MODULE limistate !!====================================================================== !! *** MODULE limistate *** !! Initialisation of diagnostics ice variables !!====================================================================== !! History : 2.0 ! 2004-01 (C. Ethe, G. Madec) Original code !! 3.0 ! 2011-02 (G. Madec) dynamical allocation !! - ! 2014 (C. Rousset) add N/S initializations !!---------------------------------------------------------------------- #if defined key_lim3 !!---------------------------------------------------------------------- !! 'key_lim3' : LIM3 sea-ice model !!---------------------------------------------------------------------- !! lim_istate : Initialisation of diagnostics ice variables !! lim_istate_init : initialization of ice state and namelist read !!---------------------------------------------------------------------- USE phycst ! physical constant USE oce ! dynamics and tracers variables USE dom_oce ! ocean domain USE sbc_oce ! Surface boundary condition: ocean fields USE sbc_ice ! Surface boundary condition: ice fields USE eosbn2 ! equation of state USE ice ! sea-ice variables USE par_oce ! ocean parameters USE limvar ! lim_var_salprof ! USE in_out_manager ! I/O manager USE lib_mpp ! MPP library USE lib_fortran ! Fortran utilities (allows no signed zero when 'key_nosignedzero' defined) USE fldread ! read input fields USE iom IMPLICIT NONE PRIVATE PUBLIC lim_istate ! routine called by lim_init.F90 INTEGER , PARAMETER :: jpfldi = 6 ! maximum number of files to read INTEGER , PARAMETER :: jp_hti = 1 ! index of ice thickness (m) at T-point INTEGER , PARAMETER :: jp_hts = 2 ! index of snow thicknes (m) at T-point INTEGER , PARAMETER :: jp_ati = 3 ! index of ice fraction (%) at T-point INTEGER , PARAMETER :: jp_tsu = 4 ! index of ice surface temp (K) at T-point INTEGER , PARAMETER :: jp_tmi = 5 ! index of ice temp at T-point INTEGER , PARAMETER :: jp_smi = 6 ! index of ice sali at T-point TYPE(FLD), ALLOCATABLE, DIMENSION(:) :: si ! structure of input fields (file informations, fields read) !!---------------------------------------------------------------------- !! LIM 3.0, UCL-LOCEAN-IPSL (2008) !! $Id$ !! Software governed by the CeCILL licence (modipsl/doc/NEMO_CeCILL.txt) !!---------------------------------------------------------------------- CONTAINS SUBROUTINE lim_istate !!------------------------------------------------------------------- !! *** ROUTINE lim_istate *** !! !! ** Purpose : defined the sea-ice initial state !! !! ** Method : This routine will put some ice where ocean !! is at the freezing point, then fill in ice !! state variables using prescribed initial !! values in the namelist !! !! ** Steps : 1) Read namelist !! 2) Basal temperature; ice and hemisphere masks !! 3) Fill in the ice thickness distribution using gaussian !! 4) Fill in space-dependent arrays for state variables !! 5) Diagnostic arrays !! 6) Lateral boundary conditions !! !! ** Notes : o_i, t_su, t_s, t_i, s_i must be filled everywhere, even !! where there is no ice (clem: I do not know why, is it mandatory?) !! !! History : !! 2.0 ! 01-04 (C. Ethe, G. Madec) Original code !! 3.0 ! 2007 (M. Vancoppenolle) Rewrite for ice cats !! 4.0 ! 09-11 (M. Vancoppenolle) Enhanced version for ice cats !!-------------------------------------------------------------------- INTEGER :: ji, jj, jk, jl ! dummy loop indices REAL(wp) :: ztmelts, zdh INTEGER :: i_hemis, i_fill, jl0 REAL(wp) :: zarg, zV, zconv, zdv REAL(wp), DIMENSION(jpi,jpj) :: zswitch ! ice indicator REAL(wp), DIMENSION(jpi,jpj) :: zht_i_ini, zat_i_ini, zvt_i_ini !data from namelist or nc file REAL(wp), DIMENSION(jpi,jpj) :: zts_u_ini, zht_s_ini, zsm_i_ini, ztm_i_ini !data from namelist or nc file REAL(wp), DIMENSION(jpi,jpj,jpl) :: zh_i_ini, za_i_ini !data by cattegories to fill INTEGER , DIMENSION(4) :: itest !-------------------------------------------------------------------- IF(lwp) WRITE(numout,*) IF(lwp) WRITE(numout,*) 'lim_istate : sea-ice initialization ' IF(lwp) WRITE(numout,*) '~~~~~~~~~~ ' !-------------------------------------------------------------------- ! 1) Read namelist !-------------------------------------------------------------------- ! CALL lim_istate_init ! init surface temperature DO jl = 1, jpl t_su (:,:,jl) = rt0 * tmask(:,:,1) tn_ice(:,:,jl) = rt0 * tmask(:,:,1) END DO ! init basal temperature (considered at freezing point) CALL eos_fzp( sss_m(:,:), t_bo(:,:) ) t_bo(:,:) = ( t_bo(:,:) + rt0 ) * tmask(:,:,1) !-------------------------------------------------------------------- ! 2) Initialization of sea ice state variables !-------------------------------------------------------------------- IF( ln_limini ) THEN ! IF( ln_limini_file )THEN ! zht_i_ini(:,:) = si(jp_hti)%fnow(:,:,1) zht_s_ini(:,:) = si(jp_hts)%fnow(:,:,1) zat_i_ini(:,:) = si(jp_ati)%fnow(:,:,1) zts_u_ini(:,:) = si(jp_tsu)%fnow(:,:,1) ztm_i_ini(:,:) = si(jp_tmi)%fnow(:,:,1) zsm_i_ini(:,:) = si(jp_smi)%fnow(:,:,1) ! WHERE( zat_i_ini(:,:) > 0._wp ) ; zswitch(:,:) = tmask(:,:,1) ELSEWHERE ; zswitch(:,:) = 0._wp END WHERE ! ELSE ! ln_limini_file = F !-------------------------------------------------------------------- ! 3) Basal temperature, ice mask !-------------------------------------------------------------------- ! no ice if sst <= t-freez + ttest WHERE( ( sst_m(:,:) - (t_bo(:,:) - rt0) ) * tmask(:,:,1) >= rn_thres_sst ) ; zswitch(:,:) = 0._wp ELSEWHERE ; zswitch(:,:) = tmask(:,:,1) END WHERE !----------------------------- ! 3.1) Hemisphere-dependent arrays !----------------------------- ! assign initial thickness, concentration, snow depth and salinity to an hemisphere-dependent array DO jj = 1, jpj DO ji = 1, jpi IF( ff_t(ji,jj) >= 0._wp ) THEN zht_i_ini(ji,jj) = rn_hti_ini_n * zswitch(ji,jj) zht_s_ini(ji,jj) = rn_hts_ini_n * zswitch(ji,jj) zat_i_ini(ji,jj) = rn_ati_ini_n * zswitch(ji,jj) zts_u_ini(ji,jj) = rn_tmi_ini_n * zswitch(ji,jj) zsm_i_ini(ji,jj) = rn_smi_ini_n * zswitch(ji,jj) ztm_i_ini(ji,jj) = rn_tmi_ini_n * zswitch(ji,jj) ELSE zht_i_ini(ji,jj) = rn_hti_ini_s * zswitch(ji,jj) zht_s_ini(ji,jj) = rn_hts_ini_s * zswitch(ji,jj) zat_i_ini(ji,jj) = rn_ati_ini_s * zswitch(ji,jj) zts_u_ini(ji,jj) = rn_tmi_ini_s * zswitch(ji,jj) zsm_i_ini(ji,jj) = rn_smi_ini_s * zswitch(ji,jj) ztm_i_ini(ji,jj) = rn_tmi_ini_s * zswitch(ji,jj) ENDIF END DO END DO ! ENDIF ! ln_limini_file zvt_i_ini(:,:) = zht_i_ini(:,:) * zat_i_ini(:,:) ! ice volume !--------------------------------------------------------------------- ! 3.2) Distribute ice concentration and thickness into the categories !--------------------------------------------------------------------- ! a gaussian distribution for ice concentration is used ! then we check whether the distribution fullfills ! volume and area conservation, positivity and ice categories bounds zh_i_ini(:,:,:) = 0._wp za_i_ini(:,:,:) = 0._wp ! DO jj = 1, jpj DO ji = 1, jpi ! IF( zat_i_ini(ji,jj) > 0._wp .AND. zht_i_ini(ji,jj) > 0._wp )THEN !--- jl0: most likely index where cc will be maximum jl0 = jpl DO jl = 1, jpl IF ( ( zht_i_ini(ji,jj) > hi_max(jl-1) ) .AND. ( zht_i_ini(ji,jj) <= hi_max(jl) ) ) THEN jl0 = jl CYCLE ENDIF END DO ! ! initialisation of tests itest(:) = 0 i_fill = jpl + 1 !==================================== DO WHILE ( ( SUM( itest(:) ) /= 4 ) .AND. ( i_fill >= 2 ) ) ! iterative loop on i_fill categories ! iteration !==================================== i_fill = i_fill - 1 ! initialisation of ice variables for each try zh_i_ini(ji,jj,:) = 0._wp za_i_ini(ji,jj,:) = 0._wp itest(:) = 0 ! ! *** case very thin ice: fill only category 1 IF ( i_fill == 1 ) THEN zh_i_ini(ji,jj,1) = zht_i_ini(ji,jj) za_i_ini(ji,jj,1) = zat_i_ini(ji,jj) ! *** case ice is thicker: fill categories >1 ELSE ! Fill ice thicknesses in the (i_fill-1) cat by hmean DO jl = 1, i_fill-1 zh_i_ini(ji,jj,jl) = hi_mean(jl) END DO ! !--- Concentrations za_i_ini(ji,jj,jl0) = zat_i_ini(ji,jj) / SQRT(REAL(jpl)) DO jl = 1, i_fill - 1 IF( jl /= jl0 )THEN zarg = ( zh_i_ini(ji,jj,jl) - zht_i_ini(ji,jj) ) / ( 0.5_wp * zht_i_ini(ji,jj) ) za_i_ini(ji,jj,jl) = za_i_ini(ji,jj,jl0) * EXP(-zarg**2) ENDIF END DO ! ! Concentration in the last (i_fill) category za_i_ini(ji,jj,i_fill) = zat_i_ini(ji,jj) - SUM( za_i_ini(ji,jj,1:i_fill-1) ) ! Ice thickness in the last (i_fill) category zV = SUM( za_i_ini(ji,jj,1:i_fill-1) * zh_i_ini(ji,jj,1:i_fill-1) ) zh_i_ini(ji,jj,i_fill) = ( zvt_i_ini(ji,jj) - zV ) / MAX( za_i_ini(ji,jj,i_fill), epsi10 ) ! clem: correction if concentration of upper cat is greater than lower cat ! (it should be a gaussian around jl0 but sometimes it is not) IF ( jl0 /= jpl ) THEN DO jl = jpl, jl0+1, -1 IF ( za_i_ini(ji,jj,jl) > za_i_ini(ji,jj,jl-1) ) THEN zdv = zh_i_ini(ji,jj,jl) * za_i_ini(ji,jj,jl) zh_i_ini(ji,jj,jl ) = 0._wp za_i_ini(ji,jj,jl ) = 0._wp za_i_ini(ji,jj,1:jl-1) = za_i_ini(ji,jj,1:jl-1) & & + zdv / MAX( REAL(jl-1) * zht_i_ini(ji,jj), epsi10 ) END IF ENDDO ENDIF ! ENDIF ! case ice is thick or thin !--------------------- ! Compatibility tests !--------------------- ! Test 1: area conservation zconv = ABS( zat_i_ini(ji,jj) - SUM( za_i_ini(ji,jj,1:jpl) ) ) IF ( zconv < epsi06 ) itest(1) = 1 ! Test 2: volume conservation zconv = ABS( zat_i_ini(ji,jj) * zht_i_ini(ji,jj) & & - SUM( za_i_ini (ji,jj,1:jpl) * zh_i_ini (ji,jj,1:jpl) ) ) IF ( zconv < epsi06 ) itest(2) = 1 ! Test 3: thickness of the last category is in-bounds ? IF ( zh_i_ini(ji,jj,i_fill) >= hi_max(i_fill-1) ) itest(3) = 1 ! Test 4: positivity of ice concentrations itest(4) = 1 DO jl = 1, i_fill IF ( za_i_ini(ji,jj,jl) < 0._wp ) itest(4) = 0 END DO ! !============================ END DO ! end iteration on categories ! !============================ ! IF( lwp .AND. SUM(itest) /= 4 ) THEN WRITE(numout,*) WRITE(numout,*) ' !!!! ALERT itest is not equal to 4 !!! ' WRITE(numout,*) ' !!!! Something is wrong in the LIM3 initialization procedure ' WRITE(numout,*) WRITE(numout,*) ' *** itest_i (i=1,4) = ', itest(:) WRITE(numout,*) ' zat_i_ini : ', zat_i_ini(ji,jj) WRITE(numout,*) ' zht_i_ini : ', zht_i_ini(ji,jj) ENDIF ENDIF ! zat_i_ini(ji,jj) > 0._wp .AND. zht_i_ini(ji,jj) > 0._wp ! END DO END DO !--------------------------------------------------------------------- ! 3.3) Space-dependent arrays for ice state variables !--------------------------------------------------------------------- ! Ice concentration, thickness and volume, ice salinity, ice age, surface temperature DO jl = 1, jpl ! loop over categories DO jj = 1, jpj DO ji = 1, jpi a_i(ji,jj,jl) = zswitch(ji,jj) * za_i_ini(ji,jj,jl) ! concentration ht_i(ji,jj,jl) = zswitch(ji,jj) * zh_i_ini(ji,jj,jl) ! ice thickness sm_i(ji,jj,jl) = zswitch(ji,jj) * zsm_i_ini(ji,jj) ! salinity o_i(ji,jj,jl) = zswitch(ji,jj) * 1._wp ! age (1 day) t_su(ji,jj,jl) = zswitch(ji,jj) * zts_u_ini(ji,jj) + ( 1._wp - zswitch(ji,jj) ) * rt0 ! surf temp IF( zht_i_ini(ji,jj) > 0._wp )THEN ht_s(ji,jj,jl)= ht_i(ji,jj,jl) * ( zht_s_ini(ji,jj) / zht_i_ini(ji,jj) ) ! snow depth ELSE ht_s(ji,jj,jl)= 0._wp ENDIF ! This case below should not be used if (ht_s/ht_i) is ok in namelist ! In case snow load is in excess that would lead to transformation from snow to ice ! Then, transfer the snow excess into the ice (different from limthd_dh) zdh = MAX( 0._wp, ( rhosn * ht_s(ji,jj,jl) + ( rhoic - rau0 ) * ht_i(ji,jj,jl) ) * r1_rau0 ) ! recompute ht_i, ht_s avoiding out of bounds values ht_i(ji,jj,jl) = MIN( hi_max(jl), ht_i(ji,jj,jl) + zdh ) ht_s(ji,jj,jl) = MAX( 0._wp, ht_s(ji,jj,jl) - zdh * rhoic * r1_rhosn ) ! ice volume, salt content, age content v_i(ji,jj,jl) = ht_i(ji,jj,jl) * a_i(ji,jj,jl) ! ice volume v_s(ji,jj,jl) = ht_s(ji,jj,jl) * a_i(ji,jj,jl) ! snow volume smv_i(ji,jj,jl) = MIN( sm_i(ji,jj,jl) , sss_m(ji,jj) ) * v_i(ji,jj,jl) ! salt content oa_i(ji,jj,jl) = o_i(ji,jj,jl) * a_i(ji,jj,jl) ! age content END DO END DO END DO ! for constant salinity in time IF( nn_icesal == 1 .OR. nn_icesal == 3 ) THEN CALL lim_var_salprof smv_i = sm_i * v_i ENDIF ! Snow temperature and heat content DO jk = 1, nlay_s DO jl = 1, jpl ! loop over categories DO jj = 1, jpj DO ji = 1, jpi t_s(ji,jj,jk,jl) = zswitch(ji,jj) * ztm_i_ini(ji,jj) + ( 1._wp - zswitch(ji,jj) ) * rt0 ! Snow energy of melting e_s(ji,jj,jk,jl) = zswitch(ji,jj) * rhosn * ( cpic * ( rt0 - t_s(ji,jj,jk,jl) ) + lfus ) ! Mutliply by volume, and divide by number of layers to get heat content in J/m2 e_s(ji,jj,jk,jl) = e_s(ji,jj,jk,jl) * v_s(ji,jj,jl) * r1_nlay_s END DO END DO END DO END DO ! Ice salinity, temperature and heat content DO jk = 1, nlay_i DO jl = 1, jpl ! loop over categories DO jj = 1, jpj DO ji = 1, jpi t_i(ji,jj,jk,jl) = zswitch(ji,jj) * ztm_i_ini(ji,jj) + ( 1._wp - zswitch(ji,jj) ) * rt0 s_i(ji,jj,jk,jl) = zswitch(ji,jj) * zsm_i_ini(ji,jj) + ( 1._wp - zswitch(ji,jj) ) * rn_simin ztmelts = - tmut * s_i(ji,jj,jk,jl) + rt0 !Melting temperature in K ! heat content per unit volume e_i(ji,jj,jk,jl) = zswitch(ji,jj) * rhoic * ( cpic * ( ztmelts - t_i(ji,jj,jk,jl) ) & + lfus * ( 1._wp - (ztmelts-rt0) / MIN((t_i(ji,jj,jk,jl)-rt0),-epsi20) ) & - rcp * ( ztmelts - rt0 ) ) ! Mutliply by ice volume, and divide by number of layers to get heat content in J/m2 e_i(ji,jj,jk,jl) = e_i(ji,jj,jk,jl) * v_i(ji,jj,jl) * r1_nlay_i END DO END DO END DO END DO tn_ice (:,:,:) = t_su (:,:,:) ELSE ! if ln_limini=false a_i (:,:,:) = 0._wp v_i (:,:,:) = 0._wp v_s (:,:,:) = 0._wp smv_i(:,:,:) = 0._wp oa_i (:,:,:) = 0._wp ht_i (:,:,:) = 0._wp ht_s (:,:,:) = 0._wp sm_i (:,:,:) = 0._wp o_i (:,:,:) = 0._wp e_i(:,:,:,:) = 0._wp e_s(:,:,:,:) = 0._wp DO jl = 1, jpl DO jk = 1, nlay_i t_i(:,:,jk,jl) = rt0 * tmask(:,:,1) END DO DO jk = 1, nlay_s t_s(:,:,jk,jl) = rt0 * tmask(:,:,1) END DO END DO ENDIF ! ln_limini at_i (:,:) = 0.0_wp DO jl = 1, jpl at_i (:,:) = at_i (:,:) + a_i (:,:,jl) END DO ! !-------------------------------------------------------------------- ! 4) Global ice variables for output diagnostics | !-------------------------------------------------------------------- u_ice (:,:) = 0._wp v_ice (:,:) = 0._wp stress1_i(:,:) = 0._wp stress2_i(:,:) = 0._wp stress12_i(:,:) = 0._wp !-------------------------------------------------------------------- ! 5) Moments for advection !-------------------------------------------------------------------- sxopw (:,:) = 0._wp syopw (:,:) = 0._wp sxxopw(:,:) = 0._wp syyopw(:,:) = 0._wp sxyopw(:,:) = 0._wp sxice (:,:,:) = 0._wp ; sxsn (:,:,:) = 0._wp ; sxa (:,:,:) = 0._wp syice (:,:,:) = 0._wp ; sysn (:,:,:) = 0._wp ; sya (:,:,:) = 0._wp sxxice(:,:,:) = 0._wp ; sxxsn(:,:,:) = 0._wp ; sxxa (:,:,:) = 0._wp syyice(:,:,:) = 0._wp ; syysn(:,:,:) = 0._wp ; syya (:,:,:) = 0._wp sxyice(:,:,:) = 0._wp ; sxysn(:,:,:) = 0._wp ; sxya (:,:,:) = 0._wp sxc0 (:,:,:) = 0._wp ; sxe (:,:,:,:)= 0._wp syc0 (:,:,:) = 0._wp ; sye (:,:,:,:)= 0._wp sxxc0 (:,:,:) = 0._wp ; sxxe (:,:,:,:)= 0._wp syyc0 (:,:,:) = 0._wp ; syye (:,:,:,:)= 0._wp sxyc0 (:,:,:) = 0._wp ; sxye (:,:,:,:)= 0._wp sxsal (:,:,:) = 0._wp sysal (:,:,:) = 0._wp sxxsal (:,:,:) = 0._wp syysal (:,:,:) = 0._wp sxysal (:,:,:) = 0._wp sxage (:,:,:) = 0._wp syage (:,:,:) = 0._wp sxxage (:,:,:) = 0._wp syyage (:,:,:) = 0._wp sxyage (:,:,:) = 0._wp !------------------------------------ ! 6) store fields at before time-step !------------------------------------ ! it is only necessary for the 1st interpolation by Agrif a_i_b (:,:,:) = a_i (:,:,:) e_i_b (:,:,:,:) = e_i (:,:,:,:) v_i_b (:,:,:) = v_i (:,:,:) v_s_b (:,:,:) = v_s (:,:,:) e_s_b (:,:,:,:) = e_s (:,:,:,:) smv_i_b(:,:,:) = smv_i(:,:,:) oa_i_b (:,:,:) = oa_i (:,:,:) u_ice_b(:,:) = u_ice(:,:) v_ice_b(:,:) = v_ice(:,:) !!!clem !! ! Output the initial state and forcings !! CALL dia_wri_state( 'output.init', nit000 ) !!! Call wrk_dealloc( 4, itest ) END SUBROUTINE lim_istate SUBROUTINE lim_istate_init !!------------------------------------------------------------------- !! *** ROUTINE lim_istate_init *** !! !! ** Purpose : Definition of initial state of the ice !! !! ** Method : Read the namiceini namelist and check the parameter !! values called at the first timestep (nit000) !! !! ** input : !! Namelist namiceini !! !! history : !! 8.5 ! 03-08 (C. Ethe) original code !! 8.5 ! 07-11 (M. Vancoppenolle) rewritten initialization !!----------------------------------------------------------------------------- ! INTEGER :: ios,ierr,inum_ice ! Local integer output status for namelist read INTEGER :: ji,jj INTEGER :: ifpr, ierror ! CHARACTER(len=100) :: cn_dir ! Root directory for location of ice files TYPE(FLD_N) :: sn_hti, sn_hts, sn_ati, sn_tsu, sn_tmi, sn_smi TYPE(FLD_N), DIMENSION(jpfldi) :: slf_i ! array of namelist informations on the fields to read ! NAMELIST/namiceini/ ln_limini, ln_limini_file, rn_thres_sst, rn_hts_ini_n, rn_hts_ini_s, & & rn_hti_ini_n, rn_hti_ini_s, rn_ati_ini_n, rn_ati_ini_s, rn_smi_ini_n, & & rn_smi_ini_s, rn_tmi_ini_n, rn_tmi_ini_s, & & sn_hti, sn_hts, sn_ati, sn_tsu, sn_tmi, sn_smi, cn_dir !!----------------------------------------------------------------------------- ! REWIND( numnam_ice_ref ) ! Namelist namiceini in reference namelist : Ice initial state READ ( numnam_ice_ref, namiceini, IOSTAT = ios, ERR = 901) 901 IF( ios /= 0 ) CALL ctl_nam ( ios , 'namiceini in reference namelist', lwp ) REWIND( numnam_ice_cfg ) ! Namelist namiceini in configuration namelist : Ice initial state READ ( numnam_ice_cfg, namiceini, IOSTAT = ios, ERR = 902 ) 902 IF( ios /= 0 ) CALL ctl_nam ( ios , 'namiceini in configuration namelist', lwp ) IF(lwm) WRITE ( numoni, namiceini ) slf_i(jp_hti) = sn_hti ; slf_i(jp_hts) = sn_hts slf_i(jp_ati) = sn_ati ; slf_i(jp_tsu) = sn_tsu slf_i(jp_tmi) = sn_tmi ; slf_i(jp_smi) = sn_smi ! Define the initial parameters ! ------------------------- IF(lwp) THEN WRITE(numout,*) WRITE(numout,*) 'lim_istate_init : ice parameters inititialisation ' WRITE(numout,*) '~~~~~~~~~~~~~~~' WRITE(numout,*) ' initialization with ice (T) or not (F) ln_limini = ', ln_limini WRITE(numout,*) ' ice initialization from a netcdf file ln_limini_file = ', ln_limini_file WRITE(numout,*) ' threshold water temp. for initial sea-ice rn_thres_sst = ', rn_thres_sst WRITE(numout,*) ' initial snow thickness in the north rn_hts_ini_n = ', rn_hts_ini_n WRITE(numout,*) ' initial snow thickness in the south rn_hts_ini_s = ', rn_hts_ini_s WRITE(numout,*) ' initial ice thickness in the north rn_hti_ini_n = ', rn_hti_ini_n WRITE(numout,*) ' initial ice thickness in the south rn_hti_ini_s = ', rn_hti_ini_s WRITE(numout,*) ' initial ice concentr. in the north rn_ati_ini_n = ', rn_ati_ini_n WRITE(numout,*) ' initial ice concentr. in the north rn_ati_ini_s = ', rn_ati_ini_s WRITE(numout,*) ' initial ice salinity in the north rn_smi_ini_n = ', rn_smi_ini_n WRITE(numout,*) ' initial ice salinity in the south rn_smi_ini_s = ', rn_smi_ini_s WRITE(numout,*) ' initial ice/snw temp in the north rn_tmi_ini_n = ', rn_tmi_ini_n WRITE(numout,*) ' initial ice/snw temp in the south rn_tmi_ini_s = ', rn_tmi_ini_s ENDIF IF( ln_limini_file ) THEN ! Ice initialization using input file ! ! set si structure ALLOCATE( si(jpfldi), STAT=ierror ) IF( ierror > 0 ) THEN CALL ctl_stop( 'Ice_ini in limistate: unable to allocate si structure' ) ; RETURN ENDIF DO ifpr = 1, jpfldi ALLOCATE( si(ifpr)%fnow(jpi,jpj,1) ) ALLOCATE( si(ifpr)%fdta(jpi,jpj,1,2) ) END DO ! fill si with slf_i and control print CALL fld_fill( si, slf_i, cn_dir, 'lim_istate', 'lim istate ini', 'numnam_ice' ) CALL fld_read( nit000, 1, si ) ! input fields provided at the current time-step ENDIF END SUBROUTINE lim_istate_init #else !!---------------------------------------------------------------------- !! Default option : Empty module NO LIM sea-ice model !!---------------------------------------------------------------------- CONTAINS SUBROUTINE lim_istate ! Empty routine END SUBROUTINE lim_istate #endif !!====================================================================== END MODULE limistate