MODULE sbcblk !!====================================================================== !! *** MODULE sbcblk *** !! Ocean forcing: momentum, heat and freshwater flux formulation !! Aerodynamic Bulk Formulas !! SUCCESSOR OF "sbcblk_core" !!===================================================================== !! History : 1.0 ! 2004-08 (U. Schweckendiek) Original CORE code !! 2.0 ! 2005-04 (L. Brodeau, A.M. Treguier) improved CORE bulk and its user interface !! 3.0 ! 2006-06 (G. Madec) sbc rewritting !! - ! 2006-12 (L. Brodeau) Original code for turb_core !! 3.2 ! 2009-04 (B. Lemaire) Introduce iom_put !! 3.3 ! 2010-10 (S. Masson) add diurnal cycle !! 3.4 ! 2011-11 (C. Harris) Fill arrays required by CICE !! 3.7 ! 2014-06 (L. Brodeau) simplification and optimization of CORE bulk !! 4.0 ! 2016-06 (L. Brodeau) sbcblk_core becomes sbcblk and is not restricted to the CORE algorithm anymore !! ==> based on AeroBulk (http://aerobulk.sourceforge.net/) !! 4.0 ! 2016-10 (G. Madec) introduce a sbc_blk_init routine !!---------------------------------------------------------------------- !!---------------------------------------------------------------------- !! sbc_blk_init : initialisation of the chosen bulk formulation as ocean surface boundary condition !! sbc_blk : bulk formulation as ocean surface boundary condition !! blk_oce : computes momentum, heat and freshwater fluxes over ocean !! blk_ice : computes momentum, heat and freshwater fluxes over sea ice !! rho_air : density of (moist) air (depends on T_air, q_air and SLP !! cp_air : specific heat of (moist) air (depends spec. hum. q_air) !! q_sat : saturation humidity as a function of SLP and temperature !! L_vap : latent heat of vaporization of water as a function of temperature !!---------------------------------------------------------------------- USE oce ! ocean dynamics and tracers USE dom_oce ! ocean space and time domain USE phycst ! physical constants USE fldread ! read input fields USE sbc_oce ! Surface boundary condition: ocean fields USE cyclone ! Cyclone 10m wind form trac of cyclone centres USE sbcdcy ! surface boundary condition: diurnal cycle USE sbcwave , ONLY : cdn_wave ! wave module USE sbc_ice ! Surface boundary condition: ice fields USE lib_fortran ! to use key_nosignedzero #if defined key_lim3 USE ice , ONLY : u_ice, v_ice, jpl, a_i_b, at_i_b USE limthd_dh ! for CALL lim_thd_snwblow #endif USE sbcblk_algo_ncar ! => turb_ncar : NCAR - CORE (Large & Yeager, 2009) USE sbcblk_algo_coare ! => turb_coare : COAREv3.0 (Fairall et al. 2003) USE sbcblk_algo_coare3p5 ! => turb_coare3p5 : COAREv3.5 (Edson et al. 2013) USE sbcblk_algo_ecmwf ! => turb_ecmwf : ECMWF (IFS cycle 31) ! USE iom ! I/O manager library USE in_out_manager ! I/O manager USE lib_mpp ! distribued memory computing library USE wrk_nemo ! work arrays USE timing ! Timing USE lbclnk ! ocean lateral boundary conditions (or mpp link) USE prtctl ! Print control IMPLICIT NONE PRIVATE PUBLIC sbc_blk_init ! called in sbcmod PUBLIC sbc_blk ! called in sbcmod #if defined key_lim3 PUBLIC blk_ice_tau ! routine called in icestp module PUBLIC blk_ice_flx ! routine called in icestp module #endif !!Lolo: should ultimately be moved in the module with all physical constants ? !!gm : In principle, yes. REAL(wp), PARAMETER :: Cp_dry = 1005.0 !: Specic heat of dry air, constant pressure [J/K/kg] REAL(wp), PARAMETER :: Cp_vap = 1860.0 !: Specic heat of water vapor, constant pressure [J/K/kg] REAL(wp), PARAMETER :: R_dry = 287.05_wp !: Specific gas constant for dry air [J/K/kg] REAL(wp), PARAMETER :: R_vap = 461.495_wp !: Specific gas constant for water vapor [J/K/kg] REAL(wp), PARAMETER :: reps0 = R_dry/R_vap !: ratio of gas constant for dry air and water vapor => ~ 0.622 REAL(wp), PARAMETER :: rctv0 = R_vap/R_dry !: for virtual temperature (== (1-eps)/eps) => ~ 0.608 INTEGER , PARAMETER :: jpfld =10 ! maximum number of files to read INTEGER , PARAMETER :: jp_wndi = 1 ! index of 10m wind velocity (i-component) (m/s) at T-point INTEGER , PARAMETER :: jp_wndj = 2 ! index of 10m wind velocity (j-component) (m/s) at T-point INTEGER , PARAMETER :: jp_tair = 3 ! index of 10m air temperature (Kelvin) INTEGER , PARAMETER :: jp_humi = 4 ! index of specific humidity ( % ) INTEGER , PARAMETER :: jp_qsr = 5 ! index of solar heat (W/m2) INTEGER , PARAMETER :: jp_qlw = 6 ! index of Long wave (W/m2) INTEGER , PARAMETER :: jp_prec = 7 ! index of total precipitation (rain+snow) (Kg/m2/s) INTEGER , PARAMETER :: jp_snow = 8 ! index of snow (solid prcipitation) (kg/m2/s) INTEGER , PARAMETER :: jp_slp = 9 ! index of sea level pressure (Pa) INTEGER , PARAMETER :: jp_tdif =10 ! index of tau diff associated to HF tau (N/m2) at T-point TYPE(FLD), ALLOCATABLE, DIMENSION(:) :: sf ! structure of input fields (file informations, fields read) ! !!! Bulk parameters REAL(wp), PARAMETER :: cpa = 1000.5 ! specific heat of air (only used for ice fluxes now...) REAL(wp), PARAMETER :: Ls = 2.839e6 ! latent heat of sublimation REAL(wp), PARAMETER :: Stef = 5.67e-8 ! Stefan Boltzmann constant REAL(wp), PARAMETER :: Cd_ice = 1.4e-3 ! iovi 1.63e-3 ! transfer coefficient over ice REAL(wp), PARAMETER :: albo = 0.066 ! ocean albedo assumed to be constant ! ! !!* Namelist namsbc_blk : bulk parameters LOGICAL :: ln_NCAR ! "NCAR" algorithm (Large and Yeager 2008) LOGICAL :: ln_COARE_3p0 ! "COARE 3.0" algorithm (Fairall et al. 2003) LOGICAL :: ln_COARE_3p5 ! "COARE 3.5" algorithm (Edson et al. 2013) LOGICAL :: ln_ECMWF ! "ECMWF" algorithm (IFS cycle 31) ! LOGICAL :: ln_taudif ! logical flag to use the "mean of stress module - module of mean stress" data REAL(wp) :: rn_pfac ! multiplication factor for precipitation REAL(wp) :: rn_efac ! multiplication factor for evaporation (clem) REAL(wp) :: rn_vfac ! multiplication factor for ice/ocean velocity in the calculation of wind stress (clem) REAL(wp) :: rn_zqt ! z(q,t) : height of humidity and temperature measurements REAL(wp) :: rn_zu ! z(u) : height of wind measurements LOGICAL :: ln_Cd_L12 = .FALSE. ! Modify the drag ice-atm and oce-atm depending on ice concentration (from Lupkes et al. JGR2012) ! REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:) :: Cd_oce ! air-ocean drag (clem) INTEGER :: nblk ! choice of the bulk algorithm ! ! associated indices: INTEGER, PARAMETER :: np_NCAR = 1 ! "NCAR" algorithm (Large and Yeager 2008) INTEGER, PARAMETER :: np_COARE_3p0 = 2 ! "COARE 3.0" algorithm (Fairall et al. 2003) INTEGER, PARAMETER :: np_COARE_3p5 = 3 ! "COARE 3.5" algorithm (Edson et al. 2013) INTEGER, PARAMETER :: np_ECMWF = 4 ! "ECMWF" algorithm (IFS cycle 31) !! * Substitutions # include "vectopt_loop_substitute.h90" !!---------------------------------------------------------------------- !! NEMO/OPA 3.7 , NEMO-consortium (2014) !! $Id: sbcblk.F90 6416 2016-04-01 12:22:17Z clem $ !! Software governed by the CeCILL licence (NEMOGCM/NEMO_CeCILL.txt) !!---------------------------------------------------------------------- CONTAINS INTEGER FUNCTION sbc_blk_alloc() !!------------------------------------------------------------------- !! *** ROUTINE sbc_blk_alloc *** !!------------------------------------------------------------------- ALLOCATE( Cd_oce(jpi,jpj) , STAT=sbc_blk_alloc ) ! IF( lk_mpp ) CALL mpp_sum ( sbc_blk_alloc ) IF( sbc_blk_alloc /= 0 ) CALL ctl_warn('sbc_blk_alloc: failed to allocate arrays') END FUNCTION sbc_blk_alloc SUBROUTINE sbc_blk_init !!--------------------------------------------------------------------- !! *** ROUTINE sbc_blk_init *** !! !! ** Purpose : choose and initialize a bulk formulae formulation !! !! ** Method : !! !! C A U T I O N : never mask the surface stress fields !! the stress is assumed to be in the (i,j) mesh referential !! !! ** Action : !! !!---------------------------------------------------------------------- INTEGER :: ifpr, jfld ! dummy loop indice and argument INTEGER :: ios, ierror, ioptio ! Local integer !! CHARACTER(len=100) :: cn_dir ! Root directory for location of atmospheric forcing files TYPE(FLD_N), DIMENSION(jpfld) :: slf_i ! array of namelist informations on the fields to read TYPE(FLD_N) :: sn_wndi, sn_wndj, sn_humi, sn_qsr ! informations about the fields to be read TYPE(FLD_N) :: sn_qlw , sn_tair, sn_prec, sn_snow ! " " TYPE(FLD_N) :: sn_slp , sn_tdif ! " " NAMELIST/namsbc_blk/ sn_wndi, sn_wndj, sn_humi, sn_qsr, sn_qlw , & ! input fields & sn_tair, sn_prec, sn_snow, sn_slp, sn_tdif, & & ln_NCAR, ln_COARE_3p0, ln_COARE_3p5, ln_ECMWF, & ! bulk algorithm & cn_dir , ln_taudif, rn_zqt, rn_zu, & & rn_pfac, rn_efac, rn_vfac, ln_Cd_L12 !!--------------------------------------------------------------------- ! ! ! allocate sbc_blk_core array IF( sbc_blk_alloc() /= 0 ) CALL ctl_stop( 'STOP', 'sbc_blk : unable to allocate standard arrays' ) ! ! !** read bulk namelist REWIND( numnam_ref ) !* Namelist namsbc_blk in reference namelist : bulk parameters READ ( numnam_ref, namsbc_blk, IOSTAT = ios, ERR = 901) 901 IF( ios /= 0 ) CALL ctl_nam ( ios , 'namsbc_blk in reference namelist', lwp ) ! REWIND( numnam_cfg ) !* Namelist namsbc_blk in configuration namelist : bulk parameters READ ( numnam_cfg, namsbc_blk, IOSTAT = ios, ERR = 902 ) 902 IF( ios /= 0 ) CALL ctl_nam ( ios , 'namsbc_blk in configuration namelist', lwp ) ! IF(lwm) WRITE( numond, namsbc_blk ) ! ! !** initialization of the chosen bulk formulae (+ check) ! !* select the bulk chosen in the namelist and check the choice ; ioptio = 0 IF( ln_NCAR ) THEN ; nblk = np_NCAR ; ioptio = ioptio + 1 ; ENDIF IF( ln_COARE_3p0 ) THEN ; nblk = np_COARE_3p0 ; ioptio = ioptio + 1 ; ENDIF IF( ln_COARE_3p5 ) THEN ; nblk = np_COARE_3p5 ; ioptio = ioptio + 1 ; ENDIF IF( ln_ECMWF ) THEN ; nblk = np_ECMWF ; ioptio = ioptio + 1 ; ENDIF ! IF( ioptio /= 1 ) CALL ctl_stop( 'sbc_blk_init: Choose one and only one bulk algorithm' ) ! IF( ln_dm2dc ) THEN !* check: diurnal cycle on Qsr IF( sn_qsr%nfreqh /= 24 ) CALL ctl_stop( 'sbc_blk_init: ln_dm2dc=T only with daily short-wave input' ) IF( sn_qsr%ln_tint ) THEN CALL ctl_warn( 'sbc_blk_init: ln_dm2dc=T daily qsr time interpolation done by sbcdcy module', & & ' ==> We force time interpolation = .false. for qsr' ) sn_qsr%ln_tint = .false. ENDIF ENDIF ! !* set the bulk structure ! !- store namelist information in an array slf_i(jp_wndi) = sn_wndi ; slf_i(jp_wndj) = sn_wndj slf_i(jp_qsr ) = sn_qsr ; slf_i(jp_qlw ) = sn_qlw slf_i(jp_tair) = sn_tair ; slf_i(jp_humi) = sn_humi slf_i(jp_prec) = sn_prec ; slf_i(jp_snow) = sn_snow slf_i(jp_slp) = sn_slp ; slf_i(jp_tdif) = sn_tdif ! lhftau = ln_taudif !- add an extra field if HF stress is used jfld = jpfld - COUNT( (/.NOT.lhftau/) ) ! ! !- allocate the bulk structure ALLOCATE( sf(jfld), STAT=ierror ) IF( ierror > 0 ) CALL ctl_stop( 'STOP', 'sbc_blk_init: unable to allocate sf structure' ) DO ifpr= 1, jfld ALLOCATE( sf(ifpr)%fnow(jpi,jpj,1) ) IF( slf_i(ifpr)%ln_tint ) ALLOCATE( sf(ifpr)%fdta(jpi,jpj,1,2) ) END DO ! !- fill the bulk structure with namelist informations CALL fld_fill( sf, slf_i, cn_dir, 'sbc_blk_init', 'surface boundary condition -- bulk formulae', 'namsbc_blk' ) ! IF ( ln_wave ) THEN !Activated wave module but neither drag nor stokes drift activated IF ( .NOT.(ln_cdgw .OR. ln_sdw .OR. ln_tauoc .OR. ln_stcor ) ) THEN CALL ctl_warn( 'Ask for wave coupling but ln_cdgw=F, ln_sdw=F, ln_tauoc=F, ln_stcor=F') !drag coefficient read from wave model definable only with mfs bulk formulae and core ELSEIF (ln_cdgw .AND. .NOT. ln_NCAR ) THEN CALL ctl_stop( 'drag coefficient read from wave model definable only with mfs bulk formulae and core') ELSEIF (ln_stcor .AND. .NOT. ln_sdw) THEN CALL ctl_stop( 'Stokes-Coriolis term calculated only if activated Stokes Drift ln_sdw=T') ENDIF ELSE IF ( ln_cdgw .OR. ln_sdw .OR. ln_tauoc .OR. ln_stcor ) & & CALL ctl_stop( 'Not Activated Wave Module (ln_wave=F) but asked coupling ', & & 'with drag coefficient (ln_cdgw =T) ' , & & 'or Stokes Drift (ln_sdw=T) ' , & & 'or ocean stress modification due to waves (ln_tauoc=T) ', & & 'or Stokes-Coriolis term (ln_stcori=T)' ) ENDIF ! ! IF(lwp) THEN !** Control print ! WRITE(numout,*) !* namelist WRITE(numout,*) ' Namelist namsbc_blk (other than data information):' WRITE(numout,*) ' "NCAR" algorithm (Large and Yeager 2008) ln_NCAR = ', ln_NCAR WRITE(numout,*) ' "COARE 3.0" algorithm (Fairall et al. 2003) ln_COARE_3p0 = ', ln_COARE_3p0 WRITE(numout,*) ' "COARE 3.5" algorithm (Edson et al. 2013) ln_COARE_3p5 = ', ln_COARE_3p0 WRITE(numout,*) ' "ECMWF" algorithm (IFS cycle 31) ln_ECMWF = ', ln_ECMWF WRITE(numout,*) ' add High freq.contribution to the stress module ln_taudif = ', ln_taudif WRITE(numout,*) ' Air temperature and humidity reference height (m) rn_zqt = ', rn_zqt WRITE(numout,*) ' Wind vector reference height (m) rn_zu = ', rn_zu WRITE(numout,*) ' factor applied on precipitation (total & snow) rn_pfac = ', rn_pfac WRITE(numout,*) ' factor applied on evaporation rn_efac = ', rn_efac WRITE(numout,*) ' factor applied on ocean/ice velocity rn_vfac = ', rn_vfac WRITE(numout,*) ' (form absolute (=0) to relative winds(=1))' ! WRITE(numout,*) SELECT CASE( nblk ) !* Print the choice of bulk algorithm CASE( np_NCAR ) ; WRITE(numout,*) ' ===>> "NCAR" algorithm (Large and Yeager 2008)' CASE( np_COARE_3p0 ) ; WRITE(numout,*) ' ===>> "COARE 3.0" algorithm (Fairall et al. 2003)' CASE( np_COARE_3p5 ) ; WRITE(numout,*) ' ===>> "COARE 3.5" algorithm (Edson et al. 2013)' CASE( np_ECMWF ) ; WRITE(numout,*) ' ===>> "ECMWF" algorithm (IFS cycle 31)' END SELECT ! ENDIF ! END SUBROUTINE sbc_blk_init SUBROUTINE sbc_blk( kt ) !!--------------------------------------------------------------------- !! *** ROUTINE sbc_blk *** !! !! ** Purpose : provide at each time step the surface ocean fluxes !! (momentum, heat, freshwater and runoff) !! !! ** Method : (1) READ each fluxes in NetCDF files: !! the 10m wind velocity (i-component) (m/s) at T-point !! the 10m wind velocity (j-component) (m/s) at T-point !! the 10m or 2m specific humidity ( % ) !! the solar heat (W/m2) !! the Long wave (W/m2) !! the 10m or 2m air temperature (Kelvin) !! the total precipitation (rain+snow) (Kg/m2/s) !! the snow (solid prcipitation) (kg/m2/s) !! the tau diff associated to HF tau (N/m2) at T-point (ln_taudif=T) !! (2) CALL blk_oce !! !! C A U T I O N : never mask the surface stress fields !! the stress is assumed to be in the (i,j) mesh referential !! !! ** Action : defined at each time-step at the air-sea interface !! - utau, vtau i- and j-component of the wind stress !! - taum wind stress module at T-point !! - wndm wind speed module at T-point over free ocean or leads in presence of sea-ice !! - qns, qsr non-solar and solar heat fluxes !! - emp upward mass flux (evapo. - precip.) !! - sfx salt flux due to freezing/melting (non-zero only if ice is present) !! (set in limsbc(_2).F90) !! !! ** References : Large & Yeager, 2004 / Large & Yeager, 2008 !! Brodeau et al. Ocean Modelling 2010 !!---------------------------------------------------------------------- INTEGER, INTENT(in) :: kt ! ocean time step !!--------------------------------------------------------------------- ! CALL fld_read( kt, nn_fsbc, sf ) ! input fields provided at the current time-step ! ! ! compute the surface ocean fluxes using bulk formulea IF( MOD( kt - 1, nn_fsbc ) == 0 ) CALL blk_oce( kt, sf, sst_m, ssu_m, ssv_m ) #if defined key_cice IF( MOD( kt - 1, nn_fsbc ) == 0 ) THEN qlw_ice(:,:,1) = sf(jp_qlw )%fnow(:,:,1) IF( ln_dm2dc ) THEN ; qsr_ice(:,:,1) = sbc_dcy( sf(jp_qsr)%fnow(:,:,1) ) ELSE ; qsr_ice(:,:,1) = sf(jp_qsr)%fnow(:,:,1) ENDIF tatm_ice(:,:) = sf(jp_tair)%fnow(:,:,1) qatm_ice(:,:) = sf(jp_humi)%fnow(:,:,1) tprecip(:,:) = sf(jp_prec)%fnow(:,:,1) * rn_pfac sprecip(:,:) = sf(jp_snow)%fnow(:,:,1) * rn_pfac wndi_ice(:,:) = sf(jp_wndi)%fnow(:,:,1) wndj_ice(:,:) = sf(jp_wndj)%fnow(:,:,1) ENDIF #endif ! END SUBROUTINE sbc_blk SUBROUTINE blk_oce( kt, sf, pst, pu, pv ) !!--------------------------------------------------------------------- !! *** ROUTINE blk_oce *** !! !! ** Purpose : provide the momentum, heat and freshwater fluxes at !! the ocean surface at each time step !! !! ** Method : bulk formulea for the ocean using atmospheric !! fields read in sbc_read !! !! ** Outputs : - utau : i-component of the stress at U-point (N/m2) !! - vtau : j-component of the stress at V-point (N/m2) !! - taum : Wind stress module at T-point (N/m2) !! - wndm : Wind speed module at T-point (m/s) !! - qsr : Solar heat flux over the ocean (W/m2) !! - qns : Non Solar heat flux over the ocean (W/m2) !! - emp : evaporation minus precipitation (kg/m2/s) !! !! ** Nota : sf has to be a dummy argument for AGRIF on NEC !!--------------------------------------------------------------------- INTEGER , INTENT(in ) :: kt ! time step index TYPE(fld), INTENT(inout), DIMENSION(:) :: sf ! input data REAL(wp) , INTENT(in) , DIMENSION(:,:) :: pst ! surface temperature [Celcius] REAL(wp) , INTENT(in) , DIMENSION(:,:) :: pu ! surface current at U-point (i-component) [m/s] REAL(wp) , INTENT(in) , DIMENSION(:,:) :: pv ! surface current at V-point (j-component) [m/s] ! INTEGER :: ji, jj ! dummy loop indices REAL(wp) :: zztmp ! local variable REAL(wp), DIMENSION(:,:), POINTER :: zwnd_i, zwnd_j ! wind speed components at T-point REAL(wp), DIMENSION(:,:), POINTER :: zsq ! specific humidity at pst REAL(wp), DIMENSION(:,:), POINTER :: zqlw, zqsb ! long wave and sensible heat fluxes REAL(wp), DIMENSION(:,:), POINTER :: zqla, zevap ! latent heat fluxes and evaporation REAL(wp), DIMENSION(:,:), POINTER :: Cd ! transfer coefficient for momentum (tau) REAL(wp), DIMENSION(:,:), POINTER :: Ch ! transfer coefficient for sensible heat (Q_sens) REAL(wp), DIMENSION(:,:), POINTER :: Ce ! tansfert coefficient for evaporation (Q_lat) REAL(wp), DIMENSION(:,:), POINTER :: zst ! surface temperature in Kelvin REAL(wp), DIMENSION(:,:), POINTER :: zt_zu ! air temperature at wind speed height REAL(wp), DIMENSION(:,:), POINTER :: zq_zu ! air spec. hum. at wind speed height REAL(wp), DIMENSION(:,:), POINTER :: zU_zu ! bulk wind speed at height zu [m/s] REAL(wp), DIMENSION(:,:), POINTER :: ztpot ! potential temperature of air at z=rn_zqt [K] REAL(wp), DIMENSION(:,:), POINTER :: zrhoa ! density of air [kg/m^3] !!--------------------------------------------------------------------- ! IF( nn_timing == 1 ) CALL timing_start('blk_oce') ! CALL wrk_alloc( jpi,jpj, zwnd_i, zwnd_j, zsq, zqlw, zqsb, zqla, zevap ) CALL wrk_alloc( jpi,jpj, Cd, Ch, Ce, zst, zt_zu, zq_zu ) CALL wrk_alloc( jpi,jpj, zU_zu, ztpot, zrhoa ) ! ! local scalars ( place there for vector optimisation purposes) zst(:,:) = pst(:,:) + rt0 ! convert SST from Celcius to Kelvin (and set minimum value far above 0 K) ! ----------------------------------------------------------------------------- ! ! 0 Wind components and module at T-point relative to the moving ocean ! ! ----------------------------------------------------------------------------- ! ! ... components ( U10m - U_oce ) at T-point (unmasked) !!gm move zwnd_i (_j) set to zero inside the key_cyclone ??? zwnd_i(:,:) = 0._wp zwnd_j(:,:) = 0._wp #if defined key_cyclone CALL wnd_cyc( kt, zwnd_i, zwnd_j ) ! add analytical tropical cyclone (Vincent et al. JGR 2012) DO jj = 2, jpjm1 DO ji = fs_2, fs_jpim1 ! vect. opt. sf(jp_wndi)%fnow(ji,jj,1) = sf(jp_wndi)%fnow(ji,jj,1) + zwnd_i(ji,jj) sf(jp_wndj)%fnow(ji,jj,1) = sf(jp_wndj)%fnow(ji,jj,1) + zwnd_j(ji,jj) END DO END DO #endif DO jj = 2, jpjm1 DO ji = fs_2, fs_jpim1 ! vect. opt. zwnd_i(ji,jj) = ( sf(jp_wndi)%fnow(ji,jj,1) - rn_vfac * 0.5 * ( pu(ji-1,jj ) + pu(ji,jj) ) ) zwnd_j(ji,jj) = ( sf(jp_wndj)%fnow(ji,jj,1) - rn_vfac * 0.5 * ( pv(ji ,jj-1) + pv(ji,jj) ) ) END DO END DO CALL lbc_lnk( zwnd_i(:,:) , 'T', -1. ) CALL lbc_lnk( zwnd_j(:,:) , 'T', -1. ) ! ... scalar wind ( = | U10m - U_oce | ) at T-point (masked) wndm(:,:) = SQRT( zwnd_i(:,:) * zwnd_i(:,:) & & + zwnd_j(:,:) * zwnd_j(:,:) ) * tmask(:,:,1) ! ----------------------------------------------------------------------------- ! ! I Radiative FLUXES ! ! ----------------------------------------------------------------------------- ! ! ocean albedo assumed to be constant + modify now Qsr to include the diurnal cycle ! Short Wave zztmp = 1. - albo IF( ln_dm2dc ) THEN ; qsr(:,:) = zztmp * sbc_dcy( sf(jp_qsr)%fnow(:,:,1) ) * tmask(:,:,1) ELSE ; qsr(:,:) = zztmp * sf(jp_qsr)%fnow(:,:,1) * tmask(:,:,1) ENDIF zqlw(:,:) = ( sf(jp_qlw)%fnow(:,:,1) - Stef * zst(:,:)*zst(:,:)*zst(:,:)*zst(:,:) ) * tmask(:,:,1) ! Long Wave ! ----------------------------------------------------------------------------- ! ! II Turbulent FLUXES ! ! ----------------------------------------------------------------------------- ! ! ... specific humidity at SST and IST tmask( zsq(:,:) = 0.98 * q_sat( zst(:,:), sf(jp_slp)%fnow(:,:,1) ) !! !! Estimate of potential temperature at z=rn_zqt, based on adiabatic lapse-rate !! (see Josey, Gulev & Yu, 2013) / doi=10.1016/B978-0-12-391851-2.00005-2 !! (since reanalysis products provide T at z, not theta !) ztpot = sf(jp_tair)%fnow(:,:,1) + gamma_moist( sf(jp_tair)%fnow(:,:,1), sf(jp_humi)%fnow(:,:,1) ) * rn_zqt SELECT CASE( nblk ) !== transfer coefficients ==! Cd, Ch, Ce at T-point ! CASE( np_NCAR ) ; CALL turb_ncar ( rn_zqt, rn_zu, zst, ztpot, zsq, sf(jp_humi)%fnow, wndm, & ! NCAR-COREv2 & Cd, Ch, Ce, zt_zu, zq_zu, zU_zu ) CASE( np_COARE_3p0 ) ; CALL turb_coare ( rn_zqt, rn_zu, zst, ztpot, zsq, sf(jp_humi)%fnow, wndm, & ! COARE v3.0 & Cd, Ch, Ce, zt_zu, zq_zu, zU_zu ) CASE( np_COARE_3p5 ) ; CALL turb_coare3p5( rn_zqt, rn_zu, zst, ztpot, zsq, sf(jp_humi)%fnow, wndm, & ! COARE v3.5 & Cd, Ch, Ce, zt_zu, zq_zu, zU_zu ) CASE( np_ECMWF ) ; CALL turb_ecmwf ( rn_zqt, rn_zu, zst, ztpot, zsq, sf(jp_humi)%fnow, wndm, & ! ECMWF & Cd, Ch, Ce, zt_zu, zq_zu, zU_zu ) CASE DEFAULT CALL ctl_stop( 'STOP', 'sbc_oce: non-existing bulk formula selected' ) END SELECT ! ! Compute true air density : IF( ABS(rn_zu - rn_zqt) > 0.01 ) THEN ! At zu: (probably useless to remove zrho*grav*rn_zu from SLP...) zrhoa(:,:) = rho_air( zt_zu(:,:) , zq_zu(:,:) , sf(jp_slp)%fnow(:,:,1) ) ELSE ! At zt: zrhoa(:,:) = rho_air( sf(jp_tair)%fnow(:,:,1), sf(jp_humi)%fnow(:,:,1), sf(jp_slp)%fnow(:,:,1) ) END IF Cd_oce(:,:) = Cd(:,:) ! record value of pure ocean-atm. drag (clem) DO jj = 1, jpj ! tau module, i and j component DO ji = 1, jpi zztmp = zrhoa(ji,jj) * zU_zu(ji,jj) * Cd(ji,jj) ! using bulk wind speed taum (ji,jj) = zztmp * wndm (ji,jj) zwnd_i(ji,jj) = zztmp * zwnd_i(ji,jj) zwnd_j(ji,jj) = zztmp * zwnd_j(ji,jj) END DO END DO ! ! add the HF tau contribution to the wind stress module IF( lhftau ) taum(:,:) = taum(:,:) + sf(jp_tdif)%fnow(:,:,1) CALL iom_put( "taum_oce", taum ) ! output wind stress module ! ... utau, vtau at U- and V_points, resp. ! Note the use of 0.5*(2-umask) in order to unmask the stress along coastlines ! Note the use of MAX(tmask(i,j),tmask(i+1,j) is to mask tau over ice shelves DO jj = 1, jpjm1 DO ji = 1, fs_jpim1 utau(ji,jj) = 0.5 * ( 2. - umask(ji,jj,1) ) * ( zwnd_i(ji,jj) + zwnd_i(ji+1,jj ) ) & & * MAX(tmask(ji,jj,1),tmask(ji+1,jj,1)) vtau(ji,jj) = 0.5 * ( 2. - vmask(ji,jj,1) ) * ( zwnd_j(ji,jj) + zwnd_j(ji ,jj+1) ) & & * MAX(tmask(ji,jj,1),tmask(ji,jj+1,1)) END DO END DO CALL lbc_lnk( utau(:,:), 'U', -1. ) CALL lbc_lnk( vtau(:,:), 'V', -1. ) ! Turbulent fluxes over ocean ! ----------------------------- ! zqla used as temporary array, for rho*U (common term of bulk formulae): zqla(:,:) = zrhoa(:,:) * zU_zu(:,:) IF( ABS( rn_zu - rn_zqt) < 0.01_wp ) THEN !! q_air and t_air are given at 10m (wind reference height) zevap(:,:) = rn_efac*MAX( 0._wp, zqla(:,:)*Ce(:,:)*(zsq(:,:) - sf(jp_humi)%fnow(:,:,1)) ) ! Evaporation, using bulk wind speed zqsb (:,:) = cp_air(sf(jp_humi)%fnow(:,:,1))*zqla(:,:)*Ch(:,:)*(zst(:,:) - ztpot(:,:) ) ! Sensible Heat, using bulk wind speed ELSE !! q_air and t_air are not given at 10m (wind reference height) ! Values of temp. and hum. adjusted to height of wind during bulk algorithm iteration must be used!!! zevap(:,:) = rn_efac*MAX( 0._wp, zqla(:,:)*Ce(:,:)*(zsq(:,:) - zq_zu(:,:) ) ) ! Evaporation ! using bulk wind speed zqsb (:,:) = cp_air(sf(jp_humi)%fnow(:,:,1))*zqla(:,:)*Ch(:,:)*(zst(:,:) - zt_zu(:,:) ) ! Sensible Heat ! using bulk wind speed ENDIF zqla(:,:) = L_vap(zst(:,:)) * zevap(:,:) ! Latent Heat flux IF(ln_ctl) THEN CALL prt_ctl( tab2d_1=zqla , clinfo1=' blk_oce: zqla : ', tab2d_2=Ce , clinfo2=' Ce : ' ) CALL prt_ctl( tab2d_1=zqsb , clinfo1=' blk_oce: zqsb : ', tab2d_2=Ch , clinfo2=' Ch : ' ) CALL prt_ctl( tab2d_1=zqlw , clinfo1=' blk_oce: zqlw : ', tab2d_2=qsr, clinfo2=' qsr : ' ) CALL prt_ctl( tab2d_1=zsq , clinfo1=' blk_oce: zsq : ', tab2d_2=zst, clinfo2=' zst : ' ) CALL prt_ctl( tab2d_1=utau , clinfo1=' blk_oce: utau : ', mask1=umask, & & tab2d_2=vtau , clinfo2= ' vtau : ', mask2=vmask ) CALL prt_ctl( tab2d_1=wndm , clinfo1=' blk_oce: wndm : ') CALL prt_ctl( tab2d_1=zst , clinfo1=' blk_oce: zst : ') ENDIF ! ----------------------------------------------------------------------------- ! ! III Total FLUXES ! ! ----------------------------------------------------------------------------- ! ! emp (:,:) = ( zevap(:,:) & ! mass flux (evap. - precip.) & - sf(jp_prec)%fnow(:,:,1) * rn_pfac ) * tmask(:,:,1) ! qns(:,:) = zqlw(:,:) - zqsb(:,:) - zqla(:,:) & ! Downward Non Solar & - sf(jp_snow)%fnow(:,:,1) * rn_pfac * lfus & ! remove latent melting heat for solid precip & - zevap(:,:) * pst(:,:) * rcp & ! remove evap heat content at SST & + ( sf(jp_prec)%fnow(:,:,1) - sf(jp_snow)%fnow(:,:,1) ) * rn_pfac & ! add liquid precip heat content at Tair & * ( sf(jp_tair)%fnow(:,:,1) - rt0 ) * rcp & & + sf(jp_snow)%fnow(:,:,1) * rn_pfac & ! add solid precip heat content at min(Tair,Tsnow) & * ( MIN( sf(jp_tair)%fnow(:,:,1), rt0_snow ) - rt0 ) * cpic * tmask(:,:,1) ! #if defined key_lim3 qns_oce(:,:) = zqlw(:,:) - zqsb(:,:) - zqla(:,:) ! non solar without emp (only needed by LIM3) qsr_oce(:,:) = qsr(:,:) #endif ! IF ( nn_ice == 0 ) THEN CALL iom_put( "qlw_oce" , zqlw ) ! output downward longwave heat over the ocean CALL iom_put( "qsb_oce" , - zqsb ) ! output downward sensible heat over the ocean CALL iom_put( "qla_oce" , - zqla ) ! output downward latent heat over the ocean CALL iom_put( "qemp_oce", qns-zqlw+zqsb+zqla ) ! output downward heat content of E-P over the ocean CALL iom_put( "qns_oce" , qns ) ! output downward non solar heat over the ocean CALL iom_put( "qsr_oce" , qsr ) ! output downward solar heat over the ocean CALL iom_put( "qt_oce" , qns+qsr ) ! output total downward heat over the ocean tprecip(:,:) = sf(jp_prec)%fnow(:,:,1) * rn_pfac ! output total precipitation [kg/m2/s] sprecip(:,:) = sf(jp_snow)%fnow(:,:,1) * rn_pfac ! output solid precipitation [kg/m2/s] CALL iom_put( 'snowpre', sprecip * 86400. ) ! Snow CALL iom_put( 'precip' , tprecip * 86400. ) ! Total precipitation ENDIF ! IF(ln_ctl) THEN CALL prt_ctl(tab2d_1=zqsb , clinfo1=' blk_oce: zqsb : ', tab2d_2=zqlw , clinfo2=' zqlw : ') CALL prt_ctl(tab2d_1=zqla , clinfo1=' blk_oce: zqla : ', tab2d_2=qsr , clinfo2=' qsr : ') CALL prt_ctl(tab2d_1=pst , clinfo1=' blk_oce: pst : ', tab2d_2=emp , clinfo2=' emp : ') CALL prt_ctl(tab2d_1=utau , clinfo1=' blk_oce: utau : ', mask1=umask, & & tab2d_2=vtau , clinfo2= ' vtau : ' , mask2=vmask ) ENDIF ! CALL wrk_dealloc( jpi,jpj, zwnd_i, zwnd_j, zsq, zqlw, zqsb, zqla, zevap ) CALL wrk_dealloc( jpi,jpj, Cd, Ch, Ce, zst, zt_zu, zq_zu ) CALL wrk_dealloc( jpi,jpj, zU_zu, ztpot, zrhoa ) ! IF( nn_timing == 1 ) CALL timing_stop('blk_oce') ! END SUBROUTINE blk_oce #if defined key_lim3 SUBROUTINE blk_ice_tau !!--------------------------------------------------------------------- !! *** ROUTINE blk_ice_tau *** !! !! ** Purpose : provide the surface boundary condition over sea-ice !! !! ** Method : compute momentum using bulk formulation !! formulea, ice variables and read atmospheric fields. !! NB: ice drag coefficient is assumed to be a constant !!--------------------------------------------------------------------- INTEGER :: ji, jj ! dummy loop indices ! REAL(wp), DIMENSION(:,:) , POINTER :: zrhoa ! REAL(wp) :: zwnorm_f, zwndi_f , zwndj_f ! relative wind module and components at F-point REAL(wp) :: zwndi_t , zwndj_t ! relative wind components at T-point REAL(wp), DIMENSION(:,:), POINTER :: Cd ! transfer coefficient for momentum (tau) !!--------------------------------------------------------------------- ! IF( nn_timing == 1 ) CALL timing_start('blk_ice_tau') ! CALL wrk_alloc( jpi,jpj, zrhoa ) CALL wrk_alloc( jpi,jpj, Cd ) Cd(:,:) = Cd_ice ! Make ice-atm. drag dependent on ice concentration (see Lupkes et al. 2012) (clem) IF( ln_Cd_L12 ) THEN CALL Cdn10_Lupkes2012( Cd ) ! calculate new drag from Lupkes(2012) equations ENDIF ! local scalars ( place there for vector optimisation purposes) ! Computing density of air! Way denser that 1.2 over sea-ice !!! !! zrhoa (:,:) = rho_air(sf(jp_tair)%fnow(:,:,1), sf(jp_humi)%fnow(:,:,1), sf(jp_slp)%fnow(:,:,1)) !!gm brutal.... utau_ice (:,:) = 0._wp vtau_ice (:,:) = 0._wp wndm_ice (:,:) = 0._wp !!gm end ! ----------------------------------------------------------------------------- ! ! Wind components and module relative to the moving ocean ( U10m - U_ice ) ! ! ----------------------------------------------------------------------------- ! SELECT CASE( cp_ice_msh ) CASE( 'I' ) ! B-grid ice dynamics : I-point (i.e. F-point with sea-ice indexation) ! and scalar wind at T-point ( = | U10m - U_ice | ) (masked) DO jj = 2, jpjm1 DO ji = 2, jpim1 ! B grid : NO vector opt ! ... scalar wind at I-point (fld being at T-point) zwndi_f = 0.25 * ( sf(jp_wndi)%fnow(ji-1,jj ,1) + sf(jp_wndi)%fnow(ji ,jj ,1) & & + sf(jp_wndi)%fnow(ji-1,jj-1,1) + sf(jp_wndi)%fnow(ji ,jj-1,1) ) - rn_vfac * u_ice(ji,jj) zwndj_f = 0.25 * ( sf(jp_wndj)%fnow(ji-1,jj ,1) + sf(jp_wndj)%fnow(ji ,jj ,1) & & + sf(jp_wndj)%fnow(ji-1,jj-1,1) + sf(jp_wndj)%fnow(ji ,jj-1,1) ) - rn_vfac * v_ice(ji,jj) zwnorm_f = zrhoa(ji,jj) * Cd(ji,jj) * SQRT( zwndi_f * zwndi_f + zwndj_f * zwndj_f ) ! ... ice stress at I-point utau_ice(ji,jj) = zwnorm_f * zwndi_f vtau_ice(ji,jj) = zwnorm_f * zwndj_f ! ... scalar wind at T-point (fld being at T-point) zwndi_t = sf(jp_wndi)%fnow(ji,jj,1) - rn_vfac * 0.25 * ( u_ice(ji,jj+1) + u_ice(ji+1,jj+1) & & + u_ice(ji,jj ) + u_ice(ji+1,jj ) ) zwndj_t = sf(jp_wndj)%fnow(ji,jj,1) - rn_vfac * 0.25 * ( v_ice(ji,jj+1) + v_ice(ji+1,jj+1) & & + v_ice(ji,jj ) + v_ice(ji+1,jj ) ) wndm_ice(ji,jj) = SQRT( zwndi_t * zwndi_t + zwndj_t * zwndj_t ) * tmask(ji,jj,1) END DO END DO CALL lbc_lnk( utau_ice, 'I', -1. ) CALL lbc_lnk( vtau_ice, 'I', -1. ) CALL lbc_lnk( wndm_ice, 'T', 1. ) ! CASE( 'C' ) ! C-grid ice dynamics : U & V-points (same as ocean) DO jj = 2, jpj DO ji = fs_2, jpi ! vect. opt. zwndi_t = ( sf(jp_wndi)%fnow(ji,jj,1) - rn_vfac * 0.5 * ( u_ice(ji-1,jj ) + u_ice(ji,jj) ) ) zwndj_t = ( sf(jp_wndj)%fnow(ji,jj,1) - rn_vfac * 0.5 * ( v_ice(ji ,jj-1) + v_ice(ji,jj) ) ) wndm_ice(ji,jj) = SQRT( zwndi_t * zwndi_t + zwndj_t * zwndj_t ) * tmask(ji,jj,1) END DO END DO DO jj = 2, jpjm1 DO ji = fs_2, fs_jpim1 ! vect. opt. utau_ice(ji,jj) = 0.5 * zrhoa(ji,jj) * Cd(ji,jj) * ( wndm_ice(ji+1,jj ) + wndm_ice(ji,jj) ) & & * ( 0.5 * (sf(jp_wndi)%fnow(ji+1,jj,1) + sf(jp_wndi)%fnow(ji,jj,1) ) - rn_vfac * u_ice(ji,jj) ) vtau_ice(ji,jj) = 0.5 * zrhoa(ji,jj) * Cd(ji,jj) * ( wndm_ice(ji,jj+1 ) + wndm_ice(ji,jj) ) & & * ( 0.5 * (sf(jp_wndj)%fnow(ji,jj+1,1) + sf(jp_wndj)%fnow(ji,jj,1) ) - rn_vfac * v_ice(ji,jj) ) END DO END DO CALL lbc_lnk( utau_ice, 'U', -1. ) CALL lbc_lnk( vtau_ice, 'V', -1. ) CALL lbc_lnk( wndm_ice, 'T', 1. ) ! END SELECT IF(ln_ctl) THEN CALL prt_ctl(tab2d_1=utau_ice , clinfo1=' blk_ice: utau_ice : ', tab2d_2=vtau_ice , clinfo2=' vtau_ice : ') CALL prt_ctl(tab2d_1=wndm_ice , clinfo1=' blk_ice: wndm_ice : ') ENDIF IF( nn_timing == 1 ) CALL timing_stop('blk_ice_tau') END SUBROUTINE blk_ice_tau SUBROUTINE blk_ice_flx( ptsu, palb ) !!--------------------------------------------------------------------- !! *** ROUTINE blk_ice_flx *** !! !! ** Purpose : provide the surface boundary condition over sea-ice !! !! ** Method : compute heat and freshwater exchanged !! between atmosphere and sea-ice using bulk formulation !! formulea, ice variables and read atmmospheric fields. !! !! caution : the net upward water flux has with mm/day unit !!--------------------------------------------------------------------- REAL(wp), DIMENSION(:,:,:), INTENT(in) :: ptsu ! sea ice surface temperature REAL(wp), DIMENSION(:,:,:), INTENT(in) :: palb ! ice albedo (all skies) !! INTEGER :: ji, jj, jl ! dummy loop indices REAL(wp) :: zst2, zst3 ! local variable REAL(wp) :: zcoef_dqlw, zcoef_dqla ! - - REAL(wp) :: zztmp, z1_lsub ! - - REAL(wp), DIMENSION(:,:,:), POINTER :: z_qlw ! long wave heat flux over ice REAL(wp), DIMENSION(:,:,:), POINTER :: z_qsb ! sensible heat flux over ice REAL(wp), DIMENSION(:,:,:), POINTER :: z_dqlw ! long wave heat sensitivity over ice REAL(wp), DIMENSION(:,:,:), POINTER :: z_dqsb ! sensible heat sensitivity over ice REAL(wp), DIMENSION(:,:) , POINTER :: zevap, zsnw ! evaporation and snw distribution after wind blowing (LIM3) REAL(wp), DIMENSION(:,:) , POINTER :: zrhoa REAL(wp), DIMENSION(:,:) , POINTER :: Cd ! transfer coefficient for momentum (tau) !!--------------------------------------------------------------------- ! IF( nn_timing == 1 ) CALL timing_start('blk_ice_flx') ! CALL wrk_alloc( jpi,jpj,jpl, z_qlw, z_qsb, z_dqlw, z_dqsb ) CALL wrk_alloc( jpi,jpj, zrhoa) CALL wrk_alloc( jpi,jpj, Cd ) Cd(:,:) = Cd_ice ! Make ice-atm. drag dependent on ice concentration (see Lupkes et al. 2012) (clem) IF( ln_Cd_L12 ) THEN CALL Cdn10_Lupkes2012( Cd ) ! calculate new drag from Lupkes(2012) equations ENDIF ! ! local scalars ( place there for vector optimisation purposes) zcoef_dqlw = 4.0 * 0.95 * Stef zcoef_dqla = -Ls * 11637800. * (-5897.8) ! zrhoa(:,:) = rho_air( sf(jp_tair)%fnow(:,:,1), sf(jp_humi)%fnow(:,:,1), sf(jp_slp)%fnow(:,:,1) ) ! zztmp = 1. / ( 1. - albo ) ! ! ========================== ! DO jl = 1, jpl ! Loop over ice categories ! ! ! ========================== ! DO jj = 1 , jpj DO ji = 1, jpi ! ----------------------------! ! I Radiative FLUXES ! ! ----------------------------! zst2 = ptsu(ji,jj,jl) * ptsu(ji,jj,jl) zst3 = ptsu(ji,jj,jl) * zst2 ! Short Wave (sw) qsr_ice(ji,jj,jl) = zztmp * ( 1. - palb(ji,jj,jl) ) * qsr(ji,jj) ! Long Wave (lw) z_qlw(ji,jj,jl) = 0.95 * ( sf(jp_qlw)%fnow(ji,jj,1) - Stef * ptsu(ji,jj,jl) * zst3 ) * tmask(ji,jj,1) ! lw sensitivity z_dqlw(ji,jj,jl) = zcoef_dqlw * zst3 ! ----------------------------! ! II Turbulent FLUXES ! ! ----------------------------! ! ... turbulent heat fluxes ! Sensible Heat z_qsb(ji,jj,jl) = zrhoa(ji,jj) * cpa * Cd(ji,jj) * wndm_ice(ji,jj) * ( ptsu(ji,jj,jl) - sf(jp_tair)%fnow(ji,jj,1) ) ! Latent Heat qla_ice(ji,jj,jl) = rn_efac * MAX( 0.e0, zrhoa(ji,jj) * Ls * Cd(ji,jj) * wndm_ice(ji,jj) & & * ( 11637800. * EXP( -5897.8 / ptsu(ji,jj,jl) ) / zrhoa(ji,jj) - sf(jp_humi)%fnow(ji,jj,1) ) ) ! Latent heat sensitivity for ice (Dqla/Dt) IF( qla_ice(ji,jj,jl) > 0._wp ) THEN dqla_ice(ji,jj,jl) = rn_efac * zcoef_dqla * Cd(ji,jj) * wndm_ice(ji,jj) / ( zst2 ) * EXP( -5897.8 / ptsu(ji,jj,jl) ) ELSE dqla_ice(ji,jj,jl) = 0._wp ENDIF ! Sensible heat sensitivity (Dqsb_ice/Dtn_ice) z_dqsb(ji,jj,jl) = zrhoa(ji,jj) * cpa * Cd(ji,jj) * wndm_ice(ji,jj) ! ----------------------------! ! III Total FLUXES ! ! ----------------------------! ! Downward Non Solar flux qns_ice (ji,jj,jl) = z_qlw (ji,jj,jl) - z_qsb (ji,jj,jl) - qla_ice (ji,jj,jl) ! Total non solar heat flux sensitivity for ice dqns_ice(ji,jj,jl) = - ( z_dqlw(ji,jj,jl) + z_dqsb(ji,jj,jl) + dqla_ice(ji,jj,jl) ) END DO ! END DO ! END DO ! tprecip(:,:) = sf(jp_prec)%fnow(:,:,1) * rn_pfac ! total precipitation [kg/m2/s] sprecip(:,:) = sf(jp_snow)%fnow(:,:,1) * rn_pfac ! solid precipitation [kg/m2/s] CALL iom_put( 'snowpre', sprecip * 86400. ) ! Snow precipitation CALL iom_put( 'precip' , tprecip * 86400. ) ! Total precipitation CALL wrk_alloc( jpi,jpj, zevap, zsnw ) ! --- evaporation --- ! z1_lsub = 1._wp / Lsub evap_ice (:,:,:) = rn_efac * qla_ice (:,:,:) * z1_lsub ! sublimation devap_ice(:,:,:) = rn_efac * dqla_ice(:,:,:) * z1_lsub ! d(sublimation)/dT zevap (:,:) = rn_efac * ( emp(:,:) + tprecip(:,:) ) ! evaporation over ocean ! --- evaporation minus precipitation --- ! zsnw(:,:) = 0._wp CALL lim_thd_snwblow( (1.-at_i_b(:,:)), zsnw ) ! snow distribution over ice after wind blowing emp_oce(:,:) = ( 1._wp - at_i_b(:,:) ) * zevap(:,:) - ( tprecip(:,:) - sprecip(:,:) ) - sprecip(:,:) * (1._wp - zsnw ) emp_ice(:,:) = SUM( a_i_b(:,:,:) * evap_ice(:,:,:), dim=3 ) - sprecip(:,:) * zsnw emp_tot(:,:) = emp_oce(:,:) + emp_ice(:,:) ! --- heat flux associated with emp --- ! qemp_oce(:,:) = - ( 1._wp - at_i_b(:,:) ) * zevap(:,:) * sst_m(:,:) * rcp & ! evap at sst & + ( tprecip(:,:) - sprecip(:,:) ) * ( sf(jp_tair)%fnow(:,:,1) - rt0 ) * rcp & ! liquid precip at Tair & + sprecip(:,:) * ( 1._wp - zsnw ) * & ! solid precip at min(Tair,Tsnow) & ( ( MIN( sf(jp_tair)%fnow(:,:,1), rt0_snow ) - rt0 ) * cpic * tmask(:,:,1) - lfus ) qemp_ice(:,:) = sprecip(:,:) * zsnw * & ! solid precip (only) & ( ( MIN( sf(jp_tair)%fnow(:,:,1), rt0_snow ) - rt0 ) * cpic * tmask(:,:,1) - lfus ) ! --- total solar and non solar fluxes --- ! qns_tot(:,:) = ( 1._wp - at_i_b(:,:) ) * qns_oce(:,:) + SUM( a_i_b(:,:,:) * qns_ice(:,:,:), dim=3 ) & & + qemp_ice(:,:) + qemp_oce(:,:) qsr_tot(:,:) = ( 1._wp - at_i_b(:,:) ) * qsr_oce(:,:) + SUM( a_i_b(:,:,:) * qsr_ice(:,:,:), dim=3 ) ! --- heat content of precip over ice in J/m3 (to be used in 1D-thermo) --- ! qprec_ice(:,:) = rhosn * ( ( MIN( sf(jp_tair)%fnow(:,:,1), rt0_snow ) - rt0 ) * cpic * tmask(:,:,1) - lfus ) ! --- heat content of evap over ice in W/m2 (to be used in 1D-thermo) --- DO jl = 1, jpl qevap_ice(:,:,jl) = 0._wp ! should be -evap_ice(:,:,jl)*( ( Tice - rt0 ) * cpic * tmask(:,:,1) ) ! But we do not have Tice => consider it at 0degC => evap=0 END DO CALL wrk_dealloc( jpi,jpj, zevap, zsnw ) !-------------------------------------------------------------------- ! FRACTIONs of net shortwave radiation which is not absorbed in the ! thin surface layer and penetrates inside the ice cover ! ( Maykut and Untersteiner, 1971 ; Ebert and Curry, 1993 ) ! fr1_i0(:,:) = ( 0.18 * ( 1.0 - cldf_ice ) + 0.35 * cldf_ice ) fr2_i0(:,:) = ( 0.82 * ( 1.0 - cldf_ice ) + 0.65 * cldf_ice ) ! ! IF(ln_ctl) THEN CALL prt_ctl(tab3d_1=qla_ice , clinfo1=' blk_ice: qla_ice : ', tab3d_2=z_qsb , clinfo2=' z_qsb : ', kdim=jpl) CALL prt_ctl(tab3d_1=z_qlw , clinfo1=' blk_ice: z_qlw : ', tab3d_2=dqla_ice, clinfo2=' dqla_ice : ', kdim=jpl) CALL prt_ctl(tab3d_1=z_dqsb , clinfo1=' blk_ice: z_dqsb : ', tab3d_2=z_dqlw , clinfo2=' z_dqlw : ', kdim=jpl) CALL prt_ctl(tab3d_1=dqns_ice, clinfo1=' blk_ice: dqns_ice : ', tab3d_2=qsr_ice , clinfo2=' qsr_ice : ', kdim=jpl) CALL prt_ctl(tab3d_1=ptsu , clinfo1=' blk_ice: ptsu : ', tab3d_2=qns_ice , clinfo2=' qns_ice : ', kdim=jpl) CALL prt_ctl(tab2d_1=tprecip , clinfo1=' blk_ice: tprecip : ', tab2d_2=sprecip , clinfo2=' sprecip : ') ENDIF CALL wrk_dealloc( jpi,jpj,jpl, z_qlw, z_qsb, z_dqlw, z_dqsb ) CALL wrk_dealloc( jpi,jpj, zrhoa ) CALL wrk_dealloc( jpi,jpj, Cd ) ! IF( nn_timing == 1 ) CALL timing_stop('blk_ice_flx') END SUBROUTINE blk_ice_flx #endif FUNCTION rho_air( ptak, pqa, pslp ) !!------------------------------------------------------------------------------- !! *** FUNCTION rho_air *** !! !! ** Purpose : compute density of (moist) air using the eq. of state of the atmosphere !! !! ** Author: L. Brodeau, june 2016 / AeroBulk (https://sourceforge.net/p/aerobulk) !!------------------------------------------------------------------------------- REAL(wp), DIMENSION(jpi,jpj), INTENT(in) :: ptak ! air temperature [K] REAL(wp), DIMENSION(jpi,jpj), INTENT(in) :: pqa ! air specific humidity [kg/kg] REAL(wp), DIMENSION(jpi,jpj), INTENT(in) :: pslp ! pressure in [Pa] REAL(wp), DIMENSION(jpi,jpj) :: rho_air ! density of moist air [kg/m^3] !!------------------------------------------------------------------------------- ! rho_air = pslp / ( R_dry*ptak * ( 1._wp + rctv0*pqa ) ) ! END FUNCTION rho_air FUNCTION cp_air( pqa ) !!------------------------------------------------------------------------------- !! *** FUNCTION cp_air *** !! !! ** Purpose : Compute specific heat (Cp) of moist air !! !! ** Author: L. Brodeau, june 2016 / AeroBulk (https://sourceforge.net/p/aerobulk) !!------------------------------------------------------------------------------- REAL(wp), DIMENSION(jpi,jpj), INTENT(in) :: pqa ! air specific humidity [kg/kg] REAL(wp), DIMENSION(jpi,jpj) :: cp_air ! specific heat of moist air [J/K/kg] !!------------------------------------------------------------------------------- ! Cp_air = Cp_dry + Cp_vap * pqa ! END FUNCTION cp_air FUNCTION q_sat( ptak, pslp ) !!---------------------------------------------------------------------------------- !! *** FUNCTION q_sat *** !! !! ** Purpose : Specific humidity at saturation in [kg/kg] !! Based on accurate estimate of "e_sat" !! aka saturation water vapor (Goff, 1957) !! !! ** Author: L. Brodeau, june 2016 / AeroBulk (https://sourceforge.net/p/aerobulk) !!---------------------------------------------------------------------------------- REAL(wp), DIMENSION(jpi,jpj), INTENT(in) :: ptak ! air temperature [K] REAL(wp), DIMENSION(jpi,jpj), INTENT(in) :: pslp ! sea level atmospheric pressure [Pa] REAL(wp), DIMENSION(jpi,jpj) :: q_sat ! Specific humidity at saturation [kg/kg] ! INTEGER :: ji, jj ! dummy loop indices REAL(wp) :: ze_sat, ztmp ! local scalar !!---------------------------------------------------------------------------------- ! DO jj = 1, jpj DO ji = 1, jpi ! ztmp = rt0 / ptak(ji,jj) ! ! Vapour pressure at saturation [hPa] : WMO, (Goff, 1957) ze_sat = 10.**( 10.79574*(1. - ztmp) - 5.028*LOG10(ptak(ji,jj)/rt0) & & + 1.50475*10.**(-4)*(1. - 10.**(-8.2969*(ptak(ji,jj)/rt0 - 1.)) ) & & + 0.42873*10.**(-3)*(10.**(4.76955*(1. - ztmp)) - 1.) + 0.78614 ) ! q_sat(ji,jj) = reps0 * ze_sat/( 0.01_wp*pslp(ji,jj) - (1._wp - reps0)*ze_sat ) ! 0.01 because SLP is in [Pa] ! END DO END DO ! END FUNCTION q_sat FUNCTION gamma_moist( ptak, pqa ) !!---------------------------------------------------------------------------------- !! *** FUNCTION gamma_moist *** !! !! ** Purpose : Compute the moist adiabatic lapse-rate. !! => http://glossary.ametsoc.org/wiki/Moist-adiabatic_lapse_rate !! => http://www.geog.ucsb.edu/~joel/g266_s10/lecture_notes/chapt03/oh10_3_01/oh10_3_01.html !! !! ** Author: L. Brodeau, june 2016 / AeroBulk (https://sourceforge.net/p/aerobulk) !!---------------------------------------------------------------------------------- REAL(wp), DIMENSION(jpi,jpj), INTENT(in) :: ptak ! air temperature [K] REAL(wp), DIMENSION(jpi,jpj), INTENT(in) :: pqa ! specific humidity [kg/kg] REAL(wp), DIMENSION(jpi,jpj) :: gamma_moist ! moist adiabatic lapse-rate ! INTEGER :: ji, jj ! dummy loop indices REAL(wp) :: zrv, ziRT ! local scalar !!---------------------------------------------------------------------------------- ! DO jj = 1, jpj DO ji = 1, jpi zrv = pqa(ji,jj) / (1. - pqa(ji,jj)) ziRT = 1. / (R_dry*ptak(ji,jj)) ! 1/RT gamma_moist(ji,jj) = grav * ( 1. + cevap*zrv*ziRT ) / ( Cp_dry + cevap*cevap*zrv*reps0*ziRT/ptak(ji,jj) ) END DO END DO ! END FUNCTION gamma_moist FUNCTION L_vap( psst ) !!--------------------------------------------------------------------------------- !! *** FUNCTION L_vap *** !! !! ** Purpose : Compute the latent heat of vaporization of water from temperature !! !! ** Author: L. Brodeau, june 2016 / AeroBulk (https://sourceforge.net/p/aerobulk) !!---------------------------------------------------------------------------------- REAL(wp), DIMENSION(jpi,jpj) :: L_vap ! latent heat of vaporization [J/kg] REAL(wp), DIMENSION(jpi,jpj), INTENT(in) :: psst ! water temperature [K] !!---------------------------------------------------------------------------------- ! L_vap = ( 2.501 - 0.00237 * ( psst(:,:) - rt0) ) * 1.e6 ! END FUNCTION L_vap #if defined key_lim3 SUBROUTINE Cdn10_Lupkes2012( Cd ) !!---------------------------------------------------------------------- !! *** ROUTINE Cdn10_Lupkes2012 *** !! !! ** Purpose : Recompute the ice-atm drag at 10m height to make !! it dependent on edges at leads, melt ponds and flows. !! After some approximations, this can be resumed to a dependency !! on ice concentration. !! !! ** Method : The parameterization is taken from Lupkes et al. (2012) eq.(50) !! with the highest level of approximation: level4, eq.(59) !! The generic drag over a cell partly covered by ice can be re-written as follows: !! !! Cd = Cdw * (1-A) + Cdi * A + Ce * (1-A)**(nu+1/(10*beta)) * A**mu !! !! Ce = 2.23e-3 , as suggested by Lupkes (eq. 59) !! nu = mu = beta = 1 , as suggested by Lupkes (eq. 59) !! A is the concentration of ice minus melt ponds (if any) !! !! This new drag has a parabolic shape (as a function of A) starting at !! Cdw(say 1.5e-3) for A=0, reaching 1.97e-3 for A~0.5 !! and going down to Cdi(say 1.4e-3) for A=1 !! !! It is theoretically applicable to all ice conditions (not only MIZ) !! => see Lupkes et al (2013) !! !! ** References : Lupkes et al. JGR 2012 (theory) !! Lupkes et al. GRL 2013 (application to GCM) !! !!---------------------------------------------------------------------- REAL(wp), DIMENSION(:,:), INTENT(inout) :: Cd REAL(wp), PARAMETER :: zCe = 2.23e-03_wp REAL(wp), PARAMETER :: znu = 1._wp REAL(wp), PARAMETER :: zmu = 1._wp REAL(wp), PARAMETER :: zbeta = 1._wp REAL(wp) :: zcoef !!---------------------------------------------------------------------- zcoef = znu + 1._wp / ( 10._wp * zbeta ) ! generic drag over a cell partly covered by ice !!Cd(:,:) = Cd_oce(:,:) * ( 1._wp - at_i_b(:,:) ) + & ! pure ocean drag !! & Cd_ice * at_i_b(:,:) + & ! pure ice drag !! & zCe * ( 1._wp - at_i_b(:,:) )**zcoef * at_i_b(:,:)**zmu ! change due to sea-ice morphology ! ice-atm drag Cd(:,:) = Cd_ice + & ! pure ice drag & zCe * ( 1._wp - at_i_b(:,:) )**zcoef * at_i_b(:,:)**(zmu-1._wp) ! change due to sea-ice morphology END SUBROUTINE Cdn10_Lupkes2012 #endif !!====================================================================== END MODULE sbcblk