MODULE zdftmx !!======================================================================== !! *** MODULE zdftmx *** !! Ocean physics: Internal gravity wave-driven vertical mixing !!======================================================================== !! History : 1.0 ! 2004-04 (L. Bessieres, G. Madec) Original code !! - ! 2006-08 (A. Koch-Larrouy) Indonesian strait !! 3.3 ! 2010-10 (C. Ethe, G. Madec) reorganisation of initialisation phase !! 3.6 ! 2016-03 (C. de Lavergne) New param: internal wave-driven mixing !! 4.0 ! 2017-04 (G. Madec) Remove the old tidal mixing param. and key zdftmx(_new) !!---------------------------------------------------------------------- !!---------------------------------------------------------------------- !! zdf_tmx : global momentum & tracer Kz with wave induced Kz !! zdf_tmx_init : global momentum & tracer Kz with wave induced Kz !!---------------------------------------------------------------------- USE oce ! ocean dynamics and tracers variables USE dom_oce ! ocean space and time domain variables USE zdf_oce ! ocean vertical physics variables USE zdfddm ! ocean vertical physics: double diffusive mixing USE lbclnk ! ocean lateral boundary conditions (or mpp link) USE eosbn2 ! ocean equation of state USE phycst ! physical constants USE prtctl ! Print control USE in_out_manager ! I/O manager USE iom ! I/O Manager USE lib_mpp ! MPP library USE wrk_nemo ! work arrays USE timing ! Timing USE lib_fortran ! Fortran utilities (allows no signed zero when 'key_nosignedzero' defined) IMPLICIT NONE PRIVATE PUBLIC zdf_tmx ! called in step module PUBLIC zdf_tmx_init ! called in nemogcm module PUBLIC zdf_tmx_alloc ! called in nemogcm module ! !!* Namelist namzdf_tmx : internal wave-driven mixing * INTEGER :: nn_zpyc ! pycnocline-intensified mixing energy proportional to N (=1) or N^2 (=2) LOGICAL :: ln_mevar ! variable (=T) or constant (=F) mixing efficiency LOGICAL :: ln_tsdiff ! account for differential T/S wave-driven mixing (=T) or not (=F) REAL(wp) :: r1_6 = 1._wp / 6._wp REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:) :: ebot_tmx ! power available from high-mode wave breaking (W/m2) REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:) :: epyc_tmx ! power available from low-mode, pycnocline-intensified wave breaking (W/m2) REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:) :: ecri_tmx ! power available from low-mode, critical slope wave breaking (W/m2) REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:) :: hbot_tmx ! WKB decay scale for high-mode energy dissipation (m) REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:) :: hcri_tmx ! decay scale for low-mode critical slope dissipation (m) REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: emix_tmx ! local energy density available for mixing (W/kg) REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: bflx_tmx ! buoyancy flux Kz * N^2 (W/kg) REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:) :: pcmap_tmx ! vertically integrated buoyancy flux (W/m2) REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: zav_ratio ! S/T diffusivity ratio (only for ln_tsdiff=T) REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: zav_wave ! Internal wave-induced diffusivity !! * Substitutions # include "vectopt_loop_substitute.h90" !!---------------------------------------------------------------------- !! NEMO/OPA 4.0 , NEMO Consortium (2016) !! $Id$ !! Software governed by the CeCILL licence (NEMOGCM/NEMO_CeCILL.txt) !!---------------------------------------------------------------------- CONTAINS INTEGER FUNCTION zdf_tmx_alloc() !!---------------------------------------------------------------------- !! *** FUNCTION zdf_tmx_alloc *** !!---------------------------------------------------------------------- ALLOCATE( ebot_tmx(jpi,jpj), epyc_tmx(jpi,jpj), ecri_tmx(jpi,jpj) , & & hbot_tmx(jpi,jpj), hcri_tmx(jpi,jpj), emix_tmx(jpi,jpj,jpk), & & bflx_tmx(jpi,jpj,jpk), pcmap_tmx(jpi,jpj), zav_ratio(jpi,jpj,jpk), & & zav_wave(jpi,jpj,jpk), STAT=zdf_tmx_alloc ) ! IF( lk_mpp ) CALL mpp_sum ( zdf_tmx_alloc ) IF( zdf_tmx_alloc /= 0 ) CALL ctl_warn('zdf_tmx_alloc: failed to allocate arrays') END FUNCTION zdf_tmx_alloc SUBROUTINE zdf_tmx( kt ) !!---------------------------------------------------------------------- !! *** ROUTINE zdf_tmx *** !! !! ** Purpose : add to the vertical mixing coefficients the effect of !! breaking internal waves. !! !! ** Method : - internal wave-driven vertical mixing is given by: !! Kz_wave = min( 100 cm2/s, f( Reb = emix_tmx /( Nu * N^2 ) ) !! where emix_tmx is the 3D space distribution of the wave-breaking !! energy and Nu the molecular kinematic viscosity. !! The function f(Reb) is linear (constant mixing efficiency) !! if the namelist parameter ln_mevar = F and nonlinear if ln_mevar = T. !! !! - Compute emix_tmx, the 3D power density that allows to compute !! Reb and therefrom the wave-induced vertical diffusivity. !! This is divided into three components: !! 1. Bottom-intensified low-mode dissipation at critical slopes !! emix_tmx(z) = ( ecri_tmx / rau0 ) * EXP( -(H-z)/hcri_tmx ) !! / ( 1. - EXP( - H/hcri_tmx ) ) * hcri_tmx !! where hcri_tmx is the characteristic length scale of the bottom !! intensification, ecri_tmx a map of available power, and H the ocean depth. !! 2. Pycnocline-intensified low-mode dissipation !! emix_tmx(z) = ( epyc_tmx / rau0 ) * ( sqrt(rn2(z))^nn_zpyc ) !! / SUM( sqrt(rn2(z))^nn_zpyc * e3w(z) ) !! where epyc_tmx is a map of available power, and nn_zpyc !! is the chosen stratification-dependence of the internal wave !! energy dissipation. !! 3. WKB-height dependent high mode dissipation !! emix_tmx(z) = ( ebot_tmx / rau0 ) * rn2(z) * EXP(-z_wkb(z)/hbot_tmx) !! / SUM( rn2(z) * EXP(-z_wkb(z)/hbot_tmx) * e3w(z) ) !! where hbot_tmx is the characteristic length scale of the WKB bottom !! intensification, ebot_tmx is a map of available power, and z_wkb is the !! WKB-stretched height above bottom defined as !! z_wkb(z) = H * SUM( sqrt(rn2(z'>=z)) * e3w(z'>=z) ) !! / SUM( sqrt(rn2(z')) * e3w(z') ) !! !! - update the model vertical eddy viscosity and diffusivity: !! avt = avt + av_wave !! avm = avm + av_wave !! avmu = avmu + mi(av_wave) !! avmv = avmv + mj(av_wave) !! !! - if namelist parameter ln_tsdiff = T, account for differential mixing: !! avs = avt + av_wave * diffusivity_ratio(Reb) !! !! ** Action : - Define emix_tmx used to compute internal wave-induced mixing !! - avt, avs, avm, avmu, avmv increased by internal wave-driven mixing !! !! References : de Lavergne et al. 2015, JPO; 2016, in prep. !!---------------------------------------------------------------------- INTEGER, INTENT(in) :: kt ! ocean time-step ! INTEGER :: ji, jj, jk ! dummy loop indices REAL(wp) :: ztpc ! scalar workspace REAL(wp), DIMENSION(:,:) , POINTER :: zfact ! Used for vertical structure REAL(wp), DIMENSION(:,:) , POINTER :: zhdep ! Ocean depth REAL(wp), DIMENSION(:,:,:), POINTER :: zwkb ! WKB-stretched height above bottom REAL(wp), DIMENSION(:,:,:), POINTER :: zweight ! Weight for high mode vertical distribution REAL(wp), DIMENSION(:,:,:), POINTER :: znu_t ! Molecular kinematic viscosity (T grid) REAL(wp), DIMENSION(:,:,:), POINTER :: znu_w ! Molecular kinematic viscosity (W grid) REAL(wp), DIMENSION(:,:,:), POINTER :: zReb ! Turbulence intensity parameter !!---------------------------------------------------------------------- ! IF( nn_timing == 1 ) CALL timing_start('zdf_tmx') ! CALL wrk_alloc( jpi,jpj, zfact, zhdep ) CALL wrk_alloc( jpi,jpj,jpk, zwkb, zweight, znu_t, znu_w, zReb ) ! ! ----------------------------- ! ! ! Internal wave-driven mixing ! (compute zav_wave) ! ! ----------------------------- ! ! ! !* Critical slope mixing: distribute energy over the time-varying ocean depth, ! using an exponential decay from the seafloor. DO jj = 1, jpj ! part independent of the level DO ji = 1, jpi zhdep(ji,jj) = gdepw_0(ji,jj,mbkt(ji,jj)+1) ! depth of the ocean zfact(ji,jj) = rau0 * ( 1._wp - EXP( -zhdep(ji,jj) / hcri_tmx(ji,jj) ) ) IF( zfact(ji,jj) /= 0 ) zfact(ji,jj) = ecri_tmx(ji,jj) / zfact(ji,jj) END DO END DO DO jk = 2, jpkm1 ! complete with the level-dependent part emix_tmx(:,:,jk) = zfact(:,:) * ( EXP( ( gde3w_n(:,:,jk ) - zhdep(:,:) ) / hcri_tmx(:,:) ) & & - EXP( ( gde3w_n(:,:,jk-1) - zhdep(:,:) ) / hcri_tmx(:,:) ) ) * wmask(:,:,jk) & !!gm delta(gde3w_n) = e3t_n !! Please verify the grid-point position w versus t-point & / ( gde3w_n(:,:,jk) - gde3w_n(:,:,jk-1) ) END DO ! !* Pycnocline-intensified mixing: distribute energy over the time-varying ! !* ocean depth as proportional to sqrt(rn2)^nn_zpyc SELECT CASE ( nn_zpyc ) CASE ( 1 ) ! Dissipation scales as N (recommended) zfact(:,:) = 0._wp DO jk = 2, jpkm1 ! part independent of the level zfact(:,:) = zfact(:,:) + e3w_n(:,:,jk) * SQRT( MAX( 0._wp, rn2(:,:,jk) ) ) * wmask(:,:,jk) END DO DO jj = 1, jpj DO ji = 1, jpi IF( zfact(ji,jj) /= 0 ) zfact(ji,jj) = epyc_tmx(ji,jj) / ( rau0 * zfact(ji,jj) ) END DO END DO DO jk = 2, jpkm1 ! complete with the level-dependent part emix_tmx(:,:,jk) = emix_tmx(:,:,jk) + zfact(:,:) * SQRT( MAX( 0._wp, rn2(:,:,jk) ) ) * wmask(:,:,jk) END DO CASE ( 2 ) ! Dissipation scales as N^2 zfact(:,:) = 0._wp DO jk = 2, jpkm1 ! part independent of the level zfact(:,:) = zfact(:,:) + e3w_n(:,:,jk) * MAX( 0._wp, rn2(:,:,jk) ) * wmask(:,:,jk) END DO DO jj= 1, jpj DO ji = 1, jpi IF( zfact(ji,jj) /= 0 ) zfact(ji,jj) = epyc_tmx(ji,jj) / ( rau0 * zfact(ji,jj) ) END DO END DO DO jk = 2, jpkm1 ! complete with the level-dependent part emix_tmx(:,:,jk) = emix_tmx(:,:,jk) + zfact(:,:) * MAX( 0._wp, rn2(:,:,jk) ) * wmask(:,:,jk) END DO END SELECT ! !* WKB-height dependent mixing: distribute energy over the time-varying ! !* ocean depth as proportional to rn2 * exp(-z_wkb/rn_hbot) zwkb(:,:,:) = 0._wp zfact(:,:) = 0._wp DO jk = 2, jpkm1 zfact(:,:) = zfact(:,:) + e3w_n(:,:,jk) * SQRT( MAX( 0._wp, rn2(:,:,jk) ) ) * wmask(:,:,jk) zwkb(:,:,jk) = zfact(:,:) END DO DO jk = 2, jpkm1 DO jj = 1, jpj DO ji = 1, jpi IF( zfact(ji,jj) /= 0 ) zwkb(ji,jj,jk) = zhdep(ji,jj) * ( zfact(ji,jj) - zwkb(ji,jj,jk) ) & & * tmask(ji,jj,jk) / zfact(ji,jj) END DO END DO END DO zwkb(:,:,1) = zhdep(:,:) * tmask(:,:,1) zweight(:,:,:) = 0._wp DO jk = 2, jpkm1 zweight(:,:,jk) = MAX( 0._wp, rn2(:,:,jk) ) * hbot_tmx(:,:) * wmask(:,:,jk) & & * ( EXP( -zwkb(:,:,jk) / hbot_tmx(:,:) ) - EXP( -zwkb(:,:,jk-1) / hbot_tmx(:,:) ) ) END DO zfact(:,:) = 0._wp DO jk = 2, jpkm1 ! part independent of the level zfact(:,:) = zfact(:,:) + zweight(:,:,jk) END DO DO jj = 1, jpj DO ji = 1, jpi IF( zfact(ji,jj) /= 0 ) zfact(ji,jj) = ebot_tmx(ji,jj) / ( rau0 * zfact(ji,jj) ) END DO END DO DO jk = 2, jpkm1 ! complete with the level-dependent part emix_tmx(:,:,jk) = emix_tmx(:,:,jk) + zweight(:,:,jk) * zfact(:,:) * wmask(:,:,jk) & & / ( gde3w_n(:,:,jk) - gde3w_n(:,:,jk-1) ) END DO ! Calculate molecular kinematic viscosity znu_t(:,:,:) = 1.e-4_wp * ( 17.91_wp - 0.53810_wp * tsn(:,:,:,jp_tem) + 0.00694_wp * tsn(:,:,:,jp_tem) * tsn(:,:,:,jp_tem) & & + 0.02305_wp * tsn(:,:,:,jp_sal) ) * tmask(:,:,:) * r1_rau0 DO jk = 2, jpkm1 znu_w(:,:,jk) = 0.5_wp * ( znu_t(:,:,jk-1) + znu_t(:,:,jk) ) * wmask(:,:,jk) END DO ! Calculate turbulence intensity parameter Reb DO jk = 2, jpkm1 zReb(:,:,jk) = emix_tmx(:,:,jk) / MAX( 1.e-20_wp, znu_w(:,:,jk) * rn2(:,:,jk) ) END DO ! Define internal wave-induced diffusivity DO jk = 2, jpkm1 zav_wave(:,:,jk) = znu_w(:,:,jk) * zReb(:,:,jk) * r1_6 ! This corresponds to a constant mixing efficiency of 1/6 END DO IF( ln_mevar ) THEN ! Variable mixing efficiency case : modify zav_wave in the DO jk = 2, jpkm1 ! energetic (Reb > 480) and buoyancy-controlled (Reb <10.224 ) regimes DO jj = 1, jpj DO ji = 1, jpi IF( zReb(ji,jj,jk) > 480.00_wp ) THEN zav_wave(ji,jj,jk) = 3.6515_wp * znu_w(ji,jj,jk) * SQRT( zReb(ji,jj,jk) ) ELSEIF( zReb(ji,jj,jk) < 10.224_wp ) THEN zav_wave(ji,jj,jk) = 0.052125_wp * znu_w(ji,jj,jk) * zReb(ji,jj,jk) * SQRT( zReb(ji,jj,jk) ) ENDIF END DO END DO END DO ENDIF DO jk = 2, jpkm1 ! Bound diffusivity by molecular value and 100 cm2/s zav_wave(:,:,jk) = MIN( MAX( 1.4e-7_wp, zav_wave(:,:,jk) ), 1.e-2_wp ) * wmask(:,:,jk) END DO IF( kt == nit000 ) THEN !* Control print at first time-step: diagnose the energy consumed by zav_wave ztpc = 0._wp !!gm used of glosum 3D.... DO jk = 2, jpkm1 DO jj = 1, jpj DO ji = 1, jpi ztpc = ztpc + e3w_n(ji,jj,jk) * e1e2t(ji,jj) & & * MAX( 0._wp, rn2(ji,jj,jk) ) * zav_wave(ji,jj,jk) * wmask(ji,jj,jk) * tmask_i(ji,jj) END DO END DO END DO IF( lk_mpp ) CALL mpp_sum( ztpc ) ztpc = rau0 * ztpc ! Global integral of rauo * Kz * N^2 = power contributing to mixing IF(lwp) THEN WRITE(numout,*) WRITE(numout,*) 'zdf_tmx : Internal wave-driven mixing (tmx)' WRITE(numout,*) '~~~~~~~ ' WRITE(numout,*) WRITE(numout,*) ' Total power consumption by av_wave: ztpc = ', ztpc * 1.e-12_wp, 'TW' ENDIF ENDIF ! ! ----------------------- ! ! ! Update mixing coefs ! ! ! ----------------------- ! ! IF( ln_tsdiff ) THEN !* Option for differential mixing of salinity and temperature DO jk = 2, jpkm1 ! Calculate S/T diffusivity ratio as a function of Reb DO jj = 1, jpj DO ji = 1, jpi zav_ratio(ji,jj,jk) = ( 0.505_wp + 0.495_wp * & & TANH( 0.92_wp * ( LOG10( MAX( 1.e-20_wp, zReb(ji,jj,jk) * 5._wp * r1_6 ) ) - 0.60_wp ) ) & & ) * wmask(ji,jj,jk) END DO END DO END DO CALL iom_put( "av_ratio", zav_ratio ) DO jk = 2, jpkm1 !* update momentum & tracer diffusivity with wave-driven mixing avs(:,:,jk) = avs(:,:,jk) + zav_wave(:,:,jk) * zav_ratio(:,:,jk) avt(:,:,jk) = avt(:,:,jk) + zav_wave(:,:,jk) avm(:,:,jk) = avm(:,:,jk) + zav_wave(:,:,jk) END DO ! ELSE !* update momentum & tracer diffusivity with wave-driven mixing DO jk = 2, jpkm1 avs(:,:,jk) = avs(:,:,jk) + zav_wave(:,:,jk) avt(:,:,jk) = avt(:,:,jk) + zav_wave(:,:,jk) avm(:,:,jk) = avm(:,:,jk) + zav_wave(:,:,jk) END DO ENDIF DO jk = 2, jpkm1 !* update momentum diffusivity at wu and wv points DO jj = 2, jpjm1 DO ji = fs_2, fs_jpim1 ! vector opt. avmu(ji,jj,jk) = avmu(ji,jj,jk) + 0.5_wp * ( zav_wave(ji,jj,jk) + zav_wave(ji+1,jj ,jk) ) * wumask(ji,jj,jk) avmv(ji,jj,jk) = avmv(ji,jj,jk) + 0.5_wp * ( zav_wave(ji,jj,jk) + zav_wave(ji ,jj+1,jk) ) * wvmask(ji,jj,jk) END DO END DO END DO CALL lbc_lnk( avmu, 'U', 1. ) ; CALL lbc_lnk( avmv, 'V', 1. ) ! lateral boundary condition ! !* output internal wave-driven mixing coefficient CALL iom_put( "av_wave", zav_wave ) !* output useful diagnostics: N^2, Kz * N^2 (bflx_tmx), ! vertical integral of rau0 * Kz * N^2 (pcmap_tmx), energy density (emix_tmx) IF( iom_use("bflx_tmx") .OR. iom_use("pcmap_tmx") ) THEN bflx_tmx(:,:,:) = MAX( 0._wp, rn2(:,:,:) ) * zav_wave(:,:,:) pcmap_tmx(:,:) = 0._wp DO jk = 2, jpkm1 pcmap_tmx(:,:) = pcmap_tmx(:,:) + e3w_n(:,:,jk) * bflx_tmx(:,:,jk) * wmask(:,:,jk) END DO pcmap_tmx(:,:) = rau0 * pcmap_tmx(:,:) CALL iom_put( "bflx_tmx", bflx_tmx ) CALL iom_put( "pcmap_tmx", pcmap_tmx ) ENDIF CALL iom_put( "bn2", rn2 ) CALL iom_put( "emix_tmx", emix_tmx ) CALL wrk_dealloc( jpi,jpj, zfact, zhdep ) CALL wrk_dealloc( jpi,jpj,jpk, zwkb, zweight, znu_t, znu_w, zReb ) IF(ln_ctl) CALL prt_ctl(tab3d_1=zav_wave , clinfo1=' tmx - av_wave: ', tab3d_2=avt, clinfo2=' avt: ', ovlap=1, kdim=jpk) ! IF( nn_timing == 1 ) CALL timing_stop('zdf_tmx') ! END SUBROUTINE zdf_tmx SUBROUTINE zdf_tmx_init !!---------------------------------------------------------------------- !! *** ROUTINE zdf_tmx_init *** !! !! ** Purpose : Initialization of the wave-driven vertical mixing, reading !! of input power maps and decay length scales in netcdf files. !! !! ** Method : - Read the namzdf_tmx namelist and check the parameters !! !! - Read the input data in NetCDF files : !! power available from high-mode wave breaking (mixing_power_bot.nc) !! power available from pycnocline-intensified wave-breaking (mixing_power_pyc.nc) !! power available from critical slope wave-breaking (mixing_power_cri.nc) !! WKB decay scale for high-mode wave-breaking (decay_scale_bot.nc) !! decay scale for critical slope wave-breaking (decay_scale_cri.nc) !! !! ** input : - Namlist namzdf_tmx !! - NetCDF files : mixing_power_bot.nc, mixing_power_pyc.nc, mixing_power_cri.nc, !! decay_scale_bot.nc decay_scale_cri.nc !! !! ** Action : - Increase by 1 the nstop flag is setting problem encounter !! - Define ebot_tmx, epyc_tmx, ecri_tmx, hbot_tmx, hcri_tmx !! !! References : de Lavergne et al. 2015, JPO; 2016, in prep. !! !!---------------------------------------------------------------------- INTEGER :: ji, jj, jk ! dummy loop indices INTEGER :: inum ! local integer INTEGER :: ios REAL(wp) :: zbot, zpyc, zcri ! local scalars !! NAMELIST/namzdf_tmx_new/ nn_zpyc, ln_mevar, ln_tsdiff !!---------------------------------------------------------------------- ! IF( nn_timing == 1 ) CALL timing_start('zdf_tmx_init') ! REWIND( numnam_ref ) ! Namelist namzdf_tmx in reference namelist : Wave-driven mixing READ ( numnam_ref, namzdf_tmx_new, IOSTAT = ios, ERR = 901) 901 IF( ios /= 0 ) CALL ctl_nam ( ios , 'namzdf_tmx in reference namelist', lwp ) ! REWIND( numnam_cfg ) ! Namelist namzdf_tmx in configuration namelist : Wave-driven mixing READ ( numnam_cfg, namzdf_tmx_new, IOSTAT = ios, ERR = 902 ) 902 IF( ios /= 0 ) CALL ctl_nam ( ios , 'namzdf_tmx in configuration namelist', lwp ) IF(lwm) WRITE ( numond, namzdf_tmx_new ) ! IF(lwp) THEN ! Control print WRITE(numout,*) WRITE(numout,*) 'zdf_tmx_init : internal wave-driven mixing' WRITE(numout,*) '~~~~~~~~~~~~' WRITE(numout,*) ' Namelist namzdf_tmx_new : set wave-driven mixing parameters' WRITE(numout,*) ' Pycnocline-intensified diss. scales as N (=1) or N^2 (=2) = ', nn_zpyc WRITE(numout,*) ' Variable (T) or constant (F) mixing efficiency = ', ln_mevar WRITE(numout,*) ' Differential internal wave-driven mixing (T) or not (F) = ', ln_tsdiff ENDIF ! The new wave-driven mixing parameterization elevates avt and avm in the interior, and ! ensures that avt remains larger than its molecular value (=1.4e-7). Therefore, avtb should ! be set here to a very small value, and avmb to its (uniform) molecular value (=1.4e-6). avmb(:) = 1.4e-6_wp ! viscous molecular value avtb(:) = 1.e-10_wp ! very small diffusive minimum (background avt is specified in zdf_tmx) avtb_2d(:,:) = 1.e0_wp ! uniform IF(lwp) THEN ! Control print WRITE(numout,*) WRITE(numout,*) ' Force the background value applied to avm & avt in TKE to be everywhere ', & & 'the viscous molecular value & a very small diffusive value, resp.' ENDIF ! ! allocate tmx arrays IF( zdf_tmx_alloc() /= 0 ) CALL ctl_stop( 'STOP', 'zdf_tmx_init : unable to allocate tmx arrays' ) ! ! ! read necessary fields CALL iom_open('mixing_power_bot',inum) ! energy flux for high-mode wave breaking [W/m2] CALL iom_get (inum, jpdom_data, 'field', ebot_tmx, 1 ) CALL iom_close(inum) ! CALL iom_open('mixing_power_pyc',inum) ! energy flux for pynocline-intensified wave breaking [W/m2] CALL iom_get (inum, jpdom_data, 'field', epyc_tmx, 1 ) CALL iom_close(inum) ! CALL iom_open('mixing_power_cri',inum) ! energy flux for critical slope wave breaking [W/m2] CALL iom_get (inum, jpdom_data, 'field', ecri_tmx, 1 ) CALL iom_close(inum) ! CALL iom_open('decay_scale_bot',inum) ! spatially variable decay scale for high-mode wave breaking [m] CALL iom_get (inum, jpdom_data, 'field', hbot_tmx, 1 ) CALL iom_close(inum) ! CALL iom_open('decay_scale_cri',inum) ! spatially variable decay scale for critical slope wave breaking [m] CALL iom_get (inum, jpdom_data, 'field', hcri_tmx, 1 ) CALL iom_close(inum) ebot_tmx(:,:) = ebot_tmx(:,:) * ssmask(:,:) epyc_tmx(:,:) = epyc_tmx(:,:) * ssmask(:,:) ecri_tmx(:,:) = ecri_tmx(:,:) * ssmask(:,:) ! Set once for all to zero the first and last vertical levels of appropriate variables emix_tmx (:,:, 1 ) = 0._wp emix_tmx (:,:,jpk) = 0._wp zav_ratio(:,:, 1 ) = 0._wp zav_ratio(:,:,jpk) = 0._wp zav_wave (:,:, 1 ) = 0._wp zav_wave (:,:,jpk) = 0._wp zbot = glob_sum( e1e2t(:,:) * ebot_tmx(:,:) ) zpyc = glob_sum( e1e2t(:,:) * epyc_tmx(:,:) ) zcri = glob_sum( e1e2t(:,:) * ecri_tmx(:,:) ) IF(lwp) THEN WRITE(numout,*) ' High-mode wave-breaking energy: ', zbot * 1.e-12_wp, 'TW' WRITE(numout,*) ' Pycnocline-intensifed wave-breaking energy: ', zpyc * 1.e-12_wp, 'TW' WRITE(numout,*) ' Critical slope wave-breaking energy: ', zcri * 1.e-12_wp, 'TW' ENDIF ! IF( nn_timing == 1 ) CALL timing_stop('zdf_tmx_init') ! END SUBROUTINE zdf_tmx_init !!====================================================================== END MODULE zdftmx