MODULE agrif_lim3_interp !!===================================================================================== !! *** MODULE agrif_lim3_interp *** !! Nesting module : interp surface ice boundary condition from a parent grid !! Sea-Ice model : LIM 3.6 Sea ice model time-stepping !!===================================================================================== !! History : 2.0 ! 04-2008 (F. Dupont) initial version !! 3.4 ! 09-2012 (R. Benshila, C. Herbaut) update and EVP !! 3.6 ! 05-2016 (C. Rousset) Add LIM3 compatibility !!---------------------------------------------------------------------- #if defined key_agrif && defined key_lim3 !!---------------------------------------------------------------------- !! 'key_lim3' : LIM 3.6 sea-ice model !! 'key_agrif' : AGRIF library !!---------------------------------------------------------------------- !! agrif_interp_lim3 : interpolation of ice at "after" sea-ice time step !! agrif_interp_u_ice : atomic routine to interpolate u_ice !! agrif_interp_v_ice : atomic routine to interpolate v_ice !! agrif_interp_tra_ice : atomic routine to interpolate ice properties !!---------------------------------------------------------------------- USE par_oce USE dom_oce USE sbc_oce USE ice USE agrif_ice IMPLICIT NONE PRIVATE PUBLIC agrif_interp_lim3 ! called by agrif_user.F90 !!---------------------------------------------------------------------- !! NEMO/NST 3.6 , NEMO Consortium (2016) !! $Id: agrif_lim3_interp.F90 6204 2016-01-04 13:47:06Z cetlod $ !! Software governed by the CeCILL licence (NEMOGCM/NEMO_CeCILL.txt) !!---------------------------------------------------------------------- CONTAINS SUBROUTINE agrif_interp_lim3( cd_type, kiter, kitermax ) !!----------------------------------------------------------------------- !! *** ROUTINE agrif_rhg_lim3 *** !! !! ** Method : simple call to atomic routines using stored values to !! fill the boundaries depending of the position of the point and !! computing factor for time interpolation !!----------------------------------------------------------------------- CHARACTER(len=1), INTENT(in ) :: cd_type INTEGER , INTENT(in ), OPTIONAL :: kiter, kitermax !! REAL(wp) :: zbeta ! local scalar !!----------------------------------------------------------------------- ! IF( Agrif_Root() .OR. nn_ice==0 ) RETURN ! do not interpolate if inside Parent domain or if child domain does not have ice ! SELECT CASE( cd_type ) CASE('U','V') IF( PRESENT( kiter ) ) THEN ! interpolation at the child sub-time step (only for ice rheology) zbeta = ( REAL(lim_nbstep) - REAL(kitermax - kiter) / REAL(kitermax) ) / & & ( Agrif_Rhot() * REAL(Agrif_Parent(nn_fsbc)) / REAL(nn_fsbc) ) ELSE ! interpolation at the child time step zbeta = REAL(lim_nbstep) / ( Agrif_Rhot() * REAL(Agrif_Parent(nn_fsbc)) / REAL(nn_fsbc) ) ENDIF CASE('T') zbeta = REAL(lim_nbstep) / ( Agrif_Rhot() * REAL(Agrif_Parent(nn_fsbc)) / REAL(nn_fsbc) ) END SELECT ! Agrif_SpecialValue = -9999. Agrif_UseSpecialValue = .TRUE. SELECT CASE( cd_type ) CASE('U') ; CALL Agrif_Bc_variable( u_ice_id , procname=interp_u_ice , calledweight=zbeta ) CASE('V') ; CALL Agrif_Bc_variable( v_ice_id , procname=interp_v_ice , calledweight=zbeta ) CASE('T') ; CALL Agrif_Bc_variable( tra_ice_id, procname=interp_tra_ice, calledweight=zbeta ) END SELECT Agrif_SpecialValue = 0._wp Agrif_UseSpecialValue = .FALSE. ! END SUBROUTINE agrif_interp_lim3 SUBROUTINE interp_u_ice( ptab, i1, i2, j1, j2, before ) !!----------------------------------------------------------------------- !! *** ROUTINE interp_u_ice *** !! !! i1 i2 j1 j2 are the index of the boundaries parent(when before) and child (when after) !! To solve issues when parent grid is "land" masked but not all the corresponding child !! grid points, put Agrif_SpecialValue WHERE the parent grid is masked. !! The child solution will be found in the 9(?) points around !!----------------------------------------------------------------------- INTEGER , INTENT(in ) :: i1, i2, j1, j2 REAL(wp), DIMENSION(i1:i2,j1:j2), INTENT(inout) :: ptab LOGICAL , INTENT(in ) :: before !! REAL(wp) :: zrhoy ! local scalar !!----------------------------------------------------------------------- ! IF( before ) THEN ! parent grid ptab(:,:) = e2u(i1:i2,j1:j2) * u_ice(i1:i2,j1:j2) WHERE( umask(i1:i2,j1:j2,1) == 0. ) ptab(i1:i2,j1:j2) = Agrif_SpecialValue ELSE ! child grid zrhoy = Agrif_Rhoy() u_ice(i1:i2,j1:j2) = ptab(i1:i2,j1:j2) / ( e2u(i1:i2,j1:j2) * zrhoy ) * umask(i1:i2,j1:j2,1) ENDIF ! END SUBROUTINE interp_u_ice SUBROUTINE interp_v_ice( ptab, i1, i2, j1, j2, before ) !!----------------------------------------------------------------------- !! *** ROUTINE interp_v_ice *** !! !! i1 i2 j1 j2 are the index of the boundaries parent(when before) and child (when after) !! To solve issues when parent grid is "land" masked but not all the corresponding child !! grid points, put Agrif_SpecialValue WHERE the parent grid is masked. !! The child solution will be found in the 9(?) points around !!----------------------------------------------------------------------- INTEGER , INTENT(in ) :: i1, i2, j1, j2 REAL(wp), DIMENSION(i1:i2,j1:j2), INTENT(inout) :: ptab LOGICAL , INTENT(in ) :: before !! REAL(wp) :: zrhox ! local scalar !!----------------------------------------------------------------------- ! IF( before ) THEN ! parent grid ptab(:,:) = e1v(i1:i2,j1:j2) * v_ice(i1:i2,j1:j2) WHERE( vmask(i1:i2,j1:j2,1) == 0. ) ptab(i1:i2,j1:j2) = Agrif_SpecialValue ELSE ! child grid zrhox = Agrif_Rhox() v_ice(i1:i2,j1:j2) = ptab(i1:i2,j1:j2) / ( e1v(i1:i2,j1:j2) * zrhox ) * vmask(i1:i2,j1:j2,1) ENDIF ! END SUBROUTINE interp_v_ice SUBROUTINE interp_tra_ice( ptab, i1, i2, j1, j2, k1, k2, before, nb, ndir ) !!----------------------------------------------------------------------- !! *** ROUTINE interp_tra_ice *** !! !! i1 i2 j1 j2 are the index of the boundaries parent(when before) and child (when after) !! To solve issues when parent grid is "land" masked but not all the corresponding child !! grid points, put Agrif_SpecialValue WHERE the parent grid is masked. !! The child solution will be found in the 9(?) points around !!----------------------------------------------------------------------- REAL(wp), DIMENSION(i1:i2,j1:j2,k1:k2), INTENT(inout) :: ptab INTEGER , INTENT(in ) :: i1, i2, j1, j2, k1, k2 LOGICAL , INTENT(in ) :: before INTEGER , INTENT(in ) :: nb, ndir !! INTEGER :: ji, jj, jk, jl, jm INTEGER :: imin, imax, jmin, jmax LOGICAL :: western_side, eastern_side, northern_side, southern_side REAL(wp) :: zrhox, z1, z2, z3, z4, z5, z6, z7 REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: ztab !!----------------------------------------------------------------------- ! tracers are not multiplied by grid cell here => before: * e1e2t ; after: * r1_e1e2t / rhox / rhoy ! and it is ok since we conserve tracers (same as in the ocean). ALLOCATE( ztab(SIZE(a_i,1),SIZE(a_i,2),SIZE(ptab,3)) ) IF( before ) THEN ! parent grid jm = 1 DO jl = 1, jpl ptab(i1:i2,j1:j2,jm ) = a_i (i1:i2,j1:j2,jl) ptab(i1:i2,j1:j2,jm+1) = v_i (i1:i2,j1:j2,jl) ptab(i1:i2,j1:j2,jm+2) = v_s (i1:i2,j1:j2,jl) ptab(i1:i2,j1:j2,jm+3) = sv_i(i1:i2,j1:j2,jl) ptab(i1:i2,j1:j2,jm+4) = oa_i(i1:i2,j1:j2,jl) ptab(i1:i2,j1:j2,jm+5) = a_ip(i1:i2,j1:j2,jl) ptab(i1:i2,j1:j2,jm+6) = v_ip(i1:i2,j1:j2,jl) ptab(i1:i2,j1:j2,jm+7) = t_su(i1:i2,j1:j2,jl) jm = jm + 8 DO jk = 1, nlay_s ptab(i1:i2,j1:j2,jm) = e_s(i1:i2,j1:j2,jk,jl) ; jm = jm + 1 END DO DO jk = 1, nlay_i ptab(i1:i2,j1:j2,jm) = e_i(i1:i2,j1:j2,jk,jl) ; jm = jm + 1 END DO END DO DO jk = k1, k2 WHERE( tmask(i1:i2,j1:j2,1) == 0._wp ) ptab(i1:i2,j1:j2,jk) = Agrif_SpecialValue END DO ! ELSE ! child grid ! IF( nbghostcells > 1 ) THEN ! ==> The easiest interpolation is used ! jm = 1 DO jl = 1, jpl ! DO jj = j1, j2 DO ji = i1, i2 a_i (ji,jj,jl) = ptab(ji,jj,jm ) * tmask(ji,jj,1) v_i (ji,jj,jl) = ptab(ji,jj,jm+1) * tmask(ji,jj,1) v_s (ji,jj,jl) = ptab(ji,jj,jm+2) * tmask(ji,jj,1) sv_i(ji,jj,jl) = ptab(ji,jj,jm+3) * tmask(ji,jj,1) oa_i(ji,jj,jl) = ptab(ji,jj,jm+4) * tmask(ji,jj,1) a_ip(ji,jj,jl) = ptab(ji,jj,jm+5) * tmask(ji,jj,1) v_ip(ji,jj,jl) = ptab(ji,jj,jm+6) * tmask(ji,jj,1) t_su(ji,jj,jl) = ptab(ji,jj,jm+7) * tmask(ji,jj,1) END DO END DO jm = jm + 8 ! DO jk = 1, nlay_s e_s(i1:i2,j1:j2,jk,jl) = ptab(:,:,jm) * tmask(i1:i2,j1:j2,1) jm = jm + 1 END DO ! DO jk = 1, nlay_i e_i(i1:i2,j1:j2,jk,jl) = ptab(:,:,jm) * tmask(i1:i2,j1:j2,1) jm = jm + 1 END DO ! END DO ! ELSE ! ==> complex interpolation (only one ghost cell available) !! Use a more complex interpolation since we mix solutions over a couple of grid points !! it is advised to use it for fields modified by high order schemes (e.g. advection UM5...) !! clem: for some reason (I don't know why), the following lines do not work !! with mpp (or in realistic configurations?). It makes the model crash ! I think there is an issue with Agrif_SpecialValue here (not taken into account properly) ! record ztab jm = 1 DO jl = 1, jpl ztab(:,:,jm ) = a_i (:,:,jl) ztab(:,:,jm+1) = v_i (:,:,jl) ztab(:,:,jm+2) = v_s (:,:,jl) ztab(:,:,jm+3) = sv_i(:,:,jl) ztab(:,:,jm+4) = oa_i(:,:,jl) ztab(:,:,jm+5) = a_ip(:,:,jl) ztab(:,:,jm+6) = v_ip(:,:,jl) ztab(:,:,jm+7) = t_su(:,:,jl) jm = jm + 8 DO jk = 1, nlay_s ztab(:,:,jm) = e_s(:,:,jk,jl) jm = jm + 1 END DO DO jk = 1, nlay_i ztab(:,:,jm) = e_i(:,:,jk,jl) jm = jm + 1 END DO ! END DO ! ! borders of the domain western_side = (nb == 1).AND.(ndir == 1) ; eastern_side = (nb == 1).AND.(ndir == 2) southern_side = (nb == 2).AND.(ndir == 1) ; northern_side = (nb == 2).AND.(ndir == 2) ! ! spatial smoothing zrhox = Agrif_Rhox() z1 = ( zrhox - 1. ) * 0.5 z3 = ( zrhox - 1. ) / ( zrhox + 1. ) z6 = 2. * ( zrhox - 1. ) / ( zrhox + 1. ) z7 = - ( zrhox - 1. ) / ( zrhox + 3. ) z2 = 1. - z1 z4 = 1. - z3 z5 = 1. - z6 - z7 ! ! Remove corners imin = i1 ; imax = i2 ; jmin = j1 ; jmax = j2 IF( (nbondj == -1) .OR. (nbondj == 2) ) jmin = 3 IF( (nbondj == +1) .OR. (nbondj == 2) ) jmax = nlcj-2 IF( (nbondi == -1) .OR. (nbondi == 2) ) imin = 3 IF( (nbondi == +1) .OR. (nbondi == 2) ) imax = nlci-2 ! smoothed fields IF( eastern_side ) THEN ztab(nlci,j1:j2,:) = z1 * ptab(nlci,j1:j2,:) + z2 * ptab(nlci-1,j1:j2,:) DO jj = jmin, jmax rswitch = 0. IF( u_ice(nlci-2,jj) > 0._wp ) rswitch = 1. ztab(nlci-1,jj,:) = ( 1. - umask(nlci-2,jj,1) ) * ztab(nlci,jj,:) & & + umask(nlci-2,jj,1) * & & ( ( 1. - rswitch ) * ( z4 * ztab(nlci,jj,:) + z3 * ztab(nlci-2,jj,:) ) & & + rswitch * ( z6 * ztab(nlci-2,jj,:) + z5 * ztab(nlci,jj,:) + z7 * ztab(nlci-3,jj,:) ) ) ztab(nlci-1,jj,:) = ztab(nlci-1,jj,:) * tmask(nlci-1,jj,1) END DO ENDIF ! IF( northern_side ) THEN ztab(i1:i2,nlcj,:) = z1 * ptab(i1:i2,nlcj,:) + z2 * ptab(i1:i2,nlcj-1,:) DO ji = imin, imax rswitch = 0. IF( v_ice(ji,nlcj-2) > 0._wp ) rswitch = 1. ztab(ji,nlcj-1,:) = ( 1. - vmask(ji,nlcj-2,1) ) * ztab(ji,nlcj,:) & & + vmask(ji,nlcj-2,1) * & & ( ( 1. - rswitch ) * ( z4 * ztab(ji,nlcj,:) + z3 * ztab(ji,nlcj-2,:) ) & & + rswitch * ( z6 * ztab(ji,nlcj-2,:) + z5 * ztab(ji,nlcj,:) + z7 * ztab(ji,nlcj-3,:) ) ) ztab(ji,nlcj-1,:) = ztab(ji,nlcj-1,:) * tmask(ji,nlcj-1,1) END DO END IF ! IF( western_side) THEN ztab(1,j1:j2,:) = z1 * ptab(1,j1:j2,:) + z2 * ptab(2,j1:j2,:) DO jj = jmin, jmax rswitch = 0. IF( u_ice(2,jj) < 0._wp ) rswitch = 1. ztab(2,jj,:) = ( 1. - umask(2,jj,1) ) * ztab(1,jj,:) & & + umask(2,jj,1) * & & ( ( 1. - rswitch ) * ( z4 * ztab(1,jj,:) + z3 * ztab(3,jj,:) ) & & + rswitch * ( z6 * ztab(3,jj,:) + z5 * ztab(1,jj,:) + z7 * ztab(4,jj,:) ) ) ztab(2,jj,:) = ztab(2,jj,:) * tmask(2,jj,1) END DO ENDIF ! IF( southern_side ) THEN ztab(i1:i2,1,:) = z1 * ptab(i1:i2,1,:) + z2 * ptab(i1:i2,2,:) DO ji = imin, imax rswitch = 0. IF( v_ice(ji,2) < 0._wp ) rswitch = 1. ztab(ji,2,:) = ( 1. - vmask(ji,2,1) ) * ztab(ji,1,:) & & + vmask(ji,2,1) * & & ( ( 1. - rswitch ) * ( z4 * ztab(ji,1,:) + z3 * ztab(ji,3,:) ) & & + rswitch * ( z6 * ztab(ji,3,:) + z5 * ztab(ji,1,:) + z7 * ztab(ji,4,:) ) ) ztab(ji,2,:) = ztab(ji,2,:) * tmask(ji,2,1) END DO END IF ! ! Treatment of corners IF( (eastern_side) .AND. ((nbondj == -1).OR.(nbondj == 2)) ) ztab(nlci-1,2,:) = ptab(nlci-1,2,:) ! East south IF( (eastern_side) .AND. ((nbondj == 1).OR.(nbondj == 2)) ) ztab(nlci-1,nlcj-1,:) = ptab(nlci-1,nlcj-1,:) ! East north IF( (western_side) .AND. ((nbondj == -1).OR.(nbondj == 2)) ) ztab(2,2,:) = ptab(2,2,:) ! West south IF( (western_side) .AND. ((nbondj == 1).OR.(nbondj == 2)) ) ztab(2,nlcj-1,:) = ptab(2,nlcj-1,:) ! West north ! retrieve ice tracers jm = 1 DO jl = 1, jpl ! DO jj = j1, j2 DO ji = i1, i2 a_i (ji,jj,jl) = ztab(ji,jj,jm ) * tmask(ji,jj,1) v_i (ji,jj,jl) = ztab(ji,jj,jm+1) * tmask(ji,jj,1) v_s (ji,jj,jl) = ztab(ji,jj,jm+2) * tmask(ji,jj,1) sv_i(ji,jj,jl) = ztab(ji,jj,jm+3) * tmask(ji,jj,1) oa_i(ji,jj,jl) = ztab(ji,jj,jm+4) * tmask(ji,jj,1) a_ip(ji,jj,jl) = ztab(ji,jj,jm+5) * tmask(ji,jj,1) v_ip(ji,jj,jl) = ztab(ji,jj,jm+6) * tmask(ji,jj,1) t_su(ji,jj,jl) = ztab(ji,jj,jm+7) * tmask(ji,jj,1) END DO END DO jm = jm + 8 ! DO jk = 1, nlay_s e_s(i1:i2,j1:j2,jk,jl) = ztab(i1:i2,j1:j2,jm) * tmask(i1:i2,j1:j2,1) jm = jm + 1 END DO ! DO jk = 1, nlay_i e_i(i1:i2,j1:j2,jk,jl) = ztab(i1:i2,j1:j2,jm) * tmask(i1:i2,j1:j2,1) jm = jm + 1 END DO ! END DO ENDIF ! nbghostcells=1 ! integrated values vt_i (i1:i2,j1:j2) = SUM( v_i(i1:i2,j1:j2,:), dim=3 ) vt_s (i1:i2,j1:j2) = SUM( v_s(i1:i2,j1:j2,:), dim=3 ) at_i (i1:i2,j1:j2) = SUM( a_i(i1:i2,j1:j2,:), dim=3 ) et_s(i1:i2,j1:j2) = SUM( SUM( e_s(i1:i2,j1:j2,:,:), dim=4 ), dim=3 ) et_i(i1:i2,j1:j2) = SUM( SUM( e_i(i1:i2,j1:j2,:,:), dim=4 ), dim=3 ) ! ENDIF DEALLOCATE( ztab ) ! END SUBROUTINE interp_tra_ice #else !!---------------------------------------------------------------------- !! Empty module no sea-ice !!---------------------------------------------------------------------- CONTAINS SUBROUTINE agrif_lim3_interp_empty WRITE(*,*) 'agrif_lim3_interp : You should not have seen this print! error?' END SUBROUTINE agrif_lim3_interp_empty #endif !!====================================================================== END MODULE agrif_lim3_interp