+1)+hbatt(ji+1,jj+1) ztmpu1 = hbatt(ji,jj)*hbatt(ji+1,jj) ztmpv1 = hbatt(ji,jj)*hbatt(ji,jj+1) ztmpf1 = MIN(hbatt(ji,jj), hbatt(ji+1,jj), hbatt(ji,jj+1), hbatt(ji+1,jj+1)) * & & MAX(hbatt(ji,jj), hbatt(ji+1,jj), hbatt(ji,jj+1), hbatt(ji+1,jj+1)) DO jk = 1, jpk IF( ln_wd .AND. (ztmpu1 < 0._wp.OR.ABS(ztmpu) < rn_wdmin1) ) THEN z_esigtu3(ji,jj,jk) = 0.5_wp * ( z_esigt3(ji,jj,jk) + z_esigt3(ji+1,jj,jk) ) z_esigwu3(ji,jj,jk) = 0.5_wp * ( z_esigw3(ji,jj,jk) + z_esigw3(ji+1,jj,jk) ) ELSE z_esigtu3(ji,jj,jk) = ( hbatt(ji,jj)*z_esigt3(ji,jj,jk)+hbatt(ji+1,jj)*z_esigt3(ji+1,jj,jk) ) & & / ztmpu z_esigwu3(ji,jj,jk) = ( hbatt(ji,jj)*z_esigw3(ji,jj,jk)+hbatt(ji+1,jj)*z_esigw3(ji+1,jj,jk) ) & & / ztmpu END IF IF( ln_wd .AND. (ztmpv1 < 0._wp.OR.ABS(ztmpv) < rn_wdmin1) ) THEN z_esigtv3(ji,jj,jk) = 0.5_wp * ( z_esigt3(ji,jj,jk) + z_esigt3(ji,jj+1,jk) ) z_esigwv3(ji,jj,jk) = 0.5_wp * ( z_esigw3(ji,jj,jk) + z_esigw3(ji,jj+1,jk) ) ELSE z_esigtv3(ji,jj,jk) = ( hbatt(ji,jj)*z_esigt3(ji,jj,jk)+hbatt(ji,jj+1)*z_esigt3(ji,jj+1,jk) ) & & / ztmpv z_esigwv3(ji,jj,jk) = ( hbatt(ji,jj)*z_esigw3(ji,jj,jk)+hbatt(ji,jj+1)*z_esigw3(ji,jj+1,jk) ) & & / ztmpv END IF IF( ln_wd .AND. (ztmpf1 < 0._wp.OR.ABS(ztmpf) < rn_wdmin1) ) THEN z_esigtf3(ji,jj,jk) = 0.25_wp * ( z_esigt3(ji,jj,jk) + z_esigt3(ji+1,jj,jk) & & + z_esigt3(ji,jj+1,jk) + z_esigt3(ji+1,jj+1,jk) ) ELSE z_esigtf3(ji,jj,jk) = ( hbatt(ji ,jj )*z_esigt3(ji ,jj ,jk) & & + hbatt(ji+1,jj )*z_esigt3(ji+1,jj ,jk) & & + hbatt(ji ,jj+1)*z_esigt3(ji ,jj+1,jk) & & + hbatt(ji+1,jj+1)*z_esigt3(ji+1,jj+1,jk) ) / ztmpf END IF ! Code prior to wetting and drying option (for reference) !z_esigtu3(ji,jj,jk) = ( hbatt(ji,jj)*z_esigt3(ji,jj,jk)+hbatt(ji+1,jj)*z_esigt3(ji+1,jj,jk) ) & ! /( hbatt(ji,jj)+hbatt(ji+1,jj) ) ! !z_esigwu3(ji,jj,jk) = ( hbatt(ji,jj)*z_esigw3(ji,jj,jk)+hbatt(ji+1,jj)*z_esigw3(ji+1,jj,jk) ) & ! /( hbatt(ji,jj)+hbatt(ji+1,jj) ) ! !z_esigtv3(ji,jj,jk) = ( hbatt(ji,jj)*z_esigt3(ji,jj,jk)+hbatt(ji,jj+1)*z_esigt3(ji,jj+1,jk) ) & ! /( hbatt(ji,jj)+hbatt(ji,jj+1) ) ! !z_esigwv3(ji,jj,jk) = ( hbatt(ji,jj)*z_esigw3(ji,jj,jk)+hbatt(ji,jj+1)*z_esigw3(ji,jj+1,jk) ) & ! /( hbatt(ji,jj)+hbatt(ji,jj+1) ) ! !z_esigtf3(ji,jj,jk) = ( hbatt(ji ,jj )*z_esigt3(ji ,jj ,jk) & ! & +hbatt(ji+1,jj )*z_esigt3(ji+1,jj ,jk) & ! +hbatt(ji ,jj+1)*z_esigt3(ji ,jj+1,jk) & ! & +hbatt(ji+1,jj+1)*z_esigt3(ji+1,jj+1,jk) ) & ! /( hbatt(ji ,jj )+hbatt(ji+1,jj)+hbatt(ji,jj+1)+hbatt(ji+1,jj+1) ) e3t_0(ji,jj,jk)=(scosrf(ji,jj)+hbatt(ji,jj))*z_esigt3(ji,jj,jk) e3u_0(ji,jj,jk)=(scosrf(ji,jj)+hbatu(ji,jj))*z_esigtu3(ji,jj,jk) e3v_0(ji,jj,jk)=(scosrf(ji,jj)+hbatv(ji,jj))*z_esigtv3(ji,jj,jk) e3f_0(ji,jj,jk)=(scosrf(ji,jj)+hbatf(ji,jj))*z_esigtf3(ji,jj,jk) ! e3w_0 (ji,jj,jk)=hbatt(ji,jj)*z_esigw3(ji,jj,jk) e3uw_0(ji,jj,jk)=hbatu(ji,jj)*z_esigwu3(ji,jj,jk) e3vw_0(ji,jj,jk)=hbatv(ji,jj)*z_esigwv3(ji,jj,jk) END DO ENDDO ENDDO ! CALL lbc_lnk(e3t_0 ,'T',1.) ; CALL lbc_lnk(e3u_0 ,'T',1.) CALL lbc_lnk(e3v_0 ,'T',1.) ; CALL lbc_lnk(e3f_0 ,'T',1.) CALL lbc_lnk(e3w_0 ,'T',1.) CALL lbc_lnk(e3uw_0,'T',1.) ; CALL lbc_lnk(e3vw_0,'T',1.) ! CALL wrk_dealloc( jpi,jpj,jpk, z_gsigw3, z_gsigt3, z_gsi3w3 ) CALL wrk_dealloc( jpi,jpj,jpk, z_esigt3, z_esigw3, z_esigtu3, z_esigtv3, z_esigtf3, z_esigwu3, z_esigwv3 ) ! END SUBROUTINE s_sf12 SUBROUTINE s_tanh() !!---------------------------------------------------------------------- !! *** ROUTINE s_tanh*** !! !! ** Purpose : stretch the s-coordinate system !! !! ** Method : s-coordinate stretch !! !! Reference : Madec, Lott, Delecluse and Crepon, 1996. JPO, 26, 1393-1408. !!---------------------------------------------------------------------- INTEGER :: ji, jj, jk ! dummy loop argument REAL(wp) :: zcoeft, zcoefw ! temporary scalars REAL(wp), POINTER, DIMENSION(:) :: z_gsigw, z_gsigt, z_gsi3w REAL(wp), POINTER, DIMENSION(:) :: z_esigt, z_esigw !!---------------------------------------------------------------------- CALL wrk_alloc( jpk, z_gsigw, z_gsigt, z_gsi3w ) CALL wrk_alloc( jpk, z_esigt, z_esigw ) z_gsigw = 0._wp ; z_gsigt = 0._wp ; z_gsi3w = 0._wp z_esigt = 0._wp ; z_esigw = 0._wp DO jk = 1, jpk z_gsigw(jk) = -fssig( REAL(jk,wp)-0.5_wp ) z_gsigt(jk) = -fssig( REAL(jk,wp) ) END DO IF( nprint == 1 .AND. lwp ) WRITE(numout,*) 'z_gsigw 1 jpk ', z_gsigw(1), z_gsigw(jpk) ! ! Coefficients for vertical scale factors at w-, t- levels !!gm bug : define it from analytical function, not like juste bellow.... !!gm or betteroffer the 2 possibilities.... DO jk = 1, jpkm1 z_esigt(jk ) = z_gsigw(jk+1) - z_gsigw(jk) z_esigw(jk+1) = z_gsigt(jk+1) - z_gsigt(jk) END DO z_esigw( 1 ) = 2._wp * ( z_gsigt(1 ) - z_gsigw(1 ) ) z_esigt(jpk) = 2._wp * ( z_gsigt(jpk) - z_gsigw(jpk) ) ! ! Coefficients for vertical depth as the sum of e3w scale factors z_gsi3w(1) = 0.5_wp * z_esigw(1) DO jk = 2, jpk z_gsi3w(jk) = z_gsi3w(jk-1) + z_esigw(jk) END DO !!gm: depuw, depvw can be suppressed (modif in ldfslp) and depw=dep3w can be set (save 3 3D arrays) DO jk = 1, jpk zcoeft = ( REAL(jk,wp) - 0.5_wp ) / REAL(jpkm1,wp) zcoefw = ( REAL(jk,wp) - 1.0_wp ) / REAL(jpkm1,wp) gdept_0(:,:,jk) = ( scosrf(:,:) + (hbatt(:,:)-hift(:,:))*z_gsigt(jk) + hift(:,:)*zcoeft ) gdepw_0(:,:,jk) = ( scosrf(:,:) + (hbatt(:,:)-hift(:,:))*z_gsigw(jk) + hift(:,:)*zcoefw ) gde3w_0(:,:,jk) = ( scosrf(:,:) + (hbatt(:,:)-hift(:,:))*z_gsi3w(jk) + hift(:,:)*zcoeft ) END DO !!gm: e3uw, e3vw can be suppressed (modif in dynzdf, dynzdf_iso, zdfbfr) (save 2 3D arrays) DO jj = 1, jpj DO ji = 1, jpi DO jk = 1, jpk e3t_0(ji,jj,jk) = ( (hbatt(ji,jj)-hift(ji,jj))*z_esigt(jk) + hift(ji,jj)/REAL(jpkm1,wp) ) e3u_0(ji,jj,jk) = ( (hbatu(ji,jj)-hifu(ji,jj))*z_esigt(jk) + hifu(ji,jj)/REAL(jpkm1,wp) ) e3v_0(ji,jj,jk) = ( (hbatv(ji,jj)-hifv(ji,jj))*z_esigt(jk) + hifv(ji,jj)/REAL(jpkm1,wp) ) e3f_0(ji,jj,jk) = ( (hbatf(ji,jj)-hiff(ji,jj))*z_esigt(jk) + hiff(ji,jj)/REAL(jpkm1,wp) ) ! e3w_0 (ji,jj,jk) = ( (hbatt(ji,jj)-hift(ji,jj))*z_esigw(jk) + hift(ji,jj)/REAL(jpkm1,wp) ) e3uw_0(ji,jj,jk) = ( (hbatu(ji,jj)-hifu(ji,jj))*z_esigw(jk) + hifu(ji,jj)/REAL(jpkm1,wp) ) e3vw_0(ji,jj,jk) = ( (hbatv(ji,jj)-hifv(ji,jj))*z_esigw(jk) + hifv(ji,jj)/REAL(jpkm1,wp) ) END DO END DO END DO ! CALL wrk_dealloc( jpk, z_gsigw, z_gsigt, z_gsi3w ) CALL wrk_dealloc( jpk, z_esigt, z_esigw ) ! END SUBROUTINE s_tanh FUNCTION fssig( pk ) RESULT( pf ) !!---------------------------------------------------------------------- !! *** ROUTINE fssig *** !! !! ** Purpose : provide the analytical function in s-coordinate !! !! ** Method : the function provide the non-dimensional position of !! T and W (i.e. between 0 and 1) !! T-points at integer values (between 1 and jpk) !! W-points at integer values - 1/2 (between 0.5 and jpk-0.5) !!---------------------------------------------------------------------- REAL(wp), INTENT(in) :: pk ! continuous "k" coordinate REAL(wp) :: pf ! sigma value !!---------------------------------------------------------------------- ! pf = ( TANH( rn_theta * ( -(pk-0.5_wp) / REAL(jpkm1) + rn_thetb ) ) & & - TANH( rn_thetb * rn_theta ) ) & & * ( COSH( rn_theta ) & & + COSH( rn_theta * ( 2._wp * rn_thetb - 1._wp ) ) ) & & / ( 2._wp * SINH( rn_theta ) ) ! END FUNCTION fssig FUNCTION fssig1( pk1, pbb ) RESULT( pf1 ) !!---------------------------------------------------------------------- !! *** ROUTINE fssig1 *** !! !! ** Purpose : provide the Song and Haidvogel version of the analytical function in s-coordinate !! !! ** Method : the function provides the non-dimensional position of !! T and W (i.e. between 0 and 1) !! T-points at integer values (between 1 and jpk) !! W-points at integer values - 1/2 (between 0.5 and jpk-0.5) !!---------------------------------------------------------------------- REAL(wp), INTENT(in) :: pk1 ! continuous "k" coordinate REAL(wp), INTENT(in) :: pbb ! Stretching coefficient REAL(wp) :: pf1 ! sigma value !!---------------------------------------------------------------------- ! IF ( rn_theta == 0 ) then ! uniform sigma pf1 = - ( pk1 - 0.5_wp ) / REAL( jpkm1 ) ELSE ! stretched sigma pf1 = ( 1._wp - pbb ) * ( SINH( rn_theta*(-(pk1-0.5_wp)/REAL(jpkm1)) ) ) / SINH( rn_theta ) & & + pbb * ( (TANH( rn_theta*( (-(pk1-0.5_wp)/REAL(jpkm1)) + 0.5_wp) ) - TANH( 0.5_wp * rn_theta ) ) & & / ( 2._wp * TANH( 0.5_wp * rn_theta ) ) ) ENDIF ! END FUNCTION fssig1 FUNCTION fgamma( pk1, pzb, pzs, psmth) RESULT( p_gamma ) !!---------------------------------------------------------------------- !! *** ROUTINE fgamma *** !! !! ** Purpose : provide analytical function for the s-coordinate !! !! ** Method : the function provides the non-dimensional position of !! T and W (i.e. between 0 and 1) !! T-points at integer values (between 1 and jpk) !! W-points at integer values - 1/2 (between 0.5 and jpk-0.5) !! !! This method allows the maintenance of fixed surface and or !! bottom cell resolutions (cf. geopotential coordinates) !! within an analytically derived stretched S-coordinate framework. !! !! Reference : Siddorn and Furner, in prep !!---------------------------------------------------------------------- REAL(wp), INTENT(in ) :: pk1(jpk) ! continuous "k" coordinate REAL(wp) :: p_gamma(jpk) ! stretched coordinate REAL(wp), INTENT(in ) :: pzb ! Bottom box depth REAL(wp), INTENT(in ) :: pzs ! surface box depth REAL(wp), INTENT(in ) :: psmth ! Smoothing parameter ! INTEGER :: jk ! dummy loop index REAL(wp) :: za1,za2,za3 ! local scalar REAL(wp) :: zn1,zn2 ! - - REAL(wp) :: za,zb,zx ! - - !!---------------------------------------------------------------------- ! zn1 = 1._wp / REAL( jpkm1, wp ) zn2 = 1._wp - zn1 ! za1 = (rn_alpha+2.0_wp)*zn1**(rn_alpha+1.0_wp)-(rn_alpha+1.0_wp)*zn1**(rn_alpha+2.0_wp) za2 = (rn_alpha+2.0_wp)*zn2**(rn_alpha+1.0_wp)-(rn_alpha+1.0_wp)*zn2**(rn_alpha+2.0_wp) za3 = (zn2**3.0_wp - za2)/( zn1**3.0_wp - za1) ! za = pzb - za3*(pzs-za1)-za2 za = za/( zn2-0.5_wp*(za2+zn2**2.0_wp) - za3*(zn1-0.5_wp*(za1+zn1**2.0_wp) ) ) zb = (pzs - za1 - za*( zn1-0.5_wp*(za1+zn1**2.0_wp ) ) ) / (zn1**3.0_wp - za1) zx = 1.0_wp-za/2.0_wp-zb ! DO jk = 1, jpk p_gamma(jk) = za*(pk1(jk)*(1.0_wp-pk1(jk)/2.0_wp))+zb*pk1(jk)**3.0_wp + & & zx*( (rn_alpha+2.0_wp)*pk1(jk)**(rn_alpha+1.0_wp)- & & (rn_alpha+1.0_wp)*pk1(jk)**(rn_alpha+2.0_wp) ) p_gamma(jk) = p_gamma(jk)*psmth+pk1(jk)*(1.0_wp-psmth) END DO ! END FUNCTION fgamma !!====================================================================== END MODULE domzgr