New URL for NEMO forge!   http://forge.nemo-ocean.eu

Since March 2022 along with NEMO 4.2 release, the code development moved to a self-hosted GitLab.
This present forge is now archived and remained online for history.
annex_B.tex in branches/2017/dev_merge_2017/DOC/tex_sub – NEMO

source: branches/2017/dev_merge_2017/DOC/tex_sub/annex_B.tex @ 9393

Last change on this file since 9393 was 9393, checked in by nicolasmartin, 6 years ago

Cleaning of section headings, reinstating the index by mixing \np and \forcode macros, continued conversion of source code inclusions

File size: 21.9 KB
RevLine 
[9389]1\documentclass[../tex_main/NEMO_manual]{subfiles}
[6997]2\begin{document}
[707]3% ================================================================
4% Chapter Ñ Appendix B : Diffusive Operators
5% ================================================================
6\chapter{Appendix B : Diffusive Operators}
7\label{Apdx_B}
8\minitoc
9
[2282]10
11\newpage
12$\ $\newline    % force a new ligne
13
[707]14% ================================================================
15% Horizontal/Vertical 2nd Order Tracer Diffusive Operators
16% ================================================================
[9393]17\section{Horizontal/Vertical $2^{nd}$ order tracer diffusive operators}
[707]18\label{Apdx_B_1}
19
[3294]20\subsubsection*{In z-coordinates}
21In $z$-coordinates, the horizontal/vertical second order tracer diffusion operator
[1223]22is given by:
[2282]23\begin{eqnarray} \label{Apdx_B1}
[3294]24 &D^T = \frac{1}{e_1 \, e_2}      \left[
25  \left. \frac{\partial}{\partial i} \left\frac{e_2}{e_1}A^{lT} \;\left. \frac{\partial T}{\partial i} \right|_z   \right)   \right|_z      \right.
[2282]26                       \left.
[3294]27+ \left. \frac{\partial}{\partial j} \left\frac{e_1}{e_2}A^{lT} \;\left. \frac{\partial T}{\partial j} \right|_z   \right)   \right|_z      \right]
[817]28+ \frac{\partial }{\partial z}\left( {A^{vT} \;\frac{\partial T}{\partial z}} \right)
[2282]29\end{eqnarray}
[707]30
[3294]31\subsubsection*{In generalized vertical coordinates}
32In $s$-coordinates, we defined the slopes of $s$-surfaces, $\sigma_1$ and
33$\sigma_2$ by \eqref{Apdx_A_s_slope} and the vertical/horizontal ratio of diffusion
[2282]34coefficient by $\epsilon = A^{vT} / A^{lT}$. The diffusion operator is given by:
[707]35
36\begin{equation} \label{Apdx_B2}
[3294]37D^T = \left. \nabla \right|_s \cdot
[817]38           \left[ A^{lT} \;\Re \cdot \left. \nabla \right|_s T  \right] \\
39\;\;\text{where} \;\Re =\left( {{\begin{array}{*{20}c}
[707]40 1 \hfill & 0 \hfill & {-\sigma _1 } \hfill \\
41 0 \hfill & 1 \hfill & {-\sigma _2 } \hfill \\
[3294]42 {-\sigma _1 } \hfill & {-\sigma _2 } \hfill & {\varepsilon +\sigma _1
[707]43^2+\sigma _2 ^2} \hfill \\
44\end{array} }} \right)
45\end{equation}
[1223]46or in expanded form:
[2282]47\begin{subequations}
[3294]48\begin{align*} {\begin{array}{*{20}l}
49D^T=& \frac{1}{e_1\,e_2\,e_3 }\;\left[ {\ \ \ \ e_2\,e_3\,A^{lT} \;\left.
[2282]50{\frac{\partial }{\partial i}\left( {\frac{1}{e_1}\;\left. {\frac{\partial T}{\partial i}} \right|_s -\frac{\sigma _1 }{e_3 }\;\frac{\partial T}{\partial s}} \right)} \right|_s } \right\\
51&\qquad \quad \ \ \ +e_1\,e_3\,A^{lT} \;\left. {\frac{\partial }{\partial j}\left( {\frac{1}{e_2 }\;\left. {\frac{\partial T}{\partial j}} \right|_s -\frac{\sigma _2 }{e_3 }\;\frac{\partial T}{\partial s}} \right)} \right|_s \\
[3294]52&\qquad \quad \ \ \ + e_1\,e_2\,A^{lT} \;\frac{\partial }{\partial s}\left( {-\frac{\sigma _1 }{e_1 }\;\left. {\frac{\partial T}{\partial i}} \right|_s -\frac{\sigma _2 }{e_2 }\;\left. {\frac{\partial T}{\partial j}} \right|_s } \right.
53 \left. {\left. {+\left( {\varepsilon +\sigma _1^2+\sigma _2 ^2} \right)\;\frac{1}{e_3 }\;\frac{\partial T}{\partial s}} \right)\;\;} \right]
54\end{array} }
[2282]55\end{align*}
56\end{subequations}
[707]57
[3294]58Equation \eqref{Apdx_B2} is obtained from \eqref{Apdx_B1} without any
59additional assumption. Indeed, for the special case $k=z$ and thus $e_3 =1$,
60we introduce an arbitrary vertical coordinate $s = s (i,j,z)$ as in Appendix~\ref{Apdx_A}
61and use \eqref{Apdx_A_s_slope} and \eqref{Apdx_A_s_chain_rule}.
62Since no cross horizontal derivative $\partial _i \partial _j $ appears in
63\eqref{Apdx_B1}, the ($i$,$z$) and ($j$,$z$) planes are independent.
64The derivation can then be demonstrated for the ($i$,$z$)~$\to$~($j$,$s$)
[2282]65transformation without any loss of generality:
[707]66
[3294]67\begin{subequations}
68\begin{align*} {\begin{array}{*{20}l}
69D^T&=\frac{1}{e_1\,e_2} \left. {\frac{\partial }{\partial i}\left( {\frac{e_2}{e_1}A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_z } \right)} \right|_z
[2282]70                     +\frac{\partial }{\partial z}\left( {A^{vT}\;\frac{\partial T}{\partial z}} \right)     \\
[3294]71 \\
72%
73&=\frac{1}{e_1\,e_2 }\left[ {\left. {\;\frac{\partial }{\partial i}\left( {\frac{e_2}{e_1}A^{lT}\;\left( {\left. {\frac{\partial T}{\partial i}} \right|_s
74                                                    -\frac{e_1\,\sigma _1 }{e_3 }\frac{\partial T}{\partial s}} \right)} \right)} \right|_s } \right. \\
75& \qquad \qquad \left. { -\frac{e_1\,\sigma _1 }{e_3 }\frac{\partial }{\partial s}\left( {\frac{e_2 }{e_1 }A^{lT}\;\left. {\left( {\left. {\frac{\partial T}{\partial i}} \right|_s -\frac{e_1 \,\sigma _1 }{e_3 }\frac{\partial T}{\partial s}} \right)} \right|_s } \right)\;} \right]
76\shoveright{ +\frac{1}{e_3 }\frac{\partial }{\partial s}\left[ {\frac{A^{vT}}{e_3 }\;\frac{\partial T}{\partial s}} \right]}  \qquad \qquad \qquad \\
77 \\
78%
79&=\frac{1}{e_1 \,e_2 \,e_3 }\left[ {\left. {\;\;\frac{\partial }{\partial i}\left( {\frac{e_2 \,e_3 }{e_1 }A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_s } \right)} \right|_s -\left. {\frac{e_2 }{e_1}A^{lT}\;\frac{\partial e_3 }{\partial i}} \right|_s \left. {\frac{\partial T}{\partial i}} \right|_s } \right. \\
[2282]80&  \qquad \qquad \quad \left. {-e_3 \frac{\partial }{\partial i}\left( {\frac{e_2 \,\sigma _1 }{e_3 }A^{lT}\;\frac{\partial T}{\partial s}} \right)} \right|_s -e_1 \,\sigma _1 \frac{\partial }{\partial s}\left( {\frac{e_2 }{e_1 }A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_s } \right) \\
[3294]81&  \qquad \qquad \quad \shoveright{ -e_1 \,\sigma _1 \frac{\partial }{\partial s}\left( {-\frac{e_2 \,\sigma _1 }{e_3 }A^{lT}\;\frac{\partial T}{\partial s}} \right)\;\,\left. {+\frac{\partial }{\partial s}\left( {\frac{e_1 \,e_2 }{e_3 }A^{vT}\;\frac{\partial T}{\partial s}} \right)\quad} \right] }\\
[2282]82\end{array} }     \\
[3294]83%
[2282]84 {\begin{array}{*{20}l}
85\intertext{Noting that $\frac{1}{e_1} \left. \frac{\partial e_3 }{\partial i} \right|_s = \frac{\partial \sigma _1 }{\partial s}$, it becomes:}
86%
[3294]87& =\frac{1}{e_1\,e_2\,e_3 }\left[ {\left. {\;\;\;\frac{\partial }{\partial i}\left( {\frac{e_2\,e_3 }{e_1}\,A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_s } \right)} \right|_s \left. -\, {e_3 \frac{\partial }{\partial i}\left( {\frac{e_2 \,\sigma _1 }{e_3 }A^{lT}\;\frac{\partial T}{\partial s}} \right)} \right|_s } \right. \\
88& \qquad \qquad \quad -e_2 A^{lT}\;\frac{\partial \sigma _1 }{\partial s}\left. {\frac{\partial T}{\partial i}} \right|_s -e_1 \,\sigma_1 \frac{\partial }{\partial s}\left( {\frac{e_2 }{e_1 }A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_s } \right) \\
89& \qquad \qquad \quad\shoveright{ \left. { +e_1 \,\sigma _1 \frac{\partial }{\partial s}\left( {\frac{e_2 \,\sigma _1 }{e_3 }A^{lT}\;\frac{\partial T}{\partial s}} \right)+\frac{\partial }{\partial s}\left( {\frac{e_1 \,e_2 }{e_3 }A^{vT}\;\frac{\partial T}{\partial z}} \right)\;\;\;} \right] }\\
[2282]90\\
[3294]91&=\frac{1}{e_1 \,e_2 \,e_3 } \left[ {\left. {\;\;\;\frac{\partial }{\partial i} \left( {\frac{e_2 \,e_3 }{e_1 }A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_s } \right)} \right|_s \left. {-\frac{\partial }{\partial i}\left( {e_2 \,\sigma _1 A^{lT}\;\frac{\partial T}{\partial s}} \right)} \right|_s } \right. \\
92& \qquad \qquad \quad \left. {+\frac{e_2 \,\sigma _1 }{e_3}A^{lT}\;\frac{\partial T}{\partial s} \;\frac{\partial e_3 }{\partial i}}  \right|_s -e_2 A^{lT}\;\frac{\partial \sigma _1 }{\partial s}\left. {\frac{\partial T}{\partial i}} \right|_s \\
93& \qquad \qquad \quad-e_2 \,\sigma _1 \frac{\partial}{\partial s}\left( {A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_s } \right)+\frac{\partial }{\partial s}\left( {\frac{e_1 \,e_2 \,\sigma _1 ^2}{e_3 }A^{lT}\;\frac{\partial T}{\partial s}} \right) \\
94& \qquad \qquad \quad\shoveright{ \left. {-\frac{\partial \left( {e_1 \,e_2 \,\sigma _1 } \right)}{\partial s} \left( {\frac{\sigma _1 }{e_3}A^{lT}\;\frac{\partial T}{\partial s}} \right) + \frac{\partial }{\partial s}\left( {\frac{e_1 \,e_2 }{e_3 }A^{vT}\;\frac{\partial T}{\partial s}} \right)\;\;\;} \right]}
95\end{array} } \\
96{\begin{array}{*{20}l}
[2282]97%
98\intertext{using the same remark as just above, it becomes:}
99%
[3294]100&= \frac{1}{e_1 \,e_2 \,e_3 } \left[ {\left. {\;\;\;\frac{\partial }{\partial i} \left( {\frac{e_2 \,e_3 }{e_1 }A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_s -e_2 \,\sigma _1 A^{lT}\;\frac{\partial T}{\partial s}} \right)} \right|_s } \right.\;\;\; \\
101& \qquad \qquad \quad+\frac{e_1 \,e_2 \,\sigma _1 }{e_3 }A^{lT}\;\frac{\partial T}{\partial s}\;\frac{\partial \sigma _1 }{\partial s} - \frac {\sigma _1 }{e_3} A^{lT} \;\frac{\partial \left( {e_1 \,e_2 \,\sigma _1 } \right)}{\partial s}\;\frac{\partial T}{\partial s} \\
102& \qquad \qquad \quad-e_2 \left( {A^{lT}\;\frac{\partial \sigma _1 }{\partial s}\left. {\frac{\partial T}{\partial i}} \right|_s +\frac{\partial }{\partial s}\left( {\sigma _1 A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_s } \right)-\frac{\partial \sigma _1 }{\partial s}\;A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_s } \right) \\
103& \qquad \qquad \quad\shoveright{\left. {+\frac{\partial }{\partial s}\left( {\frac{e_1 \,e_2 \,\sigma _1 ^2}{e_3 }A^{lT}\;\frac{\partial T}{\partial s}+\frac{e_1 \,e_2}{e_3 }A^{vT}\;\frac{\partial T}{\partial s}} \right)\;\;\;} \right] }
104 \end{array} } \\
105{\begin{array}{*{20}l}
[2282]106%
[3294]107\intertext{Since the horizontal scale factors do not depend on the vertical coordinate,
108the last term of the first line and the first term of the last line cancel, while
[2282]109the second line reduces to a single vertical derivative, so it becomes:}
110%
[3294]111& =\frac{1}{e_1 \,e_2 \,e_3 }\left[ {\left. {\;\;\;\frac{\partial }{\partial i}\left( {\frac{e_2 \,e_3 }{e_1 }A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_s -e_2 \,\sigma _1 \,A^{lT}\;\frac{\partial T}{\partial s}} \right)} \right|_s } \right. \\
112& \qquad \qquad \quad \shoveright{ \left. {+\frac{\partial }{\partial s}\left( {-e_2 \,\sigma _1 \,A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_s +A^{lT}\frac{e_1 \,e_2 }{e_3 }\;\left( {\varepsilon +\sigma _1 ^2} \right)\frac{\partial T}{\partial s}} \right)\;\;\;} \right]}
113 \\
[2282]114%
[3294]115\intertext{in other words, the horizontal/vertical Laplacian operator in the ($i$,$s$) plane takes the following form:}
116\end{array} } \\
[2282]117%
[3294]118{\frac{1}{e_1\,e_2\,e_3}}
[817]119\left( {{\begin{array}{*{30}c}
[707]120{\left. {\frac{\partial \left( {e_2 e_3 \bullet } \right)}{\partial i}} \right|_s } \hfill \\
121{\frac{\partial \left( {e_1 e_2 \bullet } \right)}{\partial s}} \hfill \\
122\end{array}}}\right)
123\cdot \left[ {A^{lT}
[817]124\left( {{\begin{array}{*{30}c}
[707]125 {1} \hfill & {-\sigma_1 } \hfill \\
[3294]126 {-\sigma_1} \hfill & {\varepsilon + \sigma_1^2} \hfill \\
[707]127\end{array} }} \right)
[3294]128\cdot
[817]129\left( {{\begin{array}{*{30}c}
[707]130{\frac{1}{e_1 }\;\left. {\frac{\partial \bullet }{\partial i}} \right|_s } \hfill \\
131{\frac{1}{e_3 }\;\frac{\partial \bullet }{\partial s}} \hfill \\
[2282]132\end{array}}}       \right) \left( T \right)} \right]
133\end{align*}
134\end{subequations}
[3294]135\addtocounter{equation}{-2}
[707]136
137% ================================================================
[817]138% Isopycnal/Vertical 2nd Order Tracer Diffusive Operators
[707]139% ================================================================
[9393]140\section{Iso/Diapycnal $2^{nd}$ order tracer diffusive operators}
[707]141\label{Apdx_B_2}
142
[3294]143\subsubsection*{In z-coordinates}
[707]144
[3294]145The iso/diapycnal diffusive tensor $\textbf {A}_{\textbf I}$ expressed in the ($i$,$j$,$k$)
146curvilinear coordinate system in which the equations of the ocean circulation model are
[1223]147formulated, takes the following form \citep{Redi_JPO82}:
[707]148
[3294]149\begin{equation} \label{Apdx_B3}
[707]150\textbf {A}_{\textbf I} = \frac{A^{lT}}{\left( {1+a_1 ^2+a_2 ^2} \right)}
151\left[ {{\begin{array}{*{20}c}
152 {1+a_1 ^2} \hfill & {-a_1 a_2 } \hfill & {-a_1 } \hfill \\
153 {-a_1 a_2 } \hfill & {1+a_2 ^2} \hfill & {-a_2 } \hfill \\
154 {-a_1 } \hfill & {-a_2 } \hfill & {\varepsilon +a_1 ^2+a_2 ^2} \hfill \\
155\end{array} }} \right]
[3294]156\end{equation}
157where ($a_1$, $a_2$) are the isopycnal slopes in ($\textbf{i}$,
158$\textbf{j}$) directions, relative to geopotentials:
[707]159\begin{equation*}
160a_1 =\frac{e_3 }{e_1 }\left( {\frac{\partial \rho }{\partial i}} \right)\left( {\frac{\partial \rho }{\partial k}} \right)^{-1}
[817]161\qquad , \qquad
[3294]162a_2 =\frac{e_3 }{e_2 }\left( {\frac{\partial \rho }{\partial j}}
[707]163\right)\left( {\frac{\partial \rho }{\partial k}} \right)^{-1}
164\end{equation*}
[817]165
[3294]166In practice, isopycnal slopes are generally less than $10^{-2}$ in the ocean, so
[1223]167$\textbf {A}_{\textbf I}$ can be simplified appreciably \citep{Cox1987}:
[3294]168\begin{subequations} \label{Apdx_B4}
169\begin{equation} \label{Apdx_B4a}
170{\textbf{A}_{\textbf{I}}} \approx A^{lT}\;\Re\;\text{where} \;\Re =
[707]171\left[ {{\begin{array}{*{20}c}
172 1 \hfill & 0 \hfill & {-a_1 } \hfill \\
173 0 \hfill & 1 \hfill & {-a_2 } \hfill \\
174 {-a_1 } \hfill & {-a_2 } \hfill & {\varepsilon +a_1 ^2+a_2 ^2} \hfill \\
[3294]175\end{array} }} \right],
176\end{equation}
177and the iso/dianeutral diffusive operator in $z$-coordinates is then
178\begin{equation}\label{Apdx_B4b}
179 D^T = \left. \nabla \right|_z \cdot
180           \left[ A^{lT} \;\Re \cdot \left. \nabla \right|_z T  \right]. \\
181\end{equation}
182\end{subequations}
[817]183
[3294]184
185Physically, the full tensor \eqref{Apdx_B3}
186represents strong isoneutral diffusion on a plane parallel to the isoneutral
187surface and weak dianeutral diffusion perpendicular to this plane.
188However, the approximate `weak-slope' tensor \eqref{Apdx_B4a} represents strong
189diffusion along the isoneutral surface, with weak
190\emph{vertical}  diffusion -- the principal axes of the tensor are no
191longer orthogonal. This simplification also decouples
192the ($i$,$z$) and ($j$,$z$) planes of the tensor. The weak-slope operator therefore takes the same
193form, \eqref{Apdx_B4}, as \eqref{Apdx_B2}, the diffusion operator for geopotential
194diffusion written in non-orthogonal $i,j,s$-coordinates. Written out
195explicitly,
196
197\begin{multline} \label{Apdx_B_ldfiso}
198 D^T=\frac{1}{e_1 e_2 }\left\{
199 {\;\frac{\partial }{\partial i}\left[ {A_h \left( {\frac{e_2}{e_1}\frac{\partial T}{\partial i}-a_1 \frac{e_2}{e_3}\frac{\partial T}{\partial k}} \right)} \right]}
200 {+\frac{\partial}{\partial j}\left[ {A_h \left( {\frac{e_1}{e_2}\frac{\partial T}{\partial j}-a_2 \frac{e_1}{e_3}\frac{\partial T}{\partial k}} \right)} \right]\;} \right\} \\
201\shoveright{+\frac{1}{e_3 }\frac{\partial }{\partial k}\left[ {A_h \left( {-\frac{a_1 }{e_1 }\frac{\partial T}{\partial i}-\frac{a_2 }{e_2 }\frac{\partial T}{\partial j}+\frac{\left( {a_1 ^2+a_2 ^2+\varepsilon} \right)}{e_3 }\frac{\partial T}{\partial k}} \right)} \right]}. \\
202\end{multline}
203
204
205The isopycnal diffusion operator \eqref{Apdx_B4},
206\eqref{Apdx_B_ldfiso} conserves tracer quantity and dissipates its
207square. The demonstration of the first property is trivial as \eqref{Apdx_B4} is the divergence
[1223]208of fluxes. Let us demonstrate the second one:
[707]209\begin{equation*}
[3294]210\iiint\limits_D T\;\nabla .\left( {\textbf{A}}_{\textbf{I}} \nabla T \right)\,dv
211          = -\iiint\limits_D \nabla T\;.\left( {\textbf{A}}_{\textbf{I}} \nabla T \right)\,dv,
[707]212\end{equation*}
[3294]213and since
214\begin{subequations}
215\begin{align*} {\begin{array}{*{20}l}
216\nabla T\;.\left( {{\rm {\bf A}}_{\rm {\bf I}} \nabla T}
217\right)&=A^{lT}\left[ {\left( {\frac{\partial T}{\partial i}} \right)^2-2a_1
218\frac{\partial T}{\partial i}\frac{\partial T}{\partial k}+\left(
219{\frac{\partial T}{\partial j}} \right)^2} \right. \\
[2282]220&\qquad \qquad \qquad
[3294]221{ \left. -\,{2a_2 \frac{\partial T}{\partial j}\frac{\partial T}{\partial k}+\left( {a_1 ^2+a_2 ^2+\varepsilon} \right)\left( {\frac{\partial T}{\partial k}} \right)^2} \right]} \\
222&=A_h \left[ {\left( {\frac{\partial T}{\partial i}-a_1 \frac{\partial
223          T}{\partial k}} \right)^2+\left( {\frac{\partial T}{\partial
224          j}-a_2 \frac{\partial T}{\partial k}} \right)^2}
225  +\varepsilon \left(\frac{\partial T}{\partial k}\right) ^2\right]      \\
[2282]226& \geq 0
[3294]227\end{array} }
[817]228\end{align*}
[2282]229\end{subequations}
[3294]230\addtocounter{equation}{-1}
231 the property becomes obvious.
[707]232
[3294]233\subsubsection*{In generalized vertical coordinates}
[707]234
[3294]235Because the weak-slope operator \eqref{Apdx_B4}, \eqref{Apdx_B_ldfiso} is decoupled
236in the ($i$,$z$) and ($j$,$z$) planes, it may be transformed into
237generalized $s$-coordinates in the same way as \eqref{Apdx_B_1} was transformed into
238\eqref{Apdx_B_2}. The resulting operator then takes the simple form
[707]239
[3294]240\begin{equation} \label{Apdx_B_ldfiso_s}
241D^T = \left. \nabla \right|_s \cdot
242           \left[ A^{lT} \;\Re \cdot \left. \nabla \right|_s T  \right] \\
243\;\;\text{where} \;\Re =\left( {{\begin{array}{*{20}c}
244 1 \hfill & 0 \hfill & {-r _1 } \hfill \\
245 0 \hfill & 1 \hfill & {-r _2 } \hfill \\
246 {-r _1 } \hfill & {-r _2 } \hfill & {\varepsilon +r _1
247^2+r _2 ^2} \hfill \\
248\end{array} }} \right),
249\end{equation}
250
251where ($r_1$, $r_2$) are the isopycnal slopes in ($\textbf{i}$,
252$\textbf{j}$) directions, relative to $s$-coordinate surfaces:
253\begin{equation*}
254r_1 =\frac{e_3 }{e_1 }\left( {\frac{\partial \rho }{\partial i}} \right)\left( {\frac{\partial \rho }{\partial s}} \right)^{-1}
255\qquad , \qquad
256r_2 =\frac{e_3 }{e_2 }\left( {\frac{\partial \rho }{\partial j}}
257\right)\left( {\frac{\partial \rho }{\partial s}} \right)^{-1}.
258\end{equation*}
259
260To prove  \eqref{Apdx_B5}  by direct re-expression of \eqref{Apdx_B_ldfiso} is
261straightforward, but laborious. An easier way is first to note (by reversing the
262derivation of \eqref{Apdx_B_2} from \eqref{Apdx_B_1} ) that the
263weak-slope operator may be \emph{exactly} reexpressed in
264non-orthogonal $i,j,\rho$-coordinates as
265
266\begin{equation} \label{Apdx_B5}
267D^T = \left. \nabla \right|_\rho \cdot
268           \left[ A^{lT} \;\Re \cdot \left. \nabla \right|_\rho T  \right] \\
269\;\;\text{where} \;\Re =\left( {{\begin{array}{*{20}c}
270 1 \hfill & 0 \hfill &0 \hfill \\
271 0 \hfill & 1 \hfill & 0 \hfill \\
2720 \hfill & 0 \hfill & \varepsilon \hfill \\
273\end{array} }} \right).
274\end{equation}
275Then direct transformation from $i,j,\rho$-coordinates to
276$i,j,s$-coordinates gives \eqref{Apdx_B_ldfiso_s} immediately.
277
278Note that the weak-slope approximation is only made in
279transforming from the (rotated,orthogonal) isoneutral axes to the
280non-orthogonal $i,j,\rho$-coordinates. The further transformation
281into $i,j,s$-coordinates is exact, whatever the steepness of
282the  $s$-surfaces, in the same way as the transformation of
283horizontal/vertical Laplacian diffusion in $z$-coordinates,
284\eqref{Apdx_B_1} onto $s$-coordinates is exact, however steep the $s$-surfaces.
285
286
[707]287% ================================================================
288% Lateral/Vertical Momentum Diffusive Operators
289% ================================================================
[9393]290\section{Lateral/Vertical momentum diffusive operators}
[707]291\label{Apdx_B_3}
292
[3294]293The second order momentum diffusion operator (Laplacian) in the $z$-coordinate
294is found by applying \eqref{Eq_PE_lap_vector}, the expression for the Laplacian
295of a vector,  to the horizontal velocity vector :
[817]296\begin{align*}
[3294]297\Delta {\textbf{U}}_h
[817]298&=\nabla \left( {\nabla \cdot {\textbf{U}}_h } \right)-
299\nabla \times \left( {\nabla \times {\textbf{U}}_h } \right)    \\
300\\
301&=\left( {{\begin{array}{*{20}c}
[707]302 {\frac{1}{e_1 }\frac{\partial \chi }{\partial i}} \hfill \\
303 {\frac{1}{e_2 }\frac{\partial \chi }{\partial j}} \hfill \\
304 {\frac{1}{e_3 }\frac{\partial \chi }{\partial k}} \hfill \\
305\end{array} }} \right)-\left( {{\begin{array}{*{20}c}
[3294]306 {\frac{1}{e_2 }\frac{\partial \zeta }{\partial j}-\frac{1}{e_3
307}\frac{\partial }{\partial k}\left( {\frac{1}{e_3 }\frac{\partial
[707]308u}{\partial k}} \right)} \hfill \\
[3294]309 {\frac{1}{e_3 }\frac{\partial }{\partial k}\left( {-\frac{1}{e_3
310}\frac{\partial v}{\partial k}} \right)-\frac{1}{e_1 }\frac{\partial \zeta
[707]311}{\partial i}} \hfill \\
[3294]312 {\frac{1}{e_1 e_2 }\left[ {\frac{\partial }{\partial i}\left( {\frac{e_2
313}{e_3 }\frac{\partial u}{\partial k}} \right)-\frac{\partial }{\partial
314j}\left( {-\frac{e_1 }{e_3 }\frac{\partial v}{\partial k}} \right)} \right]}
[707]315\hfill \\
316\end{array} }} \right)
[817]317\\
318\\
319&=\left( {{\begin{array}{*{20}c}
[707]320{\frac{1}{e_1 }\frac{\partial \chi }{\partial i}-\frac{1}{e_2 }\frac{\partial \zeta }{\partial j}} \\
321{\frac{1}{e_2 }\frac{\partial \chi }{\partial j}+\frac{1}{e_1 }\frac{\partial \zeta }{\partial i}} \\
3220 \\
323\end{array} }} \right)
324+\frac{1}{e_3 }
325\left( {{\begin{array}{*{20}c}
326{\frac{\partial }{\partial k}\left( {\frac{1}{e_3 }\frac{\partial u}{\partial k}} \right)} \\
327{\frac{\partial }{\partial k}\left( {\frac{1}{e_3 }\frac{\partial v}{\partial k}} \right)} \\
328{\frac{\partial \chi }{\partial k}-\frac{1}{e_1 e_2 }\left( {\frac{\partial ^2\left( {e_2 \,u} \right)}{\partial i\partial k}+\frac{\partial ^2\left( {e_1 \,v} \right)}{\partial j\partial k}} \right)} \\
329\end{array} }} \right)
[817]330\end{align*}
[3294]331Using \eqref{Eq_PE_div}, the definition of the horizontal divergence, the third
[1223]332componant of the second vector is obviously zero and thus :
[707]333\begin{equation*}
334\Delta {\textbf{U}}_h = \nabla _h \left( \chi \right) - \nabla _h \times \left( \zeta \right) + \frac {1}{e_3 } \frac {\partial }{\partial k} \left( {\frac {1}{e_3 } \frac{\partial {\textbf{ U}}_h }{\partial k}} \right)
335\end{equation*}
336
[3294]337Note that this operator ensures a full separation between the vorticity and horizontal
338divergence fields (see Appendix~\ref{Apdx_C}). It is only equal to a Laplacian
[1223]339applied to each component in Cartesian coordinates, not on the sphere.
[707]340
[3294]341The horizontal/vertical second order (Laplacian type) operator used to diffuse
[1223]342horizontal momentum in the $z$-coordinate therefore takes the following form :
[817]343\begin{equation} \label{Apdx_B_Lap_U}
[3294]344 {\textbf{D}}^{\textbf{U}} =
[817]345     \nabla _h \left( {A^{lm}\;\chi } \right)
346   - \nabla _h \times \left( {A^{lm}\;\zeta \;{\textbf{k}}} \right)
347   + \frac{1}{e_3 }\frac{\partial }{\partial k}\left( {\frac{A^{vm}\;}{e_3 }
[3294]348            \frac{\partial {\rm {\bf U}}_h }{\partial k}} \right) \\
[817]349\end{equation}
[1223]350that is, in expanded form:
[817]351\begin{align*}
[3294]352D^{\textbf{U}}_u
[817]353& = \frac{1}{e_1} \frac{\partial \left( {A^{lm}\chi   } \right)}{\partial i}
354     -\frac{1}{e_2} \frac{\partial \left( {A^{lm}\zeta } \right)}{\partial j}
355     +\frac{1}{e_3} \frac{\partial u}{\partial k}      \\
[3294]356D^{\textbf{U}}_v
[817]357& = \frac{1}{e_2 }\frac{\partial \left( {A^{lm}\chi   } \right)}{\partial j}
358     +\frac{1}{e_1 }\frac{\partial \left( {A^{lm}\zeta } \right)}{\partial i}
359     +\frac{1}{e_3} \frac{\partial v}{\partial k}
360\end{align*}
[707]361
[3294]362Note Bene: introducing a rotation in \eqref{Apdx_B_Lap_U} does not lead to a
363useful expression for the iso/diapycnal Laplacian operator in the $z$-coordinate.
364Similarly, we did not found an expression of practical use for the geopotential
365horizontal/vertical Laplacian operator in the $s$-coordinate. Generally,
366\eqref{Apdx_B_Lap_U} is used in both $z$- and $s$-coordinate systems, that is
[1223]367a Laplacian diffusion is applied on momentum along the coordinate directions.
[6997]368\end{document}
Note: See TracBrowser for help on using the repository browser.