New URL for NEMO forge!   http://forge.nemo-ocean.eu

Since March 2022 along with NEMO 4.2 release, the code development moved to a self-hosted GitLab.
This present forge is now archived and remained online for history.
Biblio.bib in branches/DEV_r1826_DOC/DOC/TexFiles/Biblio – NEMO

source: branches/DEV_r1826_DOC/DOC/TexFiles/Biblio/Biblio.bib @ 1831

Last change on this file since 1831 was 1831, checked in by gm, 14 years ago

cover, namelist, rigid-lid, e3t, appendices, see ticket: #658

  • Property svn:executable set to *
File size: 113.0 KB
Line 
1This file was created with JabRef 2.2.
2Encoding: UTF8
3
4@STRING{AP = {Academic Press}}
5
6@STRING{AREPS = {Annual Review of Earth Planetary Science}}
7
8@STRING{ARFM = {Annual Review of Fluid Mechanics}}
9
10@STRING{ASL = {Atmospheric Science Letters}}
11
12@STRING{AW = {Addison-Wesley}}
13
14@STRING{CD = {Clim. Dyn.}}
15
16@STRING{CP = {Clarendon Press}}
17
18@STRING{CUP = {Cambridge University Press}}
19
20@STRING{D = {Dover Publications}}
21
22@STRING{DAO = {Dyn. Atmos. Ocean}}
23
24@STRING{DSR = {Deep-Sea Res.}}
25
26@STRING{E = {Eyrolles}}
27
28@STRING{GRL = {Geophys. Res. Let.}}
29
30@STRING{I = {Interscience}}
31
32@STRING{JAOT = {J. Atmos. Ocean Tech.}}
33
34@STRING{JAS = {J. Atmos. Sc.}}
35
36@STRING{JC = {J. Climate}}
37
38@STRING{JCP = {J. Comput. Phys.}}
39
40@STRING{JGR = {J. Geophys. Res}}
41
42@STRING{JHUP = {The Johns Hopkins University Press}}
43
44@STRING{JMR = {J. Mar. Res.}}
45
46@STRING{JMS = {J. Mar. Sys.}}
47
48@STRING{JMSJ = {J. Met. Soc. Japan}}
49
50@STRING{JPO = {J. Phys. Oceanogr.}}
51
52@STRING{JWS = {John Wiley and Sons}}
53
54@STRING{M = {Macmillan}}
55
56@STRING{MGH = {McGraw-Hill}}
57
58@STRING{MWR = {Mon. Wea. Rev.}}
59
60@STRING{Nature = {Nat.}}
61
62@STRING{NH = {North-Holland}}
63
64@STRING{Ocean = {Oceanology}}
65
66@STRING{OD = {Ocean Dynamics}}
67
68@STRING{OM = {Ocean Modelling}}
69
70@STRING{OS = {Ocean Science}}
71
72@STRING{OUP = {Oxford University Press}}
73
74@STRING{PH = {Prentice-Hall}}
75
76@STRING{PO = {Prog. Oceangr.}}
77
78@STRING{PP = {Pergamon Press}}
79
80@STRING{PRSL = {Proceedings of the Royal Society of London}}
81
82@STRING{QJRMS = {Quart. J. Roy. Meteor. Soc.}}
83
84@STRING{Recherche = {La Recherche}}
85
86@STRING{Science = {Science}}
87
88@STRING{SV = {Springer-Verlag}}
89
90@STRING{Tellus = {Tellus}}
91
92@ARTICLE{Adcroft_Campin_OM04,
93  author = {A. Adcroft and J.-M. Campin},
94  title = {Re-scaled height coordinates for accurate representation of free-surface
95   flows in ocean circulation models},
96  journal = OM,
97  year = {2004},
98  volume = {7},
99  owner = {gm},
100  timestamp = {2008.01.27}
101}
102
103@ARTICLE{Arakawa1966,
104  author = {A. Arakawa},
105  title = {Computational design for long term numerical integration of the equations
106   of fluid motion, two-dimensional incompressible flow, Part. I.},
107  journal = JCP,
108  year = {1966},
109  volume = {I},
110  pages = {119--149},
111  owner = {gm},
112  timestamp = {2007.08.04}
113}
114
115@ARTICLE{Arakawa_Hsu_MWR90,
116  author = {A. Arakawa and Y.-J. G. Hsu},
117  title = {Energy Conserving and Potential-Enstrophy Dissipating Schemes for
118   the Shallow Water Equations},
119  journal = MWR,
120  year = {1990},
121  volume = {118},
122  pages = {1960--1969},
123  number = {10},
124  abstract = {To incorporate potential enstrophy dissipation into discrete shallow
125   water equations with no or arbitrarily small energy dissipation,
126   a family of finite-difference schemes have been derived with which
127   potential enstrophy is guaranteed to decrease while energy is conserved
128   (when the mass flux is nondivergent and time is continuous). Among
129   this family of schemes, there is a member that minimizes the spurious
130   impact of infinite potential vorticities associated with infinitesimal
131   fluid depth. The scheme is, therefore, useful for problems in which
132   the free surface may intersect with the lower boundary.},
133  date = {October 01, 1990},
134  owner = {gm},
135  timestamp = {2007.08.05}
136}
137
138@ARTICLE{Arakawa_Lamb_MWR81,
139  author = {Arakawa, Akio and Lamb, Vivian R.},
140  title = {A Potential Enstrophy and Energy Conserving Scheme for the Shallow
141   Water Equations},
142  journal = MWR,
143  year = {1981},
144  volume = {109},
145  pages = {18--36},
146  number = {1},
147  abstract = {To improve the simulation of nonlinear aspects of the flow over steep
148   topography, a potential enstrophy and energy conserving scheme for
149   the shallow water equations is derived. It is pointed out that a
150   family of schemes can conserve total energy for general flow and
151   potential enstrophy for flow with no mass flux divergence. The newly
152   derived scheme is a unique member of this family, that conserves
153   both potential enstrophy and energy for general flow. Comparison
154   by means of numerical experiment with a scheme that conserves (potential)
155   enstrophy for purely horizontal nondivergent flow demonstrated the
156   considerable superiority of the newly derived potential enstrophy
157   and energy conserving scheme, not only in suppressing a spurious
158   energy cascade but also in determining the overall flow regime. The
159   potential enstrophy and energy conserving scheme for a spherical
160   grid is also presented.},
161  date = {January 01, 1981},
162  owner = {gm},
163  timestamp = {2007.08.05}
164}
165
166@ARTICLE{Arhan2006,
167  author = {M. Arhan and A.M. Treguier and B. Bourles and S. Michel},
168  title = {Diagnosing the annual cycle of the Equatorial Undercurrent in the
169   Atlantic Ocean from a general circulation model},
170  journal = JPO,
171  year = {2006},
172  volume = { 36},
173  pages = {1502--1522}
174}
175
176@ARTICLE{ASSELIN1972,
177  author = {R. Asselin},
178  title = {Frequency Filter for Time Integrations},
179  journal = MWR,
180  year = {1972},
181  volume = {100},
182  pages = {487--490},
183  number = {6},
184  abstract = {A simple filter for controlling high-frequency computational and physical
185   modes arising in time integrations is proposed. A linear analysis
186   of the filter with leapfrog, implicit, and semi-implicit, differences
187   is made. The filter very quickly removes the computational mode and
188   is also very useful in damping high-frequency physical waves. The
189   stability of the leapfrog scheme is adversely affected when a large
190   filter parameter is used, but the analysis shows that the use of
191   centered differences with frequency filter is still more advantageous
192   than the use of the Euler-backward method. An example of the use
193   of the filter in an actual forecast with the meteorological equations
194   is shown.},
195  date = {June 01, 1972},
196  owner = {gm},
197  timestamp = {2007.08.03}
198}
199
200@ARTICLE{Atmadipoera_al_DSR09,
201  author = {A. Atmadipoera and R. Molcard and G. Madec and S.Wijffels and J.
202   Sprintall and A. Koch-Larrouy and I. Jaya and A. Supangat},
203  title = {Characteristics and Variability of the Indonesian Throughflow Water
204   at the Outflow Straits},
205  journal = DSR,
206  year = {2009},
207  volume = {in press},
208  owner = {gm},
209  timestamp = {2009.08.19}
210}
211
212@ARTICLE{Aumont_al_GBC99,
213  author = {O. Aumont and P. Monfray and J. C. Orr and G. Madec and E. Maier-Reimer},
214  title = {Nutrient trapping in the equatorial Pacific: The ocean circulation
215   solution},
216  journal = GBC,
217  year = {1999},
218  volume = {13},
219  pages = {351--369},
220  owner = {gm},
221  timestamp = {2009.08.20}
222}
223
224@ARTICLE{Aumont_al_CD98,
225  author = {O. Aumont and J.C. Orr and D. Jamous and P. Monfray and O. Marti
226   and G. Madec},
227  title = {A degradation approach to accelerate simulations to steady state
228   in a 3-D tracer transport model of the global ocean},
229  journal = CD,
230  year = {1998},
231  volume = {14},
232  pages = {101--116},
233  owner = {gm},
234  timestamp = {2009.08.20}
235}
236
237@ARTICLE{Axell_JGR02,
238  author = {L. B. Axell},
239  title = {Wind-driven internal waves and Langmuir circulations in a numerical
240   ocean model of the southern Baltic Sea},
241  journal = JGR,
242  year = {2002},
243  volume = {107},
244  doi = {doi:10.1029/2001JC000922},
245  owner = {gm},
246  timestamp = {2009.01.16}
247}
248
249@ARTICLE{Ayina_al_JC06,
250  author = {L.-H. Ayina and A. Bentamy and A. Munes-Mestaz and G. Madec},
251  title = {The Impact of Satellite Winds and Latent Heat Fluxes in a Numerical
252   Simulation of the Tropical Pacific Ocean},
253  journal = JC,
254  year = {2006},
255  volume = {19},
256  pages = {5889–-5902},
257  owner = {gm},
258  timestamp = {2009.08.19}
259}
260
261@ARTICLE{Barnier_al_OD06,
262  author = {B. Barnier and G. Madec and T. Penduff and J.-M. Molines and A.-M.
263   Treguier and J. Le Sommer and A. Beckmann and A. Biastoch and C.
264   Boning and J. Dengg and C. Derval and E. Durand and S. Gulev and
265   E. Remy and C. Talandier and S. Theetten and M. Maltrud and J. McClean
266   and B. De Cuevas},
267  title = {Impact of partial steps and momentum advection schemes in a global
268   ocean circulation model at eddy-permitting resolution.},
269  journal = OD,
270  year = {2006},
271  volume = {56},
272  pages = {543--567},
273  doi = {10.1007/s10236-006-0082-1},
274  owner = {gm},
275  timestamp = {2008.01.25}
276}
277
278@INCOLLECTION{Barnier1996,
279  author = {B. Barnier and P. Marchesiello and A.P. de Miranda},
280  title = {Modeling the ocean circulation in the South Atlantic: A strategy
281   for dealing with open boundaries},
282  booktitle = {The South Atlantic: Present and Past Circulation},
283  publisher = {Springer-Verlag, Berlin},
284  year = {1996},
285  editor = {G.Wefer and W.H. Berger and G Siedler and D. Webb},
286  pages = {289-304}
287}
288
289@ARTICLE{Barnier1998,
290  author = {B. Barnier and P. Marchesiello and A. P. de Miranda and J.M. Molines
291   and M. Coulibaly},
292  title = {A sigma-coordinate primitive equation model for studying the circulation
293   in the South Atlantic I, Model configuration with error estimates},
294  journal = DSR,
295  year = {1998},
296  volume = {45},
297  pages = {543--572}
298}
299
300@ARTICLE{Barthelet_al_CRAS98,
301  author = {P. Barthelet and S. Bony and P. Braconnot and A. Braum and D. Cariolle
302   and E. Cohen-Solal and J.-L. Dufresne and P. Delecluse and M. D\'{e}qu\'{e}
303   and L. Fairhead and M.-A. Filiberti and M. Forichon and J.-Y. Grandpeix
304   and E. Guilyardi and M.-N. Houssais and M. Imbard and H. Le Treut
305   and C. Lévy and Z.X. Li and G. Madec and P. Marquet and O. Marti
306   and S. Planton and L. Terray and O. Thual and S. Valcke},
307  title = {Global coupled simulations of climate change due to increased atmospheric
308   CO2 concentration. C. R. Acad. Sci Paris, 326, 677-684.},
309  journal = {C. R. Acad. Sci Paris},
310  year = {1998},
311  volume = {326},
312  pages = {677--684},
313  owner = {gm},
314  timestamp = {2009.08.20}
315}
316
317@ARTICLE{Beckmann1998,
318  author = {A. Beckmann},
319  title = {The representation of bottom boundary layer processes in numerical
320   ocean circulation models.},
321  journal = {Ocean modelling and parameterization, E. P. Chassignet and J. Verron
322   (eds.), NATO Science Series, Kluwer Academic Publishers},
323  year = {1998},
324  owner = {gm},
325  timestamp = {2007.08.04}
326}
327
328@ARTICLE{BeckDos1998,
329  author = {A. Beckmann and R. D\"{o}scher},
330  title = {A method for improved representation of dense water spreading over
331   topography in geopotential-coordinate models},
332  journal = JPO,
333  year = {1998},
334  volume = {27},
335  pages = {581--591},
336  owner = {gm},
337  timestamp = {2007.08.04}
338}
339
340@ARTICLE{Beckmann1993,
341  author = {A. Beckmann and D. B. Haidvogel},
342  title = {Numerical Simulation of Flow around a Tall Isolated Seamount. Part
343   I - Problem Formulation and Model Accuracy},
344  journal = JPO,
345  year = {1993},
346  volume = {23},
347  pages = {1736--1753},
348  number = {8},
349  abstract = {A sigma coordinate ocean circulation model is employed to study flow
350   trapped to a tall seamount in a periodic f-plane channel. In Part
351   I, errors arising from the pressure gradient formulation in the steep
352   topography/strong stratification limit are examined. To illustrate
353   the error properties, a linearized adiabatic version of the model
354   is considered, both with and without forcing, and starting from a
355   resting state with level isopycnals. The systematic discretization
356   errors from the horizontal pressure gradient terms are shown analytically
357   to increase with steeper topography (relative to a fixed horizontal
358   grid) and for stronger stratification (as measured by the Burger
359   number). For an initially quiescent unforced ocean, the pressure
360   gradient errors produce a spurious oscillating current that, at the
361   end of 10 days, is approximately 1 cm s−1 in amplitude. The
362   period of the spurious oscillation (about 0.5 days) is shown to be
363   a consequence of the particular form of the pressure gradient terms
364   in the sigma coordinate system. With the addition of an alongchannel
365   diurnal forcing, resonantly generated seamount-trapped waves are
366   observed to form. Error levels in these solutions are less than those
367   in the unforced cases; spurious time-mean currents are several orders
368   of magnitude less in amplitude than the resonant propagating waves.
369   However, numerical instability is encountered in a wider range of
370   parameter space. The properties of these resonantly generated waves
371   is explored in detail in Part II of this study. Several new formulations
372   of the pressure gradient terms are tested. Two of the formulations—constructed
373   to have additional conservation properties relative to the traditional
374   form of the pressure gradient terms (conservation of JEBAR and conservation
375   of energy)—are found to have error properties generally similar
376   to those of the traditional formulation. A corrected gradient algorithm,
377   based upon vertical interpolation of the pressure field, has a dramatically
378   reduced error level but a much more restrictive range of stable behavior.},
379  date = {August 01, 1993},
380  owner = {gm},
381  timestamp = {2007.08.03}
382}
383
384@ARTICLE{Bernie_al_CD08,
385  author = {D. Bernie and E. Guilyardi and G. Madec and J. M. Slingo and S. J.
386   Woolnough},
387  title = {Impact of resolving the diurnal cycle in an ocean–atmosphere GCM.
388   Part 2: A diurnally coupled CGCM},
389  journal = CD,
390  year = {2008},
391  volume = {31, 7},
392  pages = {909--925},
393  owner = {gm},
394  timestamp = {2009.08.16},
395  url = {http://dx.doi.org/10.1007/s00382-008-0429-z}
396}
397
398@ARTICLE{Bernie_al_CD07,
399  author = {D. Bernie and E. Guilyardi and G. Madec and J. M. Slingo and S. J.
400   Woolnough},
401  title = {Impact of resolving the diurnal cycle in an ocean–atmosphere GCM.
402   Part 1: a diurnally forced OGCM},
403  journal = CD,
404  year = {2007},
405  volume = {29, 6},
406  pages = {575--590},
407  owner = {gm},
408  timestamp = {2009.08.16}
409}
410
411@ARTICLE{Bessiere_al_GRL08,
412  author = {L. Bessi\'{e}res and G. Madec and F. Lyard},
413  title = {Global Tidal Residual Mean Circulation: Does it Affect a Climate
414   OGCM?},
415  journal = GRL,
416  year = {2008},
417  volume = {35},
418  pages = {L03609},
419  doi = {10.1029/2007GL032644},
420  owner = {gm},
421  timestamp = {2009.08.19}
422}
423
424@ARTICLE{Biastoch_al_JC08,
425  author = {A. Biastoch and C. W. Böning and J. Getzlaff and J.-M. Molines and
426   G. Madec},
427  title = {Causes of interannual – decadal variability in the meridional overturning
428   circulation of the mid-latitude North Atlantic Ocean},
429  journal = JC,
430  year = {2008},
431  volume = {21, 24},
432  pages = {6599-6615},
433  doi = {10.1175/2008JCLI2404.1},
434  owner = {gm},
435  timestamp = {2009.08.19}
436}
437
438@ARTICLE{Blanke_al_JPO99,
439  author = {B. Blanke and M. Arhan and G. Madec and S. Roche},
440  title = {Warm Water Paths in the Equatorial Atlantic as Diagnosed with a General
441   Circulation Model},
442  journal = JPO,
443  year = {1999},
444  volume = {29, 11},
445  pages = {2753-2768},
446  owner = {gm},
447  timestamp = {2008.05.27}
448}
449
450@ARTICLE{Blanke1993,
451  author = {B. Blanke and P. Delecluse},
452  title = {Low frequency variability of the tropical Atlantic ocean simulated
453   by a general circulation model with mixed layer physics},
454  journal = JPO,
455  year = {1993},
456  volume = {23},
457  pages = {1363--1388}
458}
459
460@ARTICLE{blanketal97,
461  author = {B. Blanke and J. D. Neelin and D. Gutzler},
462  title = {Estimating the effect of stochastic wind forcing on ENSO irregularity},
463  journal = JC,
464  year = {1997},
465  volume = {10},
466  pages = {1473--1486},
467  abstract = {One open question in El Nin˜o–Southern Oscillation (ENSO) simulation
468   and predictability is the role of random
469   
470   forcing by atmospheric variability with short correlation times, on
471   coupled variability with interannual timescales.
472   
473   The discussion of this question requires a quantitative assessment
474   of the stochastic component of the wind stress
475   
476   forcing. Self-consistent estimates of this noise (the stochastic forcing)
477   can be made quite naturally in an empirical
478   
479   atmospheric model that uses a statistical estimate of the relationship
480   between sea surface temperature (SST) and
481   
482   wind stress anomaly patterns as the deterministic feedback between
483   the ocean and the atmosphere. The authors
484   
485   use such an empirical model as the atmospheric component of a hybrid
486   coupled model, coupled to the GFDL
487   
488   ocean general circulation model. The authors define as residual the
489   fraction of the Florida State University wind
490   
491   stress not explained by the empirical atmosphere run from observed
492   SST, and a noise product is constructed by
493   
494   random picks among monthly maps of this residual.
495   
496   The impact of included or excluded noise is assessed with several
497   ensembles of simulations. The model is
498   
499   run in coupled regimes where, in the absence of noise, it is perfectly
500   periodic: in the presence of prescribed
501   
502   seasonal variability, the model is strongly frequency locked on a
503   2-yr period; in annual average conditions it
504   
505   has a somewhat longer inherent ENSO period (30 months). Addition of
506   noise brings an irregular behavior that
507   
508   is considerably richer in spatial patterns as well as in temporal
509   structures. The broadening of the model ENSO
510   
511   spectral peak is roughly comparable to observed. The tendency to frequency
512   lock to subharmonic resonances
513   
514   of the seasonal cycle tends to increase the broadening and to emphasize
515   lower frequencies. An inclination to
516   
517   phase lock to preferred seasons persists even in the presence of noise-induced
518   irregularity. Natural uncoupled
519   
520   atmospheric variability is thus a strong candidate for explaining
521   the observed aperiodicity in ENSO time series.
522   
523   Model–model hindcast experiments also suggest the importance of atmospheric
524   noise in setting limits to ENSO
525   
526   predictability.},
527  pdf = {Blanke_etal_JC97.pdf}
528}
529
530@ARTICLE{Blanke_Raynaud_JPO97,
531  author = {B. Blanke and S. Raynaud},
532  title = {Kinematics of the Pacific Equatorial Undercurrent: An Eulerian and
533   Lagrangian Approach from GCM Results},
534  journal = JPO,
535  year = {1997},
536  volume = {27, 6},
537  pages = {1038--1053},
538  owner = {gm},
539  timestamp = {2008.05.27}
540}
541
542@ARTICLE{Blanke_al_JPO01,
543  author = {B. Blanke and S. Speich and G. Madec and K. Döös},
544  title = {A global Diagnostic of interocean mass transfers},
545  journal = JPO,
546  year = {2001},
547  volume = {31, 6},
548  pages = {1623--1632},
549  owner = {gm},
550  timestamp = {2009.08.20}
551}
552
553@ARTICLE{Blanke_al_GRL02,
554  author = {B. Blanke and S. Speich and G. Madec and R. Maug\'{e}},
555  title = {A global diagnostic of interior ocean ventilation},
556  journal = GRL,
557  year = {2002},
558  volume = {29, 8},
559  pages = {1081--1084},
560  owner = {gm},
561  timestamp = {2009.08.20}
562}
563
564@ARTICLE{Blayo2005,
565  author = {E. Blayo and L. Debreu},
566  title = {Revisiting open boundary conditions from the point of view of characteristic
567   variables},
568  journal = OM,
569  year = {2005},
570  volume = {9},
571  pages = {231--252}
572}
573
574@ARTICLE{Bopp_al_GBC01,
575  author = {L. Bopp and P. Monfray and O. Aumont and J.-L. Dufresne and H. Le
576   Treut and G. Madec and L. Terray and J.C. Orr},
577  title = {Potential impact of climate change on marine export production},
578  journal = GBC,
579  year = {2001},
580  volume = {15, 1},
581  pages = {81--101},
582  owner = {gm},
583  timestamp = {2009.08.20}
584}
585
586@ARTICLE{Bougeault1989,
587  author = {P. Bougeault and P. Lacarrere},
588  title = {Parameterization of Orography-Induced Turbulence in a Mesobeta--Scale
589   Model},
590  journal = MWR,
591  year = {1989},
592  volume = {117},
593  pages = {1872--1890},
594  number = {8},
595  abstract = {The possibility of extending existing techniques for turbulence parameterization
596   in the planetary boundary layer to attitude, orography-induced turbulence
597   events is examined. Starting from a well-tested scheme, we show that
598   it is possible to generalize the specification method of the length
599   scales, with no deterioration of the scheme performance in the boundary
600   layer. The new scheme is implemented in a two-dimensional version
601   of a limited-area, numerical model used for the simulation of mesobeta-scale
602   atmospheric flows. Three well-known cases of orographically induced
603   turbulence are studied. The comparison with observations and former
604   studies shows a satisfactory behavior of the new scheme.},
605  date = {August 01, 1989},
606  owner = {gm},
607  timestamp = {2007.08.06}
608}
609
610@ARTICLE{Boulanger_al_GRL01,
611  author = {J.-P. Boulanger and E. Durand and J.-P. Duvel and C. Menkes and P.
612   Delecluse and M. Imbard and M. Lengaigne and G.Madec and S. Masson},
613  title = {Role of non-linear oceanic processes in the response to westerly
614   wind events: new implications for the 1997 El Niño onset},
615  journal = GRL,
616  year = {2001},
617  volume = {28, 8},
618  pages = {1603--1606},
619  owner = {gm},
620  timestamp = {2009.08.20}
621}
622
623@ARTICLE{de_Boyer_Montegut_al_JGR04,
624  author = {C. de Boyer Mont\'{e}gut and G. Madec and A.S. Fischer and A. Lazar
625   and D. Iudicone},
626  title = {Mixed layer depth over the global ocean: An examination of profile
627   data and a profile-based climatology},
628  journal = JGR,
629  year = {2004},
630  volume = {109},
631  pages = {C12003},
632  doi = {10.1029/2004JC002378},
633  owner = {gm},
634  timestamp = {2009.08.19}
635}
636
637@ARTICLE{de_Boyer_Montegut_al_JC07,
638  author = {C. de Boyer Mont\'{e}gut and J. Vialard and F. Durand and G. Madec},
639  title = {Simulated seasonal and interannual variability of mixed layer heat
640   budget in the northern Indian Ocean},
641  journal = JC,
642  year = {2007},
643  volume = {20 (13)},
644  pages = {3249--3268},
645  owner = {gm},
646  timestamp = {2009.08.19}
647}
648
649@ARTICLE{Brown1978,
650  author = {J. A. Brown and K. A. Campana},
651  title = {An Economical Time-Differencing System for Numerical Weather Prediction},
652  journal = MWR,
653  year = {1978},
654  volume = {106},
655  pages = {1125--1136},
656  number = {8},
657  month = aug,
658  abstract = {A simple method for integrating the primitive equations is presented
659   which allows for a timestep increment up to twice that of the conventional
660   leapfrog scheme. It consists of a time-averaging operator, which
661   incorporates three consecutive time levels, on the pressure gradient
662   terms in the equations of motion. An attractive feature of the method
663   is its case in programming, since the resulting finite-difference
664   equations can he solved explicitly.Presented here are linear analyses
665   of the method applied to the barotropic and two-layer baroclinic
666   gravity waves. Also presented is an analysis of the method with a
667   time-damping device incorporated, which is an alternative in controlling
668   linearly amplifying computational modes.},
669  owner = {gm},
670  timestamp = {2007.08.05}
671}
672
673@ARTICLE{Bryan1997,
674  author = {K. Bryan},
675  title = {A Numerical Method for the Study of the Circulation of the World
676   Ocean},
677  journal = JCP,
678  year = {1997},
679  volume = {135, 2},
680  owner = {gm},
681  timestamp = {2007.08.10}
682}
683
684@ARTICLE{Bryan1984,
685  author = {K. Bryan},
686  title = {Accelerating the convergence to equilibrium of ocean-climate models},
687  journal = JPO,
688  year = {1984},
689  volume = {14},
690  owner = {gm},
691  timestamp = {2007.08.10}
692}
693
694@ARTICLE{Bryden1973,
695  author = {H. L. Bryden},
696  title = {New polynomials for thermal expansion, adiabatic temperature gradient
697   
698   and potential temperature of sea water},
699  journal = DSR,
700  year = {1973},
701  volume = {20},
702  pages = {401--408},
703  owner = {gm},
704  timestamp = {2007.08.04}
705}
706
707@ARTICLE{Burchard_OM02,
708  author = {Hans Burchard},
709  title = {Energy-conserving discretisation of turbulent shear and buoyancy
710   production},
711  journal = OM,
712  year = {2002},
713  volume = {4},
714  pages = {347--361},
715  number = {3-4},
716  doi = {DOI: 10.1016/S1463-5003(02)00009-4},
717  owner = {gm},
718  timestamp = {2008.11.28},
719  url = {http://www.sciencedirect.com/science/article/B6VPS-45GKJ95-2/2/073d76a0fba5defe75fcd65e9b5d1b4f}
720}
721
722@ARTICLE{Campin2004,
723  author = {J.-M. Campin and A. Adcroft and C. Hill and J. Marshall},
724  title = {Conservation of properties in a free-surface model},
725  journal = OM,
726  year = {2004},
727  volume = {6, 3-4},
728  pages = {221--244},
729  owner = {gm},
730  timestamp = {2007.08.04}
731}
732
733@ARTICLE{Campin_al_OM08,
734  author = {Jean-Michel Campin and John Marshall and David Ferreira},
735  title = {Sea ice-ocean coupling using a rescaled vertical coordinate z*},
736  journal = {Ocean Modelling},
737  year = {2008},
738  volume = {24},
739  pages = {1 - 14},
740  number = {1-2},
741  doi = {DOI: 10.1016/j.ocemod.2008.05.005},
742  issn = {1463-5003},
743  timestamp = {2010.01.20},
744  url = {http://www.sciencedirect.com/science/article/B6VPS-4SJP7N5-1/2/e098c3abccafb0972b52e0caf6dbf1f3}
745}
746
747@ARTICLE{Campin_Goosse_Tel99,
748  author = {J. M. Campin and H. Goosse},
749  title = {Parameterization of density-driven downsloping flow for a coarse-resolution
750   ocean model in z-coordinate},
751  journal = {Tellus},
752  year = {1999},
753  volume = {51},
754  pages = {412--430},
755  owner = {gm},
756  timestamp = {2008.01.20}
757}
758
759@ARTICLE{Covey_al_CD00,
760  author = {C. Covey and A. Abe-Ouchi and G.J. Boer and B.A. Boville and U. Cubasch
761   and L. Fairhead and G.M. Flato and H. Gordon and E. Guilyardi and
762   X. Jiang and T.C. Johns and H. Le Treut and G. Madec and G.A. Meehl
763   and R. Miller and A. Noda and S. B. Power and E. Roeckner and G.
764   Russell and E.K. Schneider and R.J. Stouffer and L. Terray and J.-S.
765   von Storch},
766  title = {The seasonal cycle in coupled ocean-atmosphere general circulation
767   models},
768  journal = CD,
769  year = {2000},
770  volume = {16},
771  pages = {775--787},
772  owner = {gm},
773  timestamp = {2009.08.20}
774}
775
776@ARTICLE{Cox1987,
777  author = {M. Cox},
778  title = {Isopycnal diffusion in a z-coordinate ocean model},
779  journal = OM,
780  year = {1987},
781  volume = {74},
782  pages = {1--9},
783  owner = {gm},
784  timestamp = {2007.08.03}
785}
786
787@ARTICLE{Cravatte_al_OM07,
788  author = {Cravatte, S. and G. Madec and T. Izumo and C. Menkes and A. Bozec},
789  title = {Progress in the 3-D circulation of the eastern equatorial Pacific
790   in a climate ocean model},
791  journal = OM,
792  year = {2007},
793  volume = {17, 1},
794  pages = {28--48},
795  owner = {gm},
796  timestamp = {2009.08.19}
797}
798
799@ARTICLE{Dorscher_Beckmann_JAOT00,
800  author = {R. D\"{o}scher and A. Beckmann},
801  title = {Effects of a Bottom Boundary Layer Parameterization in a Coarse-Resolution
802   Model of the North Atlantic Ocean},
803  journal = JAOT,
804  year = {2000},
805  volume = {17},
806  pages = {698--707},
807  owner = {gm},
808  timestamp = {2008.01.23}
809}
810
811@ARTICLE{Dandonneau_al_S04,
812  author = {Y. Dandonneau and C. Menkes and T. Gorgues and G. Madec},
813  title = {Reply to Peter Killworth, 2004 : « Comment on the Oceanic Rossby
814   Waves acting as a “Hay Rake” for ecosystem by-products »},
815  journal = {Science},
816  year = {2004},
817  volume = {304},
818  pages = {390},
819  owner = {gm},
820  timestamp = {2009.08.19}
821}
822
823@ARTICLE{Debreu_al_CG2008,
824  author = {L. Debreu and C. Vouland and E. Blayo},
825  title = {AGRIF: Adaptive Grid Refinement In Fortran},
826  journal = {Computers and Geosciences},
827  year = {2008},
828  volume = {34},
829  pages = {8--13},
830  owner = {gm},
831  timestamp = {2008.02.03}
832}
833
834@ARTICLE{Delecluse_Madec_Bk00,
835  author = {P. Delecluse and G. Madec},
836  title = {Ocean modelling and the role of the ocean in the climate system},
837  journal = {In \textit{Modeling the Earth's Climate and its Variability}, Les
838   Houches, Session, LXVII 1997,
839   
840   Eds. W. R. Holland, S. Joussaume and F. David, Elsevier Science,},
841  year = {2000},
842  pages = {237--313},
843  owner = {gm},
844  timestamp = {2008.02.03}
845}
846
847@ARTICLE{Doney_al_GBC04,
848  author = {S.C. Doney and K. Lindsay and K. Caldeira and J.−M. Campin and H.
849   Drange and J.−C. Dutay and M. Follows and Y. Gao and A. Gnanadesikan
850   and N. Gruber and A. Ishida and F. Joos and G. Madec and E. Maier−Reimer
851   and J.C. Marshall and R.J. Matear and P. Monfray and A. Mouchet and
852   R. Najjar and J.C. Orr and G.−K. Plattner and J. Sarmiento and R.
853   Schlitzer and R. Slater and I.J. Totterdell and M.−F. Weirig and
854   Y. Yamanaka and A. Yoo},
855  title = {Evaluating global ocean carbon models: the importance of realistic
856   physics},
857  journal = GBC,
858  year = {2004},
859  volume = {18},
860  pages = {GB3017},
861  doi = {10.1029/2003GB002150},
862  owner = {gm},
863  timestamp = {2009.08.19}
864}
865
866@ARTICLE{Dukowicz1994,
867  author = {J. K. Dukowicz and R. D. Smith},
868  title = {Implicit free-surface method for the Bryan-Cox-Semtner ocean model},
869  journal = JGR,
870  year = {1994},
871  volume = {99},
872  pages = {7991--8014},
873  owner = {gm},
874  timestamp = {2007.08.03}
875}
876
877@ARTICLE{Durand_al_JC07,
878  author = {F. Durand and D. Shankar and C. de Boyer Mont\'{e}gut and S.S.C.
879   Shenoi and B. Blanke and G. Madec},
880  title = {Modeling the barrier-layer formation in the South-Eastern Arabian
881   Sea},
882  journal = JC,
883  year = {2007},
884  volume = {20 (10)},
885  pages = {2109--2120},
886  owner = {gm},
887  timestamp = {2009.08.19}
888}
889
890@ARTICLE{Durand_al_GRL04,
891  author = {F. Durand and S. R. Shetye and J. Vialard and D. Shankar and S.S.C.
892   Shenoi and C. Eth\'{e} and G. Madec},
893  title = {Impact of temperature inversions on SST evolution in the South−Eastern
894   Arabian Sea during the pre−summer monsoon season},
895  journal = GRL,
896  year = {2004},
897  volume = {31},
898  pages = {L01305},
899  doi = {10.1029/2003GL018906},
900  owner = {gm},
901  timestamp = {2009.08.19}
902}
903
904@INCOLLECTION{Durran2001,
905  author = {D.R. Durran },
906  title = {Open boundary conditions: fact and fiction},
907  booktitle = {Advances in Mathematical Modelling of Atmosphere and Ocean Dynamics},
908  publisher = {Kluwer Academic Publishers},
909  year = {2001},
910  editor = {P.F. Hodnett}
911}
912
913@ARTICLE{Dutay_al_OM02,
914  author = {J.-C. Dutay and J.L. Bullister and S.C. Doney and J.C. Orr and R.
915   Najjar and K. Caldeira and J.-M. Campin and H. Drange and M. Follows
916   and Y. Gao and N. Gruber and M. W. Hecht and A. Ishida and F. Joos
917   and K. Lindsay and G. Madec and E. Maier-Reimer and J.C. Mashall
918   and R. J. Matear and P. Monfray and G.-K. Plattner and J. Sarmiento
919   and R. Schlitzer and R. Slater and I.J. Totterdell and M.-F. Weirig
920   and Y. Yamanaka and A. Tool},
921  title = {Evaluation of ocean model ventilation with CFC-11: comparison of
922   13 global ocean models},
923  journal = OM,
924  year = {2002},
925  volume = {4},
926  pages = {89--120},
927  owner = {gm},
928  timestamp = {2009.08.20}
929}
930
931@ARTICLE{Dutay_al_EFM09,
932  author = {J.-C. Dutay and J. Emile-Geay and D. Iudicone and P. Jean-Baptiste
933   and G. Madec and C. Carouge},
934  title = {Helium Isotopic Constraints on Simulated Ocean Circulations - Implications
935   for abyssal theories},
936  journal = {Environmental Fluid Mechanics},
937  year = {2009},
938  volume = {in revision},
939  owner = {gm},
940  timestamp = {2009.08.19}
941}
942
943@ARTICLE{Dutay.J.C2004,
944  author = {J. -C. Dutay and P. J. -Baptiste and J. -M. Campin and A. Ishida
945   and E. M. -Reimer and R. J. Matear and A. Mouchet and I. J. Totterdell
946   and Y. Yamanaka and K. Rodgers and G. Madec and J.C. Orr},
947  title = {Evaluation of OCMIP-2 ocean models’ deep circulation
948   
949   with mantle helium-3},
950  journal = JMS,
951  year = {2004},
952  pages = {1--22},
953  abstract = {We compare simulations of the injection of mantle helium-3 into the
954   deep ocean from six global coarse resolution models which participated
955   in the Ocean Carbon Model Intercomparison Project (OCMIP). We also
956   discuss the results of a study carried out with one of the models,
957   which examines the effect of the subgrid-scale mixing parameterization.
958   These sensitivity tests provide useful information to interpret the
959   differences among the OCMIP models and between model simulations
960   and the data.
961   
962   We find that the OCMIP models, which parameterize subgrid-scale mixing
963   using an eddy-induced velocity, tend to
964   
965   underestimate the ventilation of the deep ocean, based on diagnostics
966   with d3He. In these models, this parameterization is implemented
967   with a constant thickness diffusivity coefficient. In future simulations,
968   we recommend using such a parameterization with spatially and temporally
969   varying coefficients in order to moderate its effect on stratification.
970   
971   The performance of the models with regard to the formation of AABW
972   confirms the conclusion from a previous evaluation with CFC-11. Models
973   coupled with a sea-ice model produce a substantial bottom water formation
974   in the Southern Ocean that tends to overestimate AABW ventilation,
975   while models that are not coupled with a sea-ice model systematically
976   underestimate the formation of AABW.
977   
978   We also analyze specific features of the deep 3He distribution (3He
979   plumes) that are particularly well depicted in the data and which
980   put severe constraints on the deep circulation. We show that all
981   the models fail to reproduce a correct propagation of these plumes
982   in the deep ocean. The resolution of the models may be too coarse
983   to reproduce the strong and narrow currents in the deep ocean, and
984   the models do not incorporate the geothermal heating that may also
985   contribute to the generation of these currents. We also use the context
986   of OCMIP-2 to explore the potential of mantle helium-3 as a tool
987   to compare and evaluate modeled deep-ocean circulations. Although
988   the source function of mantle helium is known with a rather large
989   uncertainty, we find that the parameterization used for the injection
990   of mantle helium-3 is sufficient to generate realistic results, even
991   in the Atlantic Ocean where a previous pioneering study [J. Geophys.
992   Res. 100 (1995) 3829] claimed this parameterization generates
993   
994   inadequate results. These results are supported by a multi-tracer
995   evaluation performed by considering the simulated distributions of
996   both helium-3 and natural 14C, and comparing the simulated tracer
997   fields with available data.},
998  owner = {sandra},
999  pdf = {Dutay_etal_OCMIP_JMS04.pdf},
1000  timestamp = {2006.10.17}
1001}
1002
1003@ARTICLE{D'Ortenzio_al_GRL05,
1004  author = {F. D’Ortenzio and D. Iudicone and C. de Boyer Mont\'{e}gut and P.
1005   Testor and D. Antoine and S. Marullo and R. Santoleri and G. Madec},
1006  title = {Seasonal variability of the mixed layer depth in the Mediterranean
1007   Sea : a new climatology based on analysis of individual profiles},
1008  journal = GRL,
1009  year = {2005},
1010  volume = {32},
1011  pages = {L12605},
1012  doi = {10.1029/2005GL022463},
1013  owner = {gm},
1014  timestamp = {2009.08.19}
1015}
1016
1017@ARTICLE{Eiseman1980,
1018  author = {P. R. Eiseman and A. P. Stone},
1019  title = {Conservation lows of fluid dynamics -- A survey},
1020  journal = {SIAM Review},
1021  year = {1980},
1022  volume = {22},
1023  pages = {12--27},
1024  owner = {gm},
1025  timestamp = {2007.08.03}
1026}
1027
1028@ARTICLE{Emile-Geay_Madec_OS09,
1029  author = {J. Emile-Geay and G. Madec},
1030  title = {Geothermal heating, diapycnal mixing and the abyssal circulation},
1031  journal = OS,
1032  year = {2009},
1033  volume = {5},
1034  pages = {281--325},
1035  owner = {gm},
1036  timestamp = {2008.07.16}
1037}
1038
1039@ARTICLE{EUROMODEL_OA95,
1040  author = {EUROMODEL Group (P.M. Lehucher, L. Beautier, M. Chartier, F. Martel,
1041   L. Mortier, P. Brehmer, C. Millot, C. Alberola, M. Benzhora, I. Taupier-Letage,
1042   G. Chabert d'Hieres, H. Didelle, P. Gleizon, D. Obaton, M. Crépon,
1043   C. Herbaut, G. Madec, S. Speich, J. Nihoul, J. M. Beckers, P. Brasseur,
1044   E. Deleersnijder, S. Djenidi, J. Font, A. Castellon, E. Garcia-Ladona,
1045   M. J. Lopez-Garcia, M. Manriquez, M. Maso, J. Salat, J. Tintore,
1046   S. Alonso, D. Gomis, A. Viudez, M. Astraldi, D. Bacciola, M. Borghini,
1047   F. Dell'amico, C. Galli, E. Lazzoni, G. P. Gasparini, S. Sparnocchia,
1048   and A. Harzallah, 1995 : Progress from 1989 to 1992 in understanding
1049   the circulation of the Western Mediterranean Sea. Oceanologica Acta,
1050   18, 2, 255-271.},
1051  title = {EUROMODEL Group (P.M. Lehucher, L. Beautier, M. Chartier, F. Martel,
1052   L. Mortier, P. Brehmer, C. Millot, C. Alberola, M. Benzhora, I. Taupier-Letage,
1053   G. Chabert d'Hieres, H. Didelle, P. Gleizon, D. Obaton, M. Crépon,
1054   C. Herbaut, G. Madec, S. Speich, J. Nihoul, J. M. Beckers, P. Brasseur,
1055   E. Deleersnijder, S. Djenidi, J. Font, A. Castellon, E. Garcia-Ladona,
1056   M. J. Lopez-Garcia, M. Manriquez, M. Maso, J. Salat, J. Tintore,
1057   S. Alonso, D. Gomis, A. Viudez, M. Astraldi, D. Bacciola, M. Borghini,
1058   F. Dell'amico, C. Galli, E. Lazzoni, G. P. Gasparini, S. Sparnocchia,
1059   and A. Harzallah, 1995 : Progress from 1989 to 1992 in understanding
1060   the circulation of the Western Mediterranean Sea.},
1061  journal = {Oceanologica Acta},
1062  year = {1995},
1063  volume = {18, 2},
1064  pages = {255--271},
1065  owner = {gm},
1066  timestamp = {2009.08.20}
1067}
1068
1069@PHDTHESIS{Farge1987,
1070  author = {M. Farge},
1071  title = {Dynamique non lineaire des ondes et des tourbillons dans les equations
1072   de Saint Venant},
1073  school = {Doctorat es Mathematiques, Paris VI University, 401 pp.},
1074  year = {1987},
1075  owner = {gm},
1076  timestamp = {2007.08.03}
1077}
1078
1079@ARTICLE{Farrow1995,
1080  author = {D. E. Farrow and D. P. Stevens},
1081  title = {A new tracer advection scheme for Bryan--Cox type ocean general circulation
1082   models},
1083  journal = JPO,
1084  year = {1995},
1085  volume = {25},
1086  pages = {1731--1741.},
1087  owner = {gm},
1088  timestamp = {2007.08.04}
1089}
1090
1091@ARTICLE{Fujio1991,
1092  author = {S. Fujio and N. Imasato},
1093  title = {Diagnostic calculation for circulation and water mass movement in
1094   the deep Pacific},
1095  journal = JGR,
1096  year = {1991},
1097  volume = {96},
1098  pages = {759--774},
1099  month = jan,
1100  owner = {gm},
1101  timestamp = {2007.08.04}
1102}
1103
1104@ARTICLE{Gargett1984,
1105  author = {A. E. Gargett},
1106  title = {Vertical eddy diffusivity in the ocean interior},
1107  journal = JMR,
1108  year = {1984},
1109  volume = {42},
1110  owner = {gm},
1111  timestamp = {2007.08.06}
1112}
1113
1114@ARTICLE{Gaspar1990,
1115  author = {P. Gaspar and Y. Gr{\'e}goris and J.-M. Lefevre},
1116  title = {A simple eddy kinetic energy model for simulations of the oceanic
1117   vertical mixing\: Tests at Station Papa and long-term upper ocean
1118   study site},
1119  journal = JGR,
1120  year = {1990},
1121  volume = {95(C9)},
1122  owner = {gm},
1123  timestamp = {2007.08.06}
1124}
1125
1126@ARTICLE{Gent1990,
1127  author = {P. R. Gent and J. C. Mcwilliams},
1128  title = {Isopycnal Mixing in Ocean Circulation Models},
1129  journal = JPO,
1130  year = {1990},
1131  volume = {20},
1132  pages = {150--155},
1133  number = {1},
1134  abstract = {A subgrid-scale form for mesoscale eddy mixing on isopycnal surfaces
1135   is proposed for use in non-eddy-resolving ocean circulation models.
1136   The mixing is applied in isopycnal coordinates to isopycnal layer
1137   thickness, or inverse density gradient, as well as to passive scalars,
1138   temperature and salinity. The transformation of these mixing forms
1139   to physical coordinates is also presented.},
1140  date = {January 01, 1990},
1141  owner = {gm},
1142  timestamp = {2007.08.03}
1143}
1144
1145@ARTICLE{Gerdes1993a,
1146  author = {R. Gerdes},
1147  title = {A primitive equation ocean circulation model using a general vertical
1148   coordinate transformation 1. Description and testing of the model},
1149  journal = JGR,
1150  year = {1993},
1151  volume = {98},
1152  owner = {gm},
1153  timestamp = {2007.08.03}
1154}
1155
1156@ARTICLE{Gerdes1993b,
1157  author = {R. Gerdes},
1158  title = {A primitive equation ocean circulation model using a general vertical
1159   coordinate transformation 2. Application to an overflow problem},
1160  journal = JGR,
1161  year = {1993},
1162  volume = {98},
1163  pages = {14703--14726},
1164  owner = {gm},
1165  timestamp = {2007.08.03}
1166}
1167
1168@TECHREPORT{Gibson_TR86,
1169  author = {J. K. Gibson},
1170  title = {Standard software development and maintenance},
1171  institution = {Operational Dep., ECMWF, Reading, UK.},
1172  year = {1986},
1173  owner = {gm},
1174  timestamp = {2008.02.03}
1175}
1176
1177@BOOK{Gill1982,
1178  title = {Atmosphere-Ocean Dynamics},
1179  publisher = {International Geophysics Series, Academic Press, New-York},
1180  year = {1982},
1181  author = {A. E. Gill}
1182}
1183
1184@ARTICLE{Goosse_al_JGR99,
1185  author = {H. Goosse and E. Deleersnijder and T. Fichefet and M. England},
1186  title = {Sensitivity of a global coupled ocean-sea ice model to the parameterization
1187   of vertical mixing},
1188  journal = JGR,
1189  year = {1999},
1190  volume = {104},
1191  pages = {13,681--13,695},
1192  owner = {gm},
1193  timestamp = {2008.05.27}
1194}
1195
1196@ARTICLE{Gorgues_al_GRL07,
1197  author = {T. Gorgues and C. Menkes and O. Aumont and K. Rodgers and G. Madec
1198   and Y. Dandonneau},
1199  title = {Indonesian Throughflow control of the eastern equatorial Pacific
1200   biogeochemistry},
1201  journal = GRL,
1202  year = {2007},
1203  volume = {34},
1204  pages = {L05609},
1205  doi = {10.1029/2006GL028210},
1206  owner = {gm},
1207  timestamp = {2009.08.19}
1208}
1209
1210@ARTICLE{Greatbatch_JGR94,
1211  author = {R. J. Greatbatch},
1212  title = {A note on the representation of steric sea level in models that conserve
1213   volume rather than mass},
1214  journal = JGR,
1215  year = {1994},
1216  volume = {99, C6},
1217  pages = {12,767--12,771},
1218  owner = {gm},
1219  timestamp = {2009.10.01}
1220}
1221
1222@BOOK{Griffies_Bk04,
1223  title = {Fundamentals of ocean climate models},
1224  publisher = {Princeton University Press, 434pp},
1225  year = {2004},
1226  author = {S.M. Griffies},
1227  owner = {gm},
1228  timestamp = {2007.08.05}
1229}
1230
1231@ARTICLE{Griffies_JPO98,
1232  author = {S.M. Griffies},
1233  title = {The Gent-McWilliams skew-flux},
1234  journal = JPO,
1235  year = {1998},
1236  volume = {28},
1237  pages = {831--841},
1238  owner = {gm},
1239  timestamp = {2008.06.28}
1240}
1241
1242@ARTICLE{Griffies_al_OM09,
1243  author = {S.M. Griffies and A. Biastoch and C. Boning and F. Bryan and G. Danabasoglu
1244   and E. P. Chassignet and M. H. England and R. Gerdes and H. Haak
1245   and R. W. Hallberg and W. Hazeleger and J. Jungclaus and W. G. Large
1246   and G. Madec and A. Pirani and B. L. Samuels and M. Scheinert and
1247   A. Sen Gupta and C. A. Severijns and H. L. Simmons and A.-M. Treguier
1248   and M. Winton and S. Yeager and J. Yin},
1249  title = {Coordinated Ocean-ice Reference Experiments (COREs)},
1250  journal = OM,
1251  year = {2009},
1252  volume = {26, 1-2},
1253  pages = {1--46},
1254  doi = {10.1016/j.ocemod.2008.08.007},
1255  owner = {gm},
1256  timestamp = {2009.08.15}
1257}
1258
1259@ARTICLE{Griffies_al_OS05,
1260  author = {S.M. Griffies and A. Gnanadesikan and K.W. Dixon and J.P. Dunne and
1261   R. Gerdes and M.J. Harrison and A. Rosati and J.L. Russell and B.L.
1262   Samuels and M.J. Spelman and M. Winton and R. Zhang},
1263  title = {Formulation of an ocean model for global climate simulations},
1264  journal = OS,
1265  year = {2005},
1266  volume = {1},
1267  pages = {45--79},
1268  abstract = {This paper summarizes the formulation of the ocean component to the
1269   Geophysical
1270   
1271   Fluid Dynamics Laboratory’s (GFDL) coupled climate model used for
1272   the 4th IPCC As- Assessment
1273   
1274   (AR4) of global climate change. In particular, it reviews elements
1275   of ocean
1276   
1277   sessment climate models and how they are pieced together for use in
1278   a state-of-the-art coupled 5
1279   
1280   model. Novel issues are also highlighted, with particular attention
1281   given to sensitivity of
1282   
1283   the coupled simulation to physical parameterizations and numerical
1284   methods. Features
1285   
1286   of the model described here include the following: (1) tripolar grid
1287   to resolve the Arctic
1288   
1289   Ocean without polar filtering, (2) partial bottom step representation
1290   of topography to
1291   
1292   better represent topographically influenced advective and wave processes,
1293   (3) more 10
1294   
1295   accurate equation of state, (4) three-dimensional flux limited tracer
1296   advection to reduce
1297   
1298   overshoots and undershoots, (5) incorporation of regional climatological
1299   variability in
1300   
1301   shortwave penetration, (6) neutral physics parameterization for representation
1302   of the
1303   
1304   pathways of tracer transport, (7) staggered time stepping for tracer
1305   conservation and
1306   
1307   numerical eciency, (8) anisotropic horizontal viscosities for representation
1308   of equato- 15
1309   
1310   rial currents, (9) parameterization of exchange with marginal seas,
1311   (10) incorporation
1312   
1313   of a free surface that accomodates a dynamic ice model and wave propagation,
1314   (11)
1315   
1316   transport of water across the ocean free surface to eliminate unphysical
1317   “virtual tracer
1318   
1319   flux” methods, (12) parameterization of tidal mixing on continental
1320   shelves.},
1321  owner = {sandra},
1322  pdf = {Griffies_al_OSD05.pdf},
1323  timestamp = {2007.01.25}
1324}
1325
1326@ARTICLE{Griffies_al_JPO98,
1327  author = {S.M. Griffies and A. Gnanadesikan and R.C. Pacanowski and V.D. Larichev
1328   and J.K. Dukowicz and R.D. Smith},
1329  title = {Isoneutral Diffusion in a z-Coordinate Ocean Model},
1330  journal = JPO,
1331  year = {1998},
1332  volume = {28},
1333  pages = {805--830},
1334  number = {5},
1335  abstract = {This paper considers the requirements that must be satisfied in order
1336   to provide a stable and physically based isoneutral tracer diffusion
1337   scheme in a z-coordinate ocean model. Two properties are emphasized:
1338   1) downgradient orientation of the diffusive fluxes along the neutral
1339   directions and 2) zero isoneutral diffusive flux of locally referenced
1340   potential density. It is shown that the Cox diffusion scheme does
1341   not respect either of these properties, which provides an explanation
1342   for the necessity to add a nontrivial background horizontal diffusion
1343   to that scheme. A new isoneutral diffusion scheme is proposed that
1344   aims to satisfy the stated properties and is found to require no
1345   horizontal background diffusion.},
1346  date = {May 01, 1998},
1347  owner = {gm},
1348  timestamp = {2007.08.05}
1349}
1350
1351@ARTICLE{Griffies_al_MWR01,
1352  author = {S.M. Griffies and R.C. Pacanowski and M. Schmidt and V. Balaji},
1353  title = {Tracer Conservation with an Explicit Free Surface Method for z-Coordinate
1354   Ocean Models},
1355  journal = MWR,
1356  year = {2001},
1357  volume = {129},
1358  pages = {1081--1098},
1359  number = {5},
1360  abstract = {This paper details a free surface method using an explicit time stepping
1361   scheme for use in z-coordinate ocean models. One key property that
1362   makes the method especially suitable for climate simulations is its
1363   very stable numerical time stepping scheme, which allows for the
1364   use of a long density time step, as commonly employed with coarse-resolution
1365   rigid-lid models. Additionally, the effects of the undulating free
1366   surface height are directly incorporated into the baroclinic momentum
1367   and tracer equations. The novel issues related to local and global
1368   tracer conservation when allowing for the top cell to undulate are
1369   the focus of this work. The method presented here is quasi-conservative
1370   locally and globally of tracer when the baroclinic and tracer time
1371   steps are equal. Important issues relevant for using this method
1372   in regional as well as large-scale climate models are discussed and
1373   illustrated, and examples of scaling achieved on parallel computers
1374   provided.},
1375  date = {May 01, 2001},
1376  owner = {gm},
1377  timestamp = {2007.08.04}
1378}
1379
1380@ARTICLE{Guilyardi_al_JC04,
1381  author = {E. Guilyardi and S. Gualdi and J. M. Slingo and A. Navarra and P.
1382   Delecluse and J. Cole and G. Madec and M. Roberts and M. Latif and
1383   L. Terray},
1384  title = {Representing El Ni\~{n}o in coupled ocean-atmosphere GCMs: the dominant
1385   role of the atmospheric component},
1386  journal = JC,
1387  year = {2004},
1388  volume = {17},
1389  pages = {4623--4629},
1390  owner = {gm},
1391  timestamp = {2009.08.19}
1392}
1393
1394@ARTICLE{Guilyardi_Madec_CD98,
1395  author = {E. Guilyardi and G. Madec},
1396  title = {Performance of the OPA-ARPEGE-T21 global ocean-atmosphere coupled
1397   model},
1398  journal = CD,
1399  year = {1997},
1400  volume = {13},
1401  pages = {149--165},
1402  owner = {gm},
1403  timestamp = {2009.08.20}
1404}
1405
1406@ARTICLE{Guilyardi_al_CD01,
1407  author = {E. Guilyardi and G. Madec and L. Terray},
1408  title = {The role of lateral ocean physics in the upper ocean thermal balance
1409   of a coupled ocean-atmosphere GCM},
1410  journal = CD,
1411  year = {2001},
1412  volume = {17},
1413  pages = {589--599},
1414  number = {8},
1415  pdf = {/home/ericg/TeX/Papers/Published_pdfs/Guilyardi_al_CD01.pdf}
1416}
1417
1418@ARTICLE{Guilyardi_al_CRAS95,
1419  author = {E. Guilyardi and G. Madec and L. Terray and M. D\'{e}qu\'{e} and
1420   M. Pontaud and M. Imbard and D. Stephenson and M.-A. Filiberti and
1421   D. Cariolle and P. Delecluse and O. Thual},
1422  title = {Simulation couplée océan-atmosphère de la variabilité du climat},
1423  journal = {C. R. Acad. Sci Paris},
1424  year = {1995},
1425  volume = {320, s\'{e}rie IIa},
1426  pages = {683--690},
1427  owner = {gm},
1428  timestamp = {2009.08.20}
1429}
1430
1431@ARTICLE{Guyon_al_EP99,
1432  author = {M. Guyon and G. Madec and F.-X. Roux and M. Imbard},
1433  title = {A Parallel ocean model for high resolution studies},
1434  journal = {Lecture Notes in Computer Science},
1435  year = {1999},
1436  volume = {Euro-Par'99},
1437  pages = {603--607},
1438  owner = {gm},
1439  timestamp = {2008.05.27}
1440}
1441
1442@ARTICLE{Guyon_al_CalPar99,
1443  author = {M. Guyon and G. Madec and F.-X. Roux and M. Imbard and C. Herbaut
1444   and P. Fronier},
1445  title = {Parallelization of the OPA ocean model},
1446  journal = {Calculateurs Paralleles},
1447  year = {1999},
1448  volume = {11, 4},
1449  pages = {499--517},
1450  owner = {gm},
1451  timestamp = {2008.05.27}
1452}
1453
1454@BOOK{Haltiner1980,
1455  title = {Numerical prediction and dynamic meteorology},
1456  publisher = {John Wiley {\&} Sons Eds., second edition, 477pp},
1457  year = {1980},
1458  author = {G. J. Haltiner and R. T. Williams},
1459  owner = {gm},
1460  timestamp = {2007.08.03}
1461}
1462
1463@ARTICLE{Haney1991,
1464  author = {R. L. Haney},
1465  title = {On the Pressure Gradient Force over Steep Topography in Sigma Coordinate
1466   Ocean Models},
1467  journal = JPO,
1468  year = {1991},
1469  volume = {21},
1470  pages = {610--619},
1471  number = {4},
1472  abstract = {The error in computing the pressure gradient force near steep topography
1473   using terms following (σ) coordinates is investigated in an
1474   ocean model using the family of vertical differencing schemes proposed
1475   by Arakawa and Suarez. The truncation error is estimated by substituting
1476   known buoyancy profiles into the finite difference hydrostatic and
1477   pressure gradient terms. The error due to “hydrostatic inconsistency,”
1478   which is not simply a space truncation error, is also documented.
1479   The results show that the pressure gradient error is spread throughout
1480   the water column, and it is sensitive to the vertical resolution
1481   and to the placement of the grid points relative to the vertical
1482   structure of the buoyancy field being modeled. Removing a reference
1483   state, as suggested for the atmosphere by Gary, reduces the truncation
1484   error associated with the two lowest vertical modes by a factor of
1485   2 to 3. As an example, the error in computing the pressure gradient
1486   using a standard 10-level primitive equation model applied to buoyancy
1487   profiles and topographic slopes typical of the California Current
1488   region corresponds to a false geostrophic current of the order of
1489   10–12 cm s−1. The analogous error in a hydrostatically
1490   consistent 30-level model with the reference state removed is about
1491   an order of magnitude smaller.},
1492  date = {April 01, 1991},
1493  owner = {gm},
1494  timestamp = {2007.08.03}
1495}
1496
1497@ARTICLE{Hordoir_al_CD08,
1498  author = {R. Hordoir and J. Polcher and J.-C. Brun-Cottan and G. Madec},
1499  title = {Towards a parametrization of river discharges into ocean general
1500   circulation models: a closure through energy conservation},
1501  journal = CD,
1502  year = {2008},
1503  volume = {31, 7--8},
1504  pages = {891--908},
1505  doi = {10.1007/s00382-008-0416-4},
1506  owner = {gm},
1507  timestamp = {2009.08.19}
1508}
1509
1510@ARTICLE{Hsu1990,
1511  author = {Hsu, Yueh-Jiuan G. and Arakawa, Akio},
1512  title = {Numerical Modeling of the Atmosphere with an Isentropic Vertical
1513   Coordinate},
1514  journal = MWR,
1515  year = {1990},
1516  volume = {118},
1517  pages = {1933--1959},
1518  number = {10},
1519  abstract = {In constructing a numerical model of the atmosphere, we must choose
1520   an appropriate vertical coordinate. Among the various possibilities,
1521   isentropic vertical coordinates such as the θ-coordinate seem
1522   to have the greatest potential, in spite of the technical difficulties
1523   in treating the intersections of coordinate surfaces with the lower
1524   boundary. The purpose of this paper is to describe the θ-coordinate
1525   model we have developed and to demonstrate its potential through
1526   simulating the nonlinear evolution of a baroclinic wave.In the model
1527   we have developed, vertical discretization maintains important integral
1528   constraints, such as conservation of the angular momentum and total
1529   energy. In treating the intersections of coordinate surfaces with
1530   the lower boundary, we have followed the massless-layer approach
1531   in which the intersecting coordinate surfaces are extended along
1532   the boundary by introducing massless layers. Although this approach
1533   formally eliminates the intersection problem, it raises other computational
1534   problems. Horizontal discretization of the continuity and momentum
1535   equations in the model has been carefully designed to overcome these
1536   problems.Selected results from a 10-day integration with the 25-layer,
1537   β-plane version of the model are presented. It seems that the
1538   model can simulate the nonlinear evolution of a baroclinic wave and
1539   associated dynamical processes without major computational difficulties.},
1540  date = {October 01, 1990},
1541  owner = {gm},
1542  timestamp = {2007.08.05}
1543}
1544
1545@ARTICLE{Huang_JPO93,
1546  author = {R.X. Huang},
1547  title = {Real freshwater flux as a natural boundary condition for the salinity
1548   balance and thermohaline circulation forced by evaporation and precipitation},
1549  journal = JPO,
1550  year = {1993},
1551  volume = {23},
1552  pages = {2428--2446},
1553  owner = {gm},
1554  timestamp = {2009.05.01}
1555}
1556
1557@ARTICLE{Iudicone_al_JPO08b,
1558  author = {D. Iudicone and G. Madec and B. Blanke and S. Speich},
1559  title = {The role of Southern Ocean surface forcings and mixing in the global
1560   conveyor},
1561  journal = JPO,
1562  year = {2008},
1563  volume = {38},
1564  pages = {1377--1400},
1565  owner = {gm},
1566  timestamp = {2009.08.19}
1567}
1568
1569@ARTICLE{Iudicone_al_JPO08a,
1570  author = {D. Iudicone and G. Madec and T. J. McDougall},
1571  title = {Diagnosing water transformations and the key role of light penetration},
1572  journal = JPO,
1573  year = {2008},
1574  volume = {38},
1575  pages = {1357--1376},
1576  owner = {gm},
1577  timestamp = {2009.08.19}
1578}
1579
1580@ARTICLE{Iudicone_al_JPO07,
1581  author = {D. Iudicone and K. Rodgers and R. Schopp and G. Madec},
1582  title = {An Exchange window for the Antarctic Intermediate Water Injection
1583   into the South Pacific},
1584  journal = JPO,
1585  year = {2007},
1586  volume = {37},
1587  pages = {31--49},
1588  owner = {gm},
1589  timestamp = {2009.08.19}
1590}
1591
1592@ARTICLE{Iudicone_al_JPO08c,
1593  author = {D. Iudicone and S. Speich and G. Madec and B. Blanke},
1594  title = {The global Conveyor Belt in a Southern Ocean perspective},
1595  journal = JPO,
1596  year = {2008},
1597  volume = {38},
1598  pages = {1401--1425},
1599  owner = {gm},
1600  timestamp = {2009.08.19}
1601}
1602
1603@ARTICLE{Izumo_al_CD09,
1604  author = {T. Izumo and S.Masson and J. Vialard and C. de Boyer Montegut and
1605   S. K. Behera and G. Madec and K. Takahashi and T. Yamagata},
1606  title = {Interannual variations of low-frequency Madden-Julian Oscillation
1607   in autral summer: Observations},
1608  journal = CD,
1609  year = {2009},
1610  volume = {in press},
1611  owner = {gm},
1612  timestamp = {2009.08.19}
1613}
1614
1615@ARTICLE{JackMcD1995,
1616  author = {D. R. Jackett and T. J. McDougall},
1617  title = {Minimal adjustment of hydrographic data to achieve static stability},
1618  journal = JAOT,
1619  year = {1995},
1620  volume = {12},
1621  pages = {381--389},
1622  owner = {gm},
1623  timestamp = {2007.08.04}
1624}
1625
1626@BOOK{Jerlov_Bk68,
1627  title = {Optical Oceanography},
1628  publisher = {Elsevier},
1629  year = {1968},
1630  author = {N. G. Jerlov},
1631  pages = {194pp},
1632  owner = {gm},
1633  timestamp = {2008.08.31}
1634}
1635
1636@ARTICLE{Killworth_al_JPO91,
1637  author = {P.D. Killworth and D. Stainforth and D.J. Webb and S.M. Paterson},
1638  title = {The Development of a Free-Surface Bryan-Cox-Semtner Ocean Model},
1639  journal = JPO,
1640  year = {1991},
1641  volume = {21},
1642  pages = {1333--1348},
1643  number = {9},
1644  abstract = {A version of the Bryan–Cox–Semtner numerical ocean general
1645   circulation model, adapted to include a free surface, is described.
1646   The model is designed for the following uses: tidal studies
1647   (a tidal option is explicitly included); assimilation of altimetric
1648   data (since the surface elevation is now a prognostic variable);
1649   and in situations where accurate relaxation to obtain the streamfunction
1650   in the original model is too time consuming. Comparison is made between
1651   a 300-year run of the original model and the free-surface version,
1652   using a very coarse North Atlantic calculation as the basis. The
1653   results are very similar, differing only in the streamfunction over
1654   topography; this is to be expected, since the treatment of topographic
1655   torques on the barotropic flow differs because of the nature of the
1656   modifications.},
1657  date = {September 01, 1991},
1658  owner = {gm},
1659  timestamp = {2007.08.03}
1660}
1661
1662@INPROCEEDINGS{Killworth1989,
1663  author = {P. D. Killworth},
1664  title = {On the parameterization of deep convection in ocean models},
1665  booktitle = {Parameterization of small-scale processes},
1666  year = {1989},
1667  editor = {Hawaiian winter workshop},
1668  month = {January 17-20},
1669  organization = {University of Hawaii at Manoa},
1670  owner = {gm},
1671  timestamp = {2007.08.06}
1672}
1673
1674@ARTICLE{Killworth1992,
1675  author = {P. D. Killworth},
1676  title = {An equivalent-barotropic mode in the fine resolution Antarctic model},
1677  journal = JPO,
1678  year = {1992},
1679  volume = {22},
1680  pages = {1379--1387}
1681}
1682
1683@ARTICLE{Koch-Larrouy_al_CD09,
1684  author = {A. Koch-Larrouy and M. Lengaigne and P. Terray and G. Madec and S.
1685   Masson},
1686  title = {Tidal mixing in the Indonesian Seas and its effect on the tropical
1687   climate system},
1688  journal = CD,
1689  year = {2009},
1690  pages = {in press},
1691  owner = {gm},
1692  timestamp = {2009.08.16}
1693}
1694
1695@ARTICLE{Koch-Larrouy_al_OD08b,
1696  author = {A. Koch-Larrouy and G. Madec and B. Blanke and R. Molcard},
1697  title = {Water mass transformation along the Indonesian throughflow in an
1698   OGCM},
1699  journal = OD,
1700  year = {2008},
1701  volume = {58, 3-4},
1702  pages = {289--309},
1703  owner = {gm},
1704  timestamp = {2009.08.16},
1705  url = {http://dx.doi.org/10.1007/s10236-008-0155-4}
1706}
1707
1708@ARTICLE{Koch-Larrouy_al_GRL07,
1709  author = {A. Koch-Larrouy and G. Madec and P. Bouruet-Aubertot and T. Gerkema
1710   and L. Bessieres and R. Molcard},
1711  title = {Tidal mixing in the Indonesian Seas and its effect on the tropical
1712   climate system},
1713  journal = GRL,
1714  year = {2007},
1715  volume = {34},
1716  pages = {L04604},
1717  owner = {gm},
1718  timestamp = {2009.08.16},
1719  url = {http://dx.doi.org/10.1029/2006GL028405}
1720}
1721
1722@ARTICLE{Koch-Larrouy_al_OD08a,
1723  author = {A. Koch-Larrouy and G. Madec and D. Iudicone and A. Atmadipoera and
1724   R. Molcard},
1725  title = {Physical processes contributing to the water mass transformation
1726   of the Indonesian Throughflow},
1727  journal = OD,
1728  year = {2008},
1729  volume = {58, 3-4},
1730  pages = {275--288},
1731  owner = {gm},
1732  timestamp = {2009.08.16},
1733  url = {http://dx.doi.org/10.1007/s10236-008-0154-5}
1734}
1735
1736@ARTICLE{Kolmogorov1942,
1737  author = {A. N. Kolmogorov},
1738  title = {The equation of turbulent motion in an incompressible fluid},
1739  journal = {Izv. Akad. Nauk SSSR, Ser. Fiz.},
1740  year = {1942},
1741  volume = {6},
1742  pages = {56--58},
1743  owner = {gm},
1744  timestamp = {2007.08.06}
1745}
1746
1747@PHDTHESIS{Levy_PhD96,
1748  author = {M. L\'{e}vy},
1749  title = {Mod\'{e}lisation des processus biog\'{e}ochimiques en M\'{e}diterran\'{e}e
1750   nord-occidentale. Cycle saisonnier et variabilit\'{e} m\'{e}so\'{e}chelle},
1751  school = {Universit\'{e} Pierre et Marie Curie, Paris, France, 207pp},
1752  year = {1996},
1753  owner = {gm},
1754  timestamp = {2007.08.04}
1755}
1756
1757@ARTICLE{Levy_al_GRL01,
1758  author = {M. L\'{e}vy and A. Estubier and G Madec},
1759  title = {Choice of an advection scheme for biogeochemical models},
1760  journal = GRL,
1761  year = {2001},
1762  volume = {28},
1763  owner = {gm},
1764  timestamp = {2007.08.04}
1765}
1766
1767@ARTICLE{Levy_al_JGR09,
1768  author = {M. L\'{e}vy and P. Klein and A.-M. Tr\'{e}guier and D. Iovino and
1769   G. Madec and S. Masson and T. Takahashi},
1770  title = {Impacts of sub-mesoscale physics on idealized gyres},
1771  journal = JGR,
1772  year = {2009},
1773  volume = {in revision},
1774  owner = {gm},
1775  timestamp = {2009.08.19}
1776}
1777
1778@ARTICLE{Levy_al_JMS99,
1779  author = {M. L\'{e}vy and L. M\'{e}mery and G. Madec},
1780  title = {The onset of a bloom after deep winter convection in the Northwestern
1781   Mediterranean Sea: mesoscale process study with a primitive equation
1782   model},
1783  journal = JMS,
1784  year = {1999},
1785  volume = {16/1-2},
1786  pages = {7--21},
1787  owner = {gm},
1788  timestamp = {2007.08.10}
1789}
1790
1791@ARTICLE{Levy_al_DSR98,
1792  author = {M. L\'{e}vy and L. M\'{e}mery and G. Madec},
1793  title = {The onset of the spring bloom in the MEDOC area: mesoscale spatial
1794   variability},
1795  journal = DSR,
1796  year = {1998},
1797  volume = {I, 46},
1798  pages = {1137--1160},
1799  owner = {gm},
1800  timestamp = {2007.08.10}
1801}
1802
1803@ARTICLE{Levy_al_DSR00,
1804  author = {M. L\'{e}vy and L. Mémery and G. Madec},
1805  title = {Combined effects of mesoscale processes and atmospheric high-frequency
1806   variability on the spring bloom in the MEDOC area},
1807  journal = DSR,
1808  year = {2000},
1809  volume = {47},
1810  pages = {527--531},
1811  owner = {gm},
1812  timestamp = {2009.08.20}
1813}
1814
1815@BOOK{Large_Yeager_Rep04,
1816  title = {Diurnal to decadal global forcing for ocean and sea-ice models: the
1817   data sets and flux climatologies},
1818  publisher = {NCAR Technical Note, NCAR/TN-460+STR, CGD Division of the National
1819   Center for Atmospheric Research},
1820  year = {2004},
1821  author = {W. Large and S. Yeager},
1822  owner = {gm},
1823  timestamp = {2007.08.06}
1824}
1825
1826@ARTICLE{Large_al_RG94,
1827  author = {W. G. Large and J. C. McWilliams and S. C. Doney},
1828  title = {Oceanic vertical mixing - a review and a model with a nonlocal boundary
1829   layer parameterization},
1830  journal = {Reviews of Geophysics},
1831  year = {1994},
1832  volume = {32},
1833  pages = {363--404},
1834  doi = {10.1029/94RG01872},
1835  owner = {gm},
1836  timestamp = {2007.08.03}
1837}
1838
1839@ARTICLE{Latif_al_JC06,
1840  author = {M. Latif and C. Böning and J. Willebrand and A. Biastoch and J. Dengg
1841   and N. Keenlyside and U. Schweckendiek and G. Madec},
1842  title = {Is the Thermohaline Circulation Changing?},
1843  journal = JC,
1844  year = {2006},
1845  volume = {19},
1846  pages = {4631--4637},
1847  owner = {gm},
1848  timestamp = {2009.08.19}
1849}
1850
1851@PHDTHESIS{Lazar_PhD97,
1852  author = {A. Lazar},
1853  title = {La branche froide de la circulation thermohaline - sensibilit\'{e}
1854   \`{a} la diffusion turbulente dans un mod\`{e}le de circulation g\'{e}n\'{e}rale
1855   id\'{e}alis\'{e}e},
1856  school = {Universit\'{e} Pierre et Marie Curie, Paris, France, 200pp},
1857  year = {1997},
1858  owner = {gm},
1859  timestamp = {2007.08.06}
1860}
1861
1862@ARTICLE{Lazar_al_JPO99,
1863  author = {A. Lazar and G. Madec and P. Delecluse},
1864  title = {The Deep Interior Downwelling, the Veronis Effect, and Mesoscale
1865   Tracer Transport Parameterizations in an OGCM},
1866  journal = JPO,
1867  year = {1999},
1868  volume = {29},
1869  pages = {2945--2961},
1870  number = {11},
1871  abstract = {Numerous numerical simulations of basin-scale ocean circulation display
1872   a vast interior downwelling and a companion intense western boundary
1873   layer upwelling at midlatitude below the thermocline. These features,
1874   related to the so-called Veronis effect, are poorly rationalized
1875   and depart strongly from the classical vision of the deep circulation
1876   where upwelling is considered to occur in the interior. Furthermore,
1877   they significantly alter results of ocean general circulation models
1878   (OGCMs) using horizontal Laplacian diffusion. Recently, some studies
1879   showed that the parameterization for mesoscale eddy effects formulated
1880   by Gent and McWilliams allows integral quantities like the streamfunction
1881   and meridional heat transport to be free of these undesired effects.
1882   In this paper, an idealized OGCM is used to validate an analytical
1883   rationalization of the processes at work and help understand the
1884   physics. The results show that the features associated with the Veronis
1885   effect can be related quantitatively to three different width scales
1886   that characterize the baroclinic structure of the deep western boundary
1887   current. In addition, since one of these scales may be smaller than
1888   the Munk barotropic layer, usually considered to determine the minimum
1889   resolution and horizontal viscosity for numerical models, the authors
1890   recommend that it be taken into account. Regarding the introduction
1891   of the new parameterization, diagnostics in terms of heat balances
1892   underline some interesting similarities between local heat fluxes
1893   by eddy-induced velocities and horizontal diffusion at low and midlatitudes
1894   when a common large diffusivity (here 2000 m2 s−1) is used.
1895   The near-quasigeostrophic character of the flow explains these results.
1896   As a consequence, the response of the Eulerian-mean circulation is
1897   locally similar for runs using either of the two parameterizations.
1898   However, it is shown that the advective nature of the eddy-induced
1899   heat fluxes results in a very different effective circulation, which
1900   is the one felt by tracers.},
1901  date = {November 01, 1999},
1902  owner = {gm},
1903  timestamp = {2007.08.06}
1904}
1905
1906@ARTICLE{Leclair_Madec_OM09,
1907  author = {M. Leclair and G. Madec},
1908  title = {A conservative leap-frog time stepping method},
1909  journal = OM,
1910  year = {2009},
1911  volume = {XX},
1912  pages = {YYY},
1913  owner = {gm},
1914  timestamp = {2009.08.15}
1915}
1916
1917@ARTICLE{Lengaigne_al_JC03,
1918  author = {M. Lengaigne and J.-P. Boulanger and C. Menkes and G. Madec and P.
1919   Delecluse and E. Guilyardi, and J. Slingo},
1920  title = {The March 1997 Westerly Wind Event and the onset of the 1997/98 El
1921   Niño: Understanding the role of the atmospheric},
1922  journal = JC,
1923  year = {2003},
1924  volume = {16, 20},
1925  pages = {3330--3343},
1926  owner = {gm},
1927  timestamp = {2009.08.20}
1928}
1929
1930@ARTICLE{Lengaigne_al_JGR02,
1931  author = {M. Lengaigne and J.-P. Boulanger and C. Menkes and S. Masson and
1932   G. Madec and P. Delecluse},
1933  title = {Ocean response to the March 1997 Westerly Wind Event},
1934  journal = JGR,
1935  year = {2002},
1936  doi = {10.1029/2001JC000841},
1937  owner = {gm},
1938  timestamp = {2009.08.20}
1939}
1940
1941@ARTICLE{Lengaigne_al_JGR03,
1942  author = {M. Lengaigne and G. Madec and G. Alory and C. Menkes},
1943  title = {Sensitivity of the tropical Pacific Ocean to isopycnal diffusion
1944   on tracer and dynamics},
1945  journal = JGR,
1946  year = {2003},
1947  volume = {108 (C11)},
1948  pages = {3345},
1949  doi = {10.1029/2002JC001704},
1950  owner = {gm},
1951  timestamp = {2008.01.26}
1952}
1953
1954@ARTICLE{Lengaigne_al_GRL09,
1955  author = {M. Lengaigne and G. Madec and L. Bopp and C. Menkes and O. Aumont
1956   and P. Cadule},
1957  title = {Bio-physical feedbacks in the Arctic Ocean using an Earth System
1958   model},
1959  journal = GRL,
1960  year = {2009},
1961  volume = {submitted},
1962  owner = {gm},
1963  timestamp = {2009.08.19}
1964}
1965
1966@ARTICLE{Lengaigne_al_CD07,
1967  author = {M. Lengaigne and C. Menkes and O. Aumont and T. Gorgues and L. Bopp
1968   and J.-M. Andr\'{e} G. Madec},
1969  title = {Bio-physical feedbacks on the tropical Pacific climate in a Coupled
1970   General Circulation Model},
1971  journal = CD,
1972  year = {2007},
1973  volume = {28},
1974  pages = {503--516},
1975  owner = {gm},
1976  timestamp = {2009.08.19}
1977}
1978
1979@ARTICLE{Leonard1991,
1980  author = {B. P. Leonard},
1981  title = {The ULTIMATE conservative difference scheme applied to unsteady one--dimensional
1982   advection},
1983  journal = {Computer Methods in Applied Mechanics and Engineering},
1984  year = {1991},
1985  pages = {17--74},
1986  owner = {gm},
1987  timestamp = {2007.08.04}
1988}
1989
1990@TECHREPORT{Leonard_Rep88,
1991  author = {B. P. Leonard},
1992  title = {Universal limiter for transient interpolation modelling of the advective
1993   transport equations},
1994  institution = {Technical Memorandum TM-100916 ICOMP-88-11, NASA},
1995  year = {1988},
1996  owner = {gm},
1997  timestamp = {2007.08.04}
1998}
1999
2000@ARTICLE{Leonard1979,
2001  author = {B. P. Leonard},
2002  title = {A stable and accurate convective modelling procedure based on quadratic
2003   upstream interpolation},
2004  journal = {Computer Methods in Applied Mechanics and Engineering},
2005  year = {1979},
2006  volume = {19},
2007  pages = {59--98},
2008  month = jun,
2009  owner = {gm},
2010  timestamp = {2007.08.04}
2011}
2012
2013@TECHREPORT{Levier2007,
2014  author = {B. Levier and A.-M. Tr\'{e}guier and G. Madec and V. Garnier},
2015  title = {Free surface and variable volume in the NEMO code},
2016  institution = {MERSEA MERSEA IP report WP09-CNRS-STR-03-1A, 47pp, available on the
2017   NEMO web site},
2018  year = {2007},
2019  owner = {gm},
2020  timestamp = {2007.08.03}
2021}
2022
2023@BOOK{levitus82,
2024  title = {Climatological Atlas of the world ocean},
2025  publisher = {NOAA professional paper No. 13, 174pp},
2026  year = {1982},
2027  author = {S Levitus },
2028  note = {173 p.}
2029}
2030
2031@TECHREPORT{Lott1989,
2032  author = {F. Lott and G. Madec},
2033  title = {Implementation of bottom topography in the Ocean General Circulation
2034   Model OPA of the LODYC: formalism and experiments.},
2035  institution = {LODYC, France, 36pp.},
2036  year = {1989},
2037  number = {3},
2038  owner = {gm},
2039  timestamp = {2007.08.03}
2040}
2041
2042@ARTICLE{Lott_al_OM90,
2043  author = {F. Lott and G. Madec and J. Verron},
2044  title = {Topographic experiments in an Ocean General Circulation Model},
2045  journal = OM,
2046  year = {1990},
2047  volume = {88},
2048  pages = {1--4},
2049  owner = {gm},
2050  timestamp = {2007.08.03}
2051}
2052
2053@ARTICLE{Luo_al_JC05,
2054  author = {J.-J. Luo and S. Masson and E. Roeckner and G. Madec and T. Yamagata},
2055  title = {Reducing climatology bias in an ocean-atmosphere CGCM with improved
2056   coupling physics},
2057  journal = JC,
2058  year = {2005},
2059  volume = {18 (13)},
2060  pages = {2344--2360},
2061  owner = {gm},
2062  timestamp = {2009.08.19}
2063}
2064
2065@BOOK{Madec_Bk08,
2066  title = {NEMO ocean engine},
2067  publisher = {Note du P\^ole de mod\'{e}lisation, Institut Pierre-Simon Laplace
2068   (IPSL), France, No 27, ISSN No 1288-1619},
2069  year = {2008},
2070  author = {G. Madec},
2071  owner = {gm},
2072  timestamp = {2008.07.05}
2073}
2074
2075@BOOK{Madec_HDR01,
2076  title = {Le Cycle des Masses d'Eau Oc\'{e}aniqueset sa variabilit\'{e} dans
2077   le Syst\'{e}me Climatique},
2078  year = {2001},
2079  author = {G. Madec},
2080  pages = {63pp.},
2081  series = {Habilitation \'{a} Diriger des Recherches, Universit\'{e} Pierre
2082   et Marie Curie},
2083  owner = {gm},
2084  timestamp = {2009.08.20}
2085}
2086
2087@PHDTHESIS{Madec_PhD90,
2088  author = {G. Madec},
2089  title = {La formation d'eau profonde et son impact sur la circulation r\'{e}gionale
2090   en M\'{e}diterran\'{e}e Occidentale - une approche num\'{e}rique},
2091  school = {Universit\'{e} Pierre et Marie Curie, Paris, France, 194pp.},
2092  year = {1990},
2093  month = {2 mai},
2094  owner = {gm},
2095  timestamp = {2007.08.10}
2096}
2097
2098@ARTICLE{Madec_al_DAO91,
2099  author = {G. Madec and M. Chartier and M. Cr\'{e}pon},
2100  title = {Effect of thermohaline forcing variability on deep water formation
2101   in the Northwestern Mediterranean Sea - a high resulution three-dimensional
2102   study},
2103  journal = DAO,
2104  year = {1991},
2105  volume = {15},
2106  pages = {301--332},
2107  owner = {gm},
2108  timestamp = {2007.08.06}
2109}
2110
2111@ARTICLE{Madec_al_JPO91,
2112  author = {G. Madec and M. Chartier and P. Delecluse and M. Cr\'{e}pon},
2113  title = {A three-dimensional numerical study of deep water formation in the
2114   
2115   
2116   Northwestern Mediterranean Sea .},
2117  journal = JPO,
2118  year = {1991},
2119  volume = {21},
2120  pages = {1349--1371},
2121  owner = {gm},
2122  timestamp = {2007.08.06}
2123}
2124
2125@INBOOK{Madec_Crepon_Bk91,
2126  chapter = {Thermohaline-driven deep water formation in the Northwestern Mediterranean
2127   Sea},
2128  pages = {241--265},
2129  title = {Deep convection and deep water formation in the oceans},
2130  publisher = {Elsevier Oceanographic Series, P.C. Chu and J.C. Gascard (Eds.)},
2131  year = {1991},
2132  author = {G. Madec and M. Cr\'{e}pon},
2133  owner = {gm},
2134  timestamp = {2007.08.06}
2135}
2136
2137@ARTICLE{Madec1997,
2138  author = {G. Madec and P. Delecluse},
2139  title = {The OPA/ARPEGE and OPA/LMD Global Ocean-Atmosphere Coupled Model},
2140  journal = {Int. WOCE Newsletter},
2141  year = {1997},
2142  volume = {26},
2143  pages = {12--15},
2144  owner = {gm},
2145  timestamp = {2007.08.06}
2146}
2147
2148@TECHREPORT{Madec1998,
2149  author = {G. Madec and P. Delecluse and M. Imbard and C. Levy},
2150  title = {OPA 8 Ocean General Circulation Model - Reference Manual},
2151  institution = {LODYC/IPSL Note 11},
2152  year = {1998}
2153}
2154
2155@ARTICLE{Madec_Imbard_CD96,
2156  author = {G Madec and M Imbard},
2157  title = {A global ocean mesh to overcome the north pole singularity},
2158  journal = CD,
2159  year = {1996},
2160  volume = {12},
2161  pages = {381--388}
2162}
2163
2164@ARTICLE{Madec_al_JPO96,
2165  author = {G. Madec and F. Lott and P. Delecluse and M. Cr\'{e}pon},
2166  title = {Large-Scale Preconditioning of Deep-Water Formation in the Northwestern
2167   Mediterranean Sea},
2168  journal = JPO,
2169  year = {1996},
2170  volume = {26},
2171  pages = {1393--1408},
2172  number = {8},
2173  month = aug,
2174  abstract = {The large-scale processes preconditioning the winter deep-water formation
2175   in the northwestern Mediterranean Sea are investigated with a primitive
2176   equation numerical model where convection is parameterized by a non-penetrative
2177   convective adjustment algorithm. The ocean is forced by momentum
2178   and buoyancy fluxes that have the gross features of mean winter forcing
2179   found in the MEDOC area. The wind-driven barotropic circulation appears
2180   to be a major ingredient of the preconditioning phase of deep-water
2181   formation. After three months, the ocean response is dominated by
2182   a strong barotropic cyclonic vortex located under the forcing area,
2183   which fits the Sverdrup balance away from the northern coast. In
2184   the vortex center, the whole water column remains trapped under the
2185   forcing area all winter. This trapping enables the thermohaline forcing
2186   to drive deep-water formation efficiently. Sensitivity studies show
2187   that, β effect and bottom topography play a paramount role and
2188   confirm that deep convection occurs only in areas that combine a
2189   strong surface thermohaline forcing and a weak barotropic advection
2190   so that water masses are submitted to the negative buoyancy fluxes
2191   for a much longer time. In particular, the impact of the Rhône
2192   Deep Sea Fan on the barotropic circulation dominates the β effect:
2193   the barotropic flow is constrained to follow the bathymetric contours
2194   and the cyclonic vortex is shifted southward so that the fluid above
2195   the fan remains quiescent. Hence, buoyancy fluxes trigger deep convection
2196   above the fan in agreement with observations. The selection of the
2197   area of deep-water formation through the defection of the barotropic
2198   circulation by the topography seems a more efficient mechanism than
2199   those associated with the wind- driven barotropic vortex. This is
2200   due to its permanency, while the latter may be too sensitive to time
2201   and space variations of the forcing.},
2202  owner = {gm},
2203  timestamp = {2007.08.03}
2204}
2205
2206@ARTICLE{Madec_al_OM88,
2207  author = {G. Madec and C. Rahier and M. Chartier},
2208  title = {A comparison of two-dimensional elliptic solvers for the streamfunction
2209   in a multilevel OGCM},
2210  journal = OM,
2211  year = {1988},
2212  volume = {78},
2213  pages = {1-6},
2214  owner = {gm},
2215  timestamp = {2009.08.20}
2216}
2217
2218@ARTICLE{Maes_al_CD98,
2219  author = {C. Maes and P. Delecluse and G. Madec},
2220  title = {Impact of westerly wind bursts on the warm pool of the TOGA-COARE
2221   domain in an OGCM},
2222  journal = CD,
2223  year = {1998},
2224  volume = {14},
2225  pages = {55--70},
2226  owner = {gm},
2227  timestamp = {2009.08.20}
2228}
2229
2230@ARTICLE{Maes_al_MWR97,
2231  author = {C. Maes and G. Madec and P. Delecluse},
2232  title = {Sensitivity of an Equatorial Pacific OGCM to the lateral diffusion},
2233  journal = MWR,
2234  year = {1997},
2235  volume = {125, 5},
2236  pages = {958--971},
2237  owner = {gm},
2238  timestamp = {2009.08.20}
2239}
2240
2241@ARTICLE{Maltrud1998,
2242  author = {M. E. Maltrud and R. D. Smith and A. J. Semtner and R. C. Malone},
2243  title = {Global eddy-resolving ocean simulations driven by 1985-1995 atmospheric
2244   winds},
2245  journal = JGR,
2246  year = {1998},
2247  volume = {103(C13)},
2248  pages = {30,825--30,854},
2249  owner = {gm},
2250  timestamp = {2007.08.05}
2251}
2252
2253@ARTICLE{Marchesiello2001,
2254  author = { P. Marchesiello and J. Mc Williams and A. Shchepetkin },
2255  title = {Open boundary conditions for long-term integrations of Regional Oceanic
2256   Models},
2257  journal = OM,
2258  year = {2001},
2259  volume = {3},
2260  pages = {1--20}
2261}
2262
2263@ARTICLE{Marsaleix_al_OM08,
2264  author = {P. Marsaleix and F. Auclair and J. W. Floor and M. J. Herrmann and
2265   C. Estournel and I. Pairaud and C. Ulses},
2266  title = {Energy conservation issues in sigma-coordinate free-surface ocean
2267   models},
2268  journal = OM,
2269  year = {2008},
2270  volume = {20},
2271  pages = {61--89},
2272  number = {1},
2273  doi = {10.1016/j.ocemod.2007.07.005},
2274  owner = {gm},
2275  timestamp = {2008.11.28}
2276}
2277
2278@BOOK{MIT-GCM_2004,
2279  title = {MIT-gcm User Manual},
2280  year = {2004},
2281  editor = {MIT Department of EAPS},
2282  author = {J. Marshall and A. Adcroft and J.-M. Campin and P. Heimbach and A.
2283   Molod and S. Dutkiewicz and H. Hill and M. Losch and B. Fox-Kemper
2284   and D. Menemenlis and D. Ferreira and E. Hill and M. Follows and
2285   C. Hill and C. Evangelinos and G. Forget},
2286  owner = {gm},
2287  timestamp = {2008.07.04}
2288}
2289
2290@PHDTHESIS{Marti_PhD92,
2291  author = {O. Marti},
2292  title = {Etude de l'oc\'{e}an mondial : mod\'{e}lisation de la circulation
2293   et du transport de traceurs anthropog\'{e}niques},
2294  school = {Universit\'{e} Pierre et Marie Curie, Paris, France, 201pp},
2295  year = {1992},
2296  owner = {gm},
2297  timestamp = {2007.08.04}
2298}
2299
2300@ARTICLE{Marti_al_CD09,
2301  author = {O. Marti and P. Braconnot and J.-L. Dufresne and J. Bellier and R.
2302   Benshila and S. Bony and P. Brockmann and P. Cadule and A. Caubel
2303   and F Codron and S. Denvil and L. Fairhead and T. Fichefet and M.-A.
2304   Filiberti and M.-A. Foujols and P. Friedlingstein and H. Goosse and
2305   J.-Y. Grandpeix and E. Guilyardi and F. Hourdin and G. Krinner and
2306   C. L\'{e}vy and G. Madec and J. Mignot and I. Musat and D. Swingedouw
2307   and C. Talandier},
2308  title = {Key features of the IPSL ocean atmosphere model and its sensitivity
2309   to atmospheric resolution},
2310  journal = CD,
2311  year = {2009},
2312  volume = {in press},
2313  owner = {gm},
2314  timestamp = {2009.08.19}
2315}
2316
2317@ARTICLE{Marti_al_JGR92,
2318  author = {O. Marti and G. Madec and P. Delecluse},
2319  title = {Comment on "Net diffusivity in ocean general circulation models with
2320   nonuniform grids" by F. L. Yin and I. Y. Fung},
2321  journal = JGR,
2322  year = {1992},
2323  volume = {97},
2324  pages = {12,763--12,766},
2325  month = aug,
2326  owner = {gm},
2327  timestamp = {2007.08.03}
2328}
2329
2330@INBOOK{Masson_al_Bk08,
2331  chapter = {OPA9 - French experiments on the Earth Simulator and Teraflop Workbench
2332   tunings},
2333  pages = {25-34},
2334  title = {In High Performance computing on Vector System 2007, Stuttgart, Germany},
2335  publisher = {Springer-Verlag},
2336  year = {2008},
2337  editor = {Resch M, Roller S, Lammers P, Furui T, Galle M, Bez W},
2338  author = {S. Masson and M.-A. Foujols and P. Klein and G. Madec and L. Hua
2339   and M. Levy and H. Sasaki and K. Takahashi and F. Svensson},
2340  doi = {10.1007/978-3-540-74384-2},
2341  owner = {gm},
2342  timestamp = {2009.08.19}
2343}
2344
2345@ARTICLE{Masson_al_GRL05,
2346  author = {S. Masson and J.-J. Luo and G. Madec and J. Vialard and F. Durand
2347   and S. Gualdi and E. Guilyardi and S. Behera and P. Delecluse and
2348   A. Navarra and T. Yamagata},
2349  title = {Impact of barrier layer on winter-spring variability of the South-Eastern
2350   Arabian Sea},
2351  journal = GRL,
2352  year = {2005},
2353  volume = {32},
2354  pages = {L07703},
2355  doi = {10.1029/2004GL021980},
2356  owner = {gm},
2357  timestamp = {2009.08.19}
2358}
2359
2360@ARTICLE{McDougall1987,
2361  author = {T. J. McDougall},
2362  title = {Neutral Surfaces},
2363  journal = JPO,
2364  year = {1987},
2365  volume = {17},
2366  pages = {1950--1964},
2367  number = {11},
2368  abstract = {Scalar properties in the ocean are stirred (and subsequently mixed)
2369   rather efficiently by mesoscale eddies and two-dimensional turbulence
2370   along “neutral surfaces”, defined such that when water
2371   parcels are moved small distances in the neutral surface, they experience
2372   no buoyant restoring forces. By contrast, work would have to be done
2373   on a moving fluid parcel in order to keep it on a potential density
2374   surface. The differences between neutral surfaces and potential density
2375   surfaces are due to the variation of α/β with pressure
2376   (where α is the thermal expansion coefficient and β is
2377   the saline contraction coefficient). By regarding the equation of
2378   state of seawater as a function of salinity, potential temperature,
2379   and pressure, rather than in terms of salinity, temperature, and
2380   pressure, it is possible to quantify the differences between neutral
2381   surfaces and potential density surfaces. In particular, the spatial
2382   gradients of scalar properties (e.g., S, θ, tritium or potential
2383   vorticity) on a neutral surface can be quite different to the corresponding
2384   gradients in a potential density surface. For example, at a potential
2385   temperature of 4°C and a pressure of 1000 db, the lateral gradient
2386   of potential temperature in a potential density surface (referenced
2387   to sea level) is too large by between 50% and 350% (depending
2388   on the stability ratio Rp of the water column) compared with the
2389   physically relevant gradient of potential temperature on the neutral
2390   surface. Three-examples of neutral surfaces are presented, based
2391   on the Levitus atlas of the North Atlantic.},
2392  date = {November 01, 1987},
2393  owner = {gm},
2394  timestamp = {2007.08.04}
2395}
2396
2397@ARTICLE{McDougall_Taylor_JMR84,
2398  author = {T. J. McDougall and J. R. Taylor},
2399  title = {Flux measurements across a finger interface at low values of the
2400   stability ratio},
2401  journal = JMR,
2402  year = {1984},
2403  volume = {42},
2404  pages = {1--14},
2405  owner = {gm},
2406  timestamp = {2008.05.20}
2407}
2408
2409@ARTICLE{Mellor_Blumberg_JPO04,
2410  author = {G. Mellor and A. Blumberg},
2411  title = {Wave Breaking and Ocean Surface Layer Thermal Response},
2412  journal = JPO,
2413  year = {2004},
2414  volume = {34},
2415  pages = {693--698},
2416  owner = {gm},
2417  timestamp = {2009.01.16}
2418}
2419
2420@ARTICLE{Menkes_al_JPO06,
2421  author = {C. Menkes and J. Vialard and S C. Kennan and J.-P. Boulanger and
2422   G. Madec},
2423  title = {A modelling study of the three-dimensional heat budget of Tropical
2424   Instability Waves in the Equatorial Pacific},
2425  journal = JPO,
2426  year = {2006},
2427  volume = {36, 5},
2428  pages = {847--865},
2429  owner = {gm},
2430  timestamp = {2009.08.19}
2431}
2432
2433@ARTICLE{Merryfield1999,
2434  author = {W. J. Merryfield and G. Holloway and A. E. Gargett},
2435  title = {A Global Ocean Model with Double-Diffusive Mixing},
2436  journal = JPO,
2437  year = {1999},
2438  volume = {29},
2439  pages = {1124--1142},
2440  number = {6},
2441  abstract = {A global ocean model is described in which parameterizations of diapycnal
2442   mixing by double-diffusive fingering and layering are added to a
2443   stability-dependent background turbulent diffusivity. Model runs
2444   with and without double-diffusive mixing are compared for annual-mean
2445   and seasonally varying surface forcing. Sensitivity to different
2446   double-diffusive mixing parameterizations is considered. In all cases,
2447   the locales and extent of salt fingering (as diagnosed from buoyancy
2448   ratio Rρ) are grossly comparable to climatology, although fingering
2449   in the models tends to be less intense than observed. Double-diffusive
2450   mixing leads to relatively minor changes in circulation but exerts
2451   significant regional influences on temperature and salinity.},
2452  date = {June 01, 1999},
2453  owner = {gm},
2454  timestamp = {2007.08.06}
2455}
2456
2457@BOOK{Mesinger_Arakawa_Bk76,
2458  title = {Numerical methods used in Atmospheric models},
2459  publisher = {GARP Publication Series No 17},
2460  year = {1976},
2461  author = {F. Mesinger and A. Arakawa},
2462  owner = {gm},
2463  timestamp = {2008.02.09}
2464}
2465
2466@ARTICLE{Murray_JCP96,
2467  author = {R. J. Murray},
2468  title = {Explicit Generation of Orthogonal Grids for Ocean Models},
2469  journal = JCP,
2470  year = {1996},
2471  volume = {126},
2472  pages = {251--273},
2473  number = {2},
2474  month = {July},
2475  owner = {gm},
2476  timestamp = {2007.08.03}
2477}
2478
2479@PHDTHESIS{Olivier_PhD01,
2480  author = {F. Olivier},
2481  title = {Etude de l'activit\'{e} biologique et de la circulation oc\'{e}anique
2482   dans un jet g\'{e}ostrophique: le front Alm\'{e}ria-Oran},
2483  school = {Universit\'{e} Pierre et Marie Curie, Paris, France},
2484  year = {2001},
2485  owner = {gm},
2486  timestamp = {2007.08.14}
2487}
2488
2489@ARTICLE{Pacanowski_Philander_JPO81,
2490  author = {R.C. Pacanowski and S.G.H. Philander},
2491  title = {Parameterization of Vertical Mixing in Numerical Models of Tropical
2492   Oceans},
2493  journal = JPO,
2494  year = {1981},
2495  volume = {11},
2496  pages = {1443--1451},
2497  number = {11},
2498  abstract = {Measurements indicate that mixing processes are intense in the surface
2499   layers of the ocean but weak below the thermocline, except for the
2500   region below the core of the Equatorial Undercurrent where vertical
2501   temperature gradients are small and the shear is large. Parameterization
2502   of these mixing processes by means of coefficients of eddy mixing
2503   that are Richardson-number dependent, leads to realistic simulations
2504   of the response of the equatorial oceans to different windstress
2505   patterns. In the case of eastward winds results agree well with measurements
2506   in the Indian Ocean. In the case of westward winds it is of paramount
2507   importance that the nonzero heat flux into the ocean be taken into
2508   account. This beat flux stabilizes the upper layers and reduces the
2509   intensity of the mixing, especially in the cast. With an appropriate
2510   surface boundary condition, the results are relatively insensitive
2511   to values assigned to constants in the parameterization formula.},
2512  date = {November 01, 1981},
2513  owner = {gm},
2514  timestamp = {2007.08.03}
2515}
2516
2517@ARTICLE{Pacanowski_Gnanadesikan_MWR98,
2518  author = {R. C. Pacanowski and A. Gnanadesikan},
2519  title = {Transient response in a z-level ocean model that resolves topography
2520   
2521   
2522   with partial-cells},
2523  journal = MWR,
2524  year = {1998},
2525  volume = {126},
2526  pages = {3248-3270},
2527  owner = {gm},
2528  timestamp = {2008.01.26}
2529}
2530
2531@ARTICLE{Park_al_JC09,
2532  author = {W. Park and N. Keenlyside and M. Latif and A. Str\¨{o}h and R. Redler
2533   and E. Roeckner and G. Madec},
2534  title = {Tropical Pacific Climate and its Response to Global Warming in the
2535   Kiel Climate Model},
2536  journal = JC,
2537  year = {2009},
2538  volume = {22, 1},
2539  pages = {71--92},
2540  doi = {10.1175/2008JCLI2261.1},
2541  owner = {gm},
2542  timestamp = {2009.08.19}
2543}
2544
2545@ARTICLE{Paulson1977,
2546  author = {C. A. Paulson and J. J. Simpson},
2547  title = {Irradiance Measurements in the Upper Ocean},
2548  journal = JPO,
2549  year = {1977},
2550  volume = {7},
2551  pages = {952--956},
2552  number = {6},
2553  abstract = {Observations were made of downward solar radiation as a function of
2554   depth during an experiment in the North Pacific (35°N, 155°W).
2555   The irradiance meter employed was sensitive to solar radiation of
2556   wavelength 400–1000 nm arriving from above at a horizontal
2557   surface. Because of selective absorption of the short and long wavelengths,
2558   the irradiance decreases much faster than exponential in the upper
2559   few meters, falling to one-third of the incident value between 2
2560   and 3 m depth. Below 10 m the decrease was exponential at a rate
2561   characteristic of moderately clear water of Type IA. Neglecting one
2562   case having low sun altitude, the observations are well represented
2563   by the expression I/I0=Rez/ζ1+(1−R)ezζ2,
2564   where I is the irradiance at depth −z, I0 is the irradiance
2565   at the surface less reflected solar radiation, R=0.62, ζ1
2566   and ζ2 are attenuation lengths equal to 1.5 and 20 m, respectively,
2567   and z is the vertical space coordinate, positive upward with the
2568   origin at mean sea level. The depth at which the irradiance falls
2569   to 10% of its surface value is nearly the same as observations
2570   of Secchi depth when cases with high wind speed or low solar altitude
2571   are neglected. Parameters R, ζ1, and ζ2 are computed for
2572   the entire range of oceanic water types.},
2573  date = {November 01, 1977},
2574  owner = {gm},
2575  timestamp = {2007.08.04}
2576}
2577
2578@ARTICLE{Penduff_al_OM06,
2579  author = {T. Penduff and B. Barnier and J.-M. Molines and G. Madec},
2580  title = {On the use of current meter data to assess the realism of ocean model
2581   simulations},
2582  journal = OM,
2583  year = {2006},
2584  volume = {11, 3--4},
2585  pages = {399--416},
2586  owner = {gm},
2587  timestamp = {2009.08.19}
2588}
2589
2590@ARTICLE{Penduff_al_JGR00,
2591  author = {T. Penduff and B. Barnier and A. Colin de Verdi\`{e}re},
2592  title = {Self-adapting open boundaries for a regional model of the eastern
2593   North Atlantic},
2594  journal = JGR,
2595  year = {2000},
2596  volume = {105},
2597  pages = {11,279--11,297}
2598}
2599
2600@ARTICLE{Penduff_al_OS07,
2601  author = {T. Penduff and J. Le Sommer and B. Barnier and A.M. Treguier and
2602   J. Molines and G. Madec},
2603  title = {Influence of numerical schemes on current-topography interactions
2604   in 1/4$^{\circ}$ global ocean simulations},
2605  journal = OS,
2606  year = {2007},
2607  volume = {3},
2608  pages = {509--524}
2609}
2610
2611@ARTICLE{Phillips1959,
2612  author = {R. S. Phillips},
2613  title = {Dissipative Operators and Hyperbolic Systems of Partial Differential
2614   Equations},
2615  journal = {Transactions of the American Mathematical Society},
2616  year = {1959},
2617  volume = {90 (2)},
2618  pages = {193--254},
2619  doi = {doi:10.2307/1993202},
2620  owner = {gm},
2621  timestamp = {2007.08.10}
2622}
2623
2624@ARTICLE{Le_Quere_al_GBC00,
2625  author = {C. Le Qu\'{e}r\'{e} and J. C. Orr and P. Monfray and O. Aumont and
2626   G. Madec},
2627  title = {Interannual variability of the global and regional sea-air flux of
2628   C02 from 1979 to 1993},
2629  journal = GBC,
2630  year = {2000},
2631  volume = {14},
2632  pages = {1247--1266},
2633  owner = {gm},
2634  timestamp = {2009.08.20}
2635}
2636
2637@ARTICLE{Raynaud_al_GRL00,
2638  author = {S. Raynaud and S. Speich and E. Guilyardi and G. Madec},
2639  title = {Impact of the ocean lateral diffusion on the ENSO-like variability
2640   of a global coupled GCM},
2641  journal = GRL,
2642  year = {2000},
2643  volume = {27, 19},
2644  pages = {3041--3044},
2645  owner = {gm},
2646  timestamp = {2009.08.20}
2647}
2648
2649@ARTICLE{Redi_JPO82,
2650  author = {M. H. Redi},
2651  title = {Oceanic isopycnal mixing by coordinate rotation},
2652  journal = JPO,
2653  year = {1982},
2654  volume = {13},
2655  pages = {1154--1158},
2656  owner = {gm},
2657  timestamp = {2008.02.02}
2658}
2659
2660@ARTICLE{Reverdin1991,
2661  author = {G. Reverdin and P. Delecluse and C. L\'{e}vy and P. Andrich and A.
2662   Morli\`{e}re and J. M. Verstraete},
2663  title = {The near surface tropical Atlantic in 1982-1984 : results from a
2664   numerical simulation and a data analysis},
2665  journal = PO,
2666  year = {1991},
2667  volume = {27},
2668  pages = {273-340},
2669  owner = {gm},
2670  timestamp = {2007.08.04}
2671}
2672
2673@BOOK{Richtmyer1967,
2674  title = {Difference methods for initial-value problems},
2675  publisher = {Interscience Publisher, Second Edition, 405pp},
2676  year = {1967},
2677  author = {R. D. Richtmyer and K. W. Morton},
2678  owner = {gm},
2679  timestamp = {2007.08.04}
2680}
2681
2682@ARTICLE{Robert1966,
2683  author = {A. J. Robert},
2684  title = {The integration of a Low order spectral form of the primitive meteorological
2685   equations},
2686  journal = JMSJ,
2687  year = {1966},
2688  volume = {44, 2},
2689  owner = {gm},
2690  timestamp = {2007.08.04}
2691}
2692
2693@ARTICLE{Rodgers_al_GRL04,
2694  author = {K. Rodgers and O. Aumont and G. Madec and C. Menkes},
2695  title = {Radiocarbon as a thermocline proxy for the eastern equatorial Pacific},
2696  journal = GRL,
2697  year = {2004},
2698  volume = {31},
2699  pages = {L14314},
2700  doi = {10.1029/2004GL019764},
2701  owner = {gm},
2702  timestamp = {2009.08.19}
2703}
2704
2705@ARTICLE{Rodgers_al_GRL03,
2706  author = {K. Rodgers and B. Blanke and G. Madec and O. Aumont and P. Ciais
2707   and J.-C. Dutay},
2708  title = {Extratropical sources of equatorial pacific upwelling in an OGCM},
2709  journal = GRL,
2710  year = {2003},
2711  volume = {30, 2},
2712  doi = {10.1029/2002GL016003},
2713  owner = {gm},
2714  timestamp = {2009.08.20}
2715}
2716
2717@INCOLLECTION{Roed1986,
2718  author = {L.P. Roed and C.K. Cooper},
2719  title = {Open boundary conditions in numerical ocean models},
2720  booktitle = {Advanced Physical Oceanography Numerical Modelling},
2721  publisher = { NATO ASI Series, vol. 186.},
2722  year = {1986},
2723  editor = {J.J. O'Brien}
2724}
2725
2726@ARTICLE{Roullet_Madec_JGR00,
2727  author = {G. Roullet and G. Madec},
2728  title = {salt conservation, free surface, and varying levels: a new formulation
2729   for ocean general circulation models},
2730  journal = JGR,
2731  year = {2000},
2732  volume = {105},
2733  pages = {23,927--23,942},
2734  owner = {gm},
2735  pdf = {Roullet_Madec_JGR00.pdf},
2736  timestamp = {2007.03.22}
2737}
2738
2739@ARTICLE{Sadourny1975,
2740  author = {R. Sadourny},
2741  title = {The Dynamics of Finite-Difference Models of the Shallow-Water Equations},
2742  journal = JAS,
2743  year = {1975},
2744  volume = {32},
2745  pages = {680--689},
2746  number = {4},
2747  abstract = {Two simple numerical models of the shallow-water equations identical
2748   in all respects but for their con-servation properties have been
2749   tested regarding their internal mixing processes. The experiments
2750   show that violation of enstrophy conservation results in a spurious
2751   accumulation of rotational energy in the smaller scales, reflected
2752   by an unrealistic increase of enstrophy, which ultimately produces
2753   a finite rate of energy dissipation in the zero viscosity limit,
2754   thus violating the well-known dynamics of two-dimensional flow. Further,
2755   the experiments show a tendency to equipartition of the kinetic energy
2756   of the divergent part of the flow in the inviscid limit, suggesting
2757   the possibility of a divergent energy cascade in the physical system,
2758   as well as a possible influence of the energy mixing on the process
2759   of adjustment toward balanced flow.},
2760  date = {April 01, 1975},
2761  owner = {gm},
2762  timestamp = {2007.08.05}
2763}
2764
2765@ARTICLE{Sarmiento1982,
2766  author = {J. L. Sarmiento and K. Bryan},
2767  title = {Ocean transport model for the North Atlantic},
2768  journal = JGR,
2769  year = {1982},
2770  volume = {87},
2771  pages = {394--409},
2772  owner = {gm},
2773  timestamp = {2007.08.04}
2774}
2775
2776@ARTICLE{Sacha2005,
2777  author = {A. F. Shchepetkin and J. C. McWilliams},
2778  title = {The regional oceanic modeling system (ROMS) - a split-explicit, free-surface,
2779   topography-following-coordinate oceanic modelr},
2780  journal = {Ocean Modelling},
2781  year = {2005},
2782  volume = {9, 4},
2783  pages = {347--404},
2784  owner = {gm},
2785  timestamp = {2007.08.04}
2786}
2787
2788@ARTICLE{Sacha2003,
2789  author = {A. F. Shchepetkin and J. C. McWilliams},
2790  title = {A method for computing horizontal pressure-gradient force in an oceanic
2791   model with a nonaligned
2792   
2793   vertical coordinate},
2794  journal = JGR,
2795  year = {2003},
2796  volume = {108(C3)},
2797  pages = {3090},
2798  doi = {10.1029/2001JC001047},
2799  owner = {gm},
2800  timestamp = {2007.08.05}
2801}
2802
2803@ARTICLE{Shchepetkin1996,
2804  author = {A. F. Shchepetkin and J. J. O'Brien},
2805  title = {A Physically Consistent Formulation of Lateral Friction in Shallow-Water
2806   Equation Ocean Models},
2807  journal = MWR,
2808  year = {1996},
2809  volume = {124},
2810  pages = {1285--1300},
2811  number = {6},
2812  abstract = {Dissipation in numerical ocean models has two purposes: to simulate
2813   processes in which the friction is physically relevant and to prevent
2814   numerical instability by suppressing accumulation of energy in the
2815   smallest resolved scales. This study shows that even for the latter
2816   case the form of the friction term should be chosen in a physically
2817   consistent way. Violation of fundamental physical principles reduces
2818   the fidelity of the numerical solution, even if the friction is small.
2819   Several forms of the lateral friction, commonly used in numerical
2820   ocean models, are discussed in the context of shallow-water equations
2821   with nonuniform layer thickness. It is shown that in a numerical
2822   model tuned for the minimal dissipation, the improper form of the
2823   friction term creates finite artificial vorticity sources that do
2824   not vanish with increased resolution, even if the viscous coefficient
2825   is reduced consistently with resolution. An alternative numerical
2826   implementation of the no-slip boundary conditions for an arbitrary
2827   coast line is considered. It was found that the quality of the numerical
2828   solution may be considerably improved by discretization of the viscous
2829   stress tensor in such a way that the numerical boundary scheme approximates
2830   not only the stress tensor to a certain order of accuracy but also
2831   simulates the truncation error of the numerical scheme used in the
2832   interior of the domain. This ensures error cancellation during subsequent
2833   use of the elements of the tensor in the discrete version of the
2834   momentum equations, allowing for approximation of them without decrease
2835   in the order of accuracy near the boundary.},
2836  date = {June 01, 1996},
2837  owner = {gm},
2838  timestamp = {2007.08.14}
2839}
2840
2841@ARTICLE{Simmons_al_OM03,
2842  author = {H. L. Simmons and S. R. Jayne and L. C. St. Laurent and A. J. Weaver},
2843  title = {Tidally driven mixing in a numerical model of the
2844   
2845   ocean general circulation},
2846  journal = OM,
2847  year = {2003},
2848  pages = {1--19},
2849  abstract = {Astronomical data reveals that approximately 3.5 terawatts (TW) of
2850   tidal energy is dissipated in the
2851   
2852   ocean. Tidal models and satellite altimetry suggest that 1 TW of this
2853   energy is converted from the barotropic
2854   
2855   to internal tides in the deep ocean, predominantly around regions
2856   of rough topography such as midocean
2857   
2858   ridges. Aglobal tidal model is used to compute turbulent energy levels
2859   associated with the dissipation
2860   
2861   of internal tides, and the diapycnal mixing supported by this energy
2862   ?ux is computed using a simple parameterization.
2863   
2864   The mixing parameterization has been incorporated into a coarse resolution
2865   numerical model of the
2866   
2867   global ocean. This parameterization o?ers an energetically consistent
2868   and practical means of improving the
2869   
2870   representation of ocean mixing processes in climate models. Novel
2871   features of this implementation are that
2872   
2873   the model explicitly accounts for the tidal energy source for mixing,
2874   and that the mixing evolves both
2875   
2876   spatially and temporally with the model state. At equilibrium, the
2877   globally averaged di?usivity pro?le
2878   
2879   ranges from 0.3 cm2 s1 at thermocline depths to 7.7 cm2 s1 in the
2880   abyss with a depth average of 0.9
2881   
2882   cm2 s1, in close agreement with inferences from global balances.
2883   Water properties are strongly in?uenced
2884   
2885   by the combination of weak mixing in the main thermocline and enhanced
2886   mixing in the deep ocean.
2887   
2888   Climatological comparisons show that the parameterized mixing scheme
2889   results in a substantial reduction},
2890  owner = {gm},
2891  pdf = {Simmons_mixing_OM2003.pdf},
2892  timestamp = {2007.03.22}
2893}
2894
2895@ARTICLE{Le_Sommer_al_OM09,
2896  author = {J. Le Sommer and T. Penduff and S. Theetten and G. Madec and B. Barnier},
2897  title = {How momentum advection schemes influence current-topography interactions
2898   at eddy permitting resolution},
2899  journal = OM,
2900  year = {2009},
2901  volume = {29, 1},
2902  pages = {1--14},
2903  owner = {gm},
2904  timestamp = {2009.08.16},
2905  url = {http://dx.doi.org/10.1016/j.ocemod.2008.11.007}
2906}
2907
2908@ARTICLE{Song_Haidvogel_JCP94,
2909  author = {Y. Song and D. Haidvogel},
2910  title = {A semi-implicit ocean circulation model using a generalized topography-following
2911   coordinate system},
2912  journal = JCP,
2913  year = {1994},
2914  volume = {115, 1},
2915  pages = {228--244},
2916  owner = {gm},
2917  timestamp = {2007.08.04}
2918}
2919
2920@ARTICLE{Song1998,
2921  author = {Y. T. Song},
2922  title = {A General Pressure Gradient Formulation for Ocean Models. Part I:
2923   Scheme Design and Diagnostic Analysis},
2924  journal = MWR,
2925  year = {1998},
2926  volume = {126},
2927  pages = {3213--3230},
2928  number = {12},
2929  abstract = {A Jacobian formulation of the pressure gradient force for use in models
2930   with topography-following coordinates is proposed. It can be used
2931   in conjunction with any vertical coordinate system and is easily
2932   implemented. Vertical variations in the pressure gradient are expressed
2933   in terms of a vertical integral of the Jacobian of density and depth
2934   with respect to the vertical computational coordinate. Finite difference
2935   approximations are made on the density field, consistent with piecewise
2936   linear and continuous fields, and accurate pressure gradients are
2937   obtained by vertically integrating the discrete Jacobian from sea
2938   surface.Two discrete schemes are derived and examined in detail:
2939   the first using standard centered differencing in the generalized
2940   vertical coordinate and the second using a vertical weighting such
2941   that the finite differences are centered with respect to the Cartesian
2942   z coordinate. Both schemes achieve second-order accuracy for any
2943   vertical coordinate system and are significantly more accurate than
2944   conventional schemes based on estimating the pressure gradients by
2945   finite differencing a previously determined pressure field.The standard
2946   Jacobian formulation is constructed to give exact pressure gradient
2947   results, independent of the bottom topography, if the buoyancy field
2948   varies bilinearly with horizontal position, x, and the generalized
2949   vertical coordinate, s, over each grid cell. Similarly, the weighted
2950   Jacobian scheme is designed to achieve exact results, when the buoyancy
2951   field varies linearly with z and arbitrarily with x, that is, b(x,z)
2952   = b0(x) + b1(x)z.When horizontal resolution cannot be made
2953   fine enough to avoid hydrostatic inconsistency, errors can be substantially
2954   reduced by the choice of an appropriate vertical coordinate. Tests
2955   with horizontally uniform, vertically varying, and with horizontally
2956   and vertically varying buoyancy fields show that the standard Jacobian
2957   formulation achieves superior results when the condition for hydrostatic
2958   consistency is satisfied, but when coarse horizontal resolution causes
2959   this condition to be strongly violated, the weighted Jacobian may
2960   give superior results.},
2961  date = {December 01, 1998},
2962  owner = {gm},
2963  timestamp = {2007.08.05}
2964}
2965
2966@ARTICLE{SongWright1998,
2967  author = {Y. T. Song and D. G. Wright},
2968  title = {A General Pressure Gradient Formulation for Ocean Models. Part II
2969   - Energy, Momentum, and Bottom Torque Consistency},
2970  journal = MWR,
2971  year = {1998},
2972  volume = {126},
2973  pages = {3231--3247},
2974  number = {12},
2975  abstract = {A new formulation of the pressure gradient force for use in models
2976   with topography-following coordinates is proposed and diagnostically
2977   analyzed in Part I. Here, it is shown that important properties of
2978   the continuous equations are retained by the resulting numerical
2979   schemes, and their performance in prognostic simulations is examined.
2980   Numerical consistency is investigated with respect to global energy
2981   conservation, depth-integrated momentum changes, and the representation
2982   of the bottom pressure torque. The performances of the numerical
2983   schemes are tested in prognostic integrations of an ocean model to
2984   demonstrate numerical accuracy and long-term integral stability.
2985   Two typical geometries, an isolated tall seamount and an unforced
2986   basin with sloping boundaries, are considered for the special case
2987   of no external forcing and horizontal isopycnals to test numerical
2988   accuracy. These test problems confirm that the proposed schemes yield
2989   accurate approximations to the pressure gradient force. Integral
2990   consistency conditions are verified and the energetics of the “advective
2991   elimination” of the pressure gradient error (Mellor et al)
2992   is considered.A large-scale wind-driven basin with and without topography
2993   is used to test the model’s long-term integral performance
2994   and the effects of bottom pressure torque on the transport in western
2995   boundary currents. Integrations are carried out for 10 years in each
2996   case and results show that the schemes are stable, and the steep
2997   topography causes no obvious numerical problems. A realistic meandering
2998   western boundary current is well developed with detached cold cyclonic
2999   and warm anticyclonic eddies as it extends across the basin. In addition,
3000   the results with topography show earlier separation and enhanced
3001   transport in the western boundary currents due to the bottom pressure
3002   torque.},
3003  date = {December 01, 1998},
3004  owner = {gm},
3005  timestamp = {2007.08.05}
3006}
3007
3008@ARTICLE{Speer_al_Tel00,
3009  author = {K. Speer and E. Guilyardi and G. Madec},
3010  title = {Southern Ocean transformation in a coupled model with and without
3011   eddy mass fluxes},
3012  journal = {Tellus},
3013  year = {2000},
3014  volume = {52A, 5},
3015  pages = {554--565},
3016  owner = {gm},
3017  timestamp = {2009.08.20}
3018}
3019
3020@PHDTHESIS{Speich_PhD92,
3021  author = {S. Speich},
3022  title = {Etude du for\c{c}age de la circulation g\'{e}n\'{e}rale oc\'{e}anique
3023   par les d\'{e}troits - cas de la mer d'Alboran},
3024  school = {Universit\'{e} Pierre et Marie Curie, Paris, France},
3025  year = {1992},
3026  owner = {gm},
3027  timestamp = {2007.08.06}
3028}
3029
3030@ARTICLE{Speich_al_GRL01,
3031  author = {S. Speich and B. Blanke and G. Madec},
3032  title = {Warm and cold water paths of an OGCM thermohaline conveyor belt},
3033  journal = GRL,
3034  year = {2001},
3035  volume = {28, 2},
3036  pages = {311--314},
3037  owner = {gm},
3038  timestamp = {2009.08.20}
3039}
3040
3041@ARTICLE{Speich_al_JPO96,
3042  author = {S. Speich and G. Madec and M. Cr\'{e}pon},
3043  title = {The circulation in the Alboran Sea - a sensitivity study},
3044  journal = JPO,
3045  year = {1996},
3046  volume = {26, 3},
3047  pages = {320--340},
3048  owner = {gm},
3049  timestamp = {2007.08.06}
3050}
3051
3052@ARTICLE{Steele2001,
3053  author = {M. Steele and R. Morley and W. Ermold},
3054  title = {PHC- A Global Ocean Hydrography with a High-Quality Arctic Ocean},
3055  journal = JC,
3056  year = {2001},
3057  volume = {14},
3058  pages = {2079--2087
3059   
3060   },
3061  number = {9},
3062  abstract = {A new gridded ocean climatology, the Polar Science Center Hydrographic
3063   Climatology (PHC), has been created that merges the 1998 version
3064   of the World Ocean Atlas with the new regional Arctic Ocean Atlas.
3065   The result is a global climatology for temperature and salinity that
3066   contains a good description of the Arctic Ocean and its environs.
3067   Monthly, seasonal, and annual average products have been generated.
3068   How the original datasets were prepared for merging, how the optimal
3069   interpolation procedure was performed, and characteristics of the
3070   resulting dataset are discussed, followed by a summary and discussion
3071   of future plans.},
3072  date = {May 01, 2001},
3073  owner = {gm},
3074  timestamp = {2007.08.06}
3075}
3076
3077@ARTICLE{Stein_Stein_Nat92,
3078  author = {C. A. Stein and S. Stein},
3079  title = {A model for the global variation in oceanic depth and heat flow with
3080   lithospheric age},
3081  journal = {Nature},
3082  year = {1992},
3083  volume = {359},
3084  pages = {123--129},
3085  owner = {gm},
3086  timestamp = {2007.08.04}
3087}
3088
3089@ARTICLE{Thiem_Berntsen_OM06,
3090  author = {O. Thiem and J. Berntsen},
3091  title = {Internal pressure errors in sigma-coordinate ocean models due to
3092   anisotropy},
3093  journal = OM,
3094  year = {2006},
3095  volume = {12, 1-2},
3096  owner = {gm},
3097  timestamp = {2007.08.05}
3098}
3099
3100@ARTICLE{Timmermann_al_OM05,
3101  author = {R. Timmermann and H. Goosse and G. Madec and T. Fichefet, and C.
3102   Ethe and V. Duli\`{e}re},
3103  title = {On the representation of high latitude processes in the ORCA-LIM
3104   global coupled
3105   
3106   sea ice-ocean model.},
3107  journal = OM,
3108  year = {2005},
3109  volume = {8},
3110  pages = {175–201},
3111  owner = {gm},
3112  timestamp = {2008.07.05}
3113}
3114
3115@ARTICLE{Treguier_JGR92,
3116  author = {A.M. Tr\'{e}guier},
3117  title = {Kinetic energy analysis of an eddy resolving, primitive equation
3118   North Atlantic model},
3119  journal = JGR,
3120  year = {1992},
3121  volume = {97},
3122  pages = {687-701}
3123}
3124
3125@ARTICLE{Treguier_al_JGR01,
3126  author = {A.M Tr\'{e}guier and B. Barnier and A.P. de Miranda and J.M. Molines
3127   and N. Grima and M. Imbard and G. Madec and C. Messager and T. Reynaud
3128   and S. Michel},
3129  title = {An Eddy Permitting model of the Atlantic circulation: evaluating
3130   open boundary conditions},
3131  journal = JGR,
3132  year = {2001},
3133  volume = {106},
3134  pages = {22,115--22,129}
3135}
3136
3137@ARTICLE{Treguier_al_DSR03,
3138  author = {A.-M. Tr\'{e}guier and O. Boedel and B. Barnier and G. Madec},
3139  title = {Agulhas eddy fluxes in a 1/6^o Atlantic model},
3140  journal = DSR,
3141  year = {2003},
3142  pages = {251--280},
3143  owner = {gm},
3144  timestamp = {2009.08.20}
3145}
3146
3147@ARTICLE{Treguier1996,
3148  author = {A.-M. Tr\'{e}guier and J. Dukowicz and K. Bryan},
3149  title = {Properties of nonuniform grids used in ocean general circulation
3150   models},
3151  journal = JGR,
3152  year = {1996},
3153  volume = {101},
3154  pages = {20,877--20,881},
3155  owner = {gm},
3156  timestamp = {2007.08.03}
3157}
3158
3159@ARTICLE{Treguier_al_OS07,
3160  author = {A.-M. Tr\'{e}guier and M. H. England and S. R. Rintoul and G. Madec
3161   and J. Le Sommer and J.-M. Molines},
3162  title = {Southern Ocean overturning across streamlines in an eddying simulation
3163   of the Antarctic Circumpolar Current},
3164  journal = OS,
3165  year = {2007},
3166  volume = {4},
3167  pages = {653--698},
3168  owner = {gm},
3169  timestamp = {2009.08.19}
3170}
3171
3172@ARTICLE{Treguier_al_OD06,
3173  author = {A.-M. Tr\'{e}guier and C. Gourcuff and P. Lherminier and H. Mercier
3174   and B. Barnier and G. Madec and J.-M. Molines and T. Penduff and
3175   L. Czeschel and C. Böning},
3176  title = {Internal and forced variability along a section between Greenland
3177   and Portugal in the CLIPPER Atlantic model},
3178  journal = OD,
3179  year = {2006},
3180  volume = {56},
3181  pages = {568--580},
3182  doi = {i10.1007/s10236-006-0069-y},
3183  owner = {gm},
3184  timestamp = {2009.08.19}
3185}
3186
3187@ARTICLE{Treguier1997,
3188  author = {A. M. Tr\'{e}guier and I. M. Held and V. D. Larichev},
3189  title = {Parameterization of Quasigeostrophic Eddies in Primitive Equation
3190   Ocean Models},
3191  journal = JPO,
3192  year = {1997},
3193  volume = {27},
3194  pages = {567--580},
3195  number = {4},
3196  abstract = {A parameterization of mesoscale eddy fluxes in the ocean should be
3197   consistent with the fact that the ocean interior is nearly adiabatic.
3198   Gent and McWilliams have described a framework in which this can
3199   be approximated in z-coordinate primitive equation models by incorporating
3200   the effects of eddies on the buoyancy field through an eddy-induced
3201   velocity. It is also natural to base a parameterization on the simple
3202   picture of the mixing of potential vorticity in the interior and
3203   the mixing of buoyancy at the surface. The authors discuss the various
3204   constraints imposed by these two requirements and attempt to clarify
3205   the appropriate boundary conditions on the eddy-induced velocities
3206   at the surface. Quasigeostrophic theory is used as a guide to the
3207   simplest way of satisfying these constraints.},
3208  date = {April 01, 1997},
3209  owner = {gm},
3210  timestamp = {2007.08.03}
3211}
3212
3213@BOOK{UNESCO1983,
3214  title = {Algorithms for computation of fundamental property of sea water},
3215  publisher = {Techn. Paper in Mar. Sci, 44, UNESCO},
3216  year = {1983},
3217  author = {UNESCO},
3218  owner = {gm},
3219  timestamp = {2007.08.04}
3220}
3221
3222@TECHREPORT{OASIS2006,
3223  author = {S. Valcke},
3224  title = {OASIS3 User Guide (prism\_2-5)},
3225  institution = {PRISM Support Initiative Report No 3, CERFACS, Toulouse, France,
3226   64 pp},
3227  year = {2006},
3228  owner = {gm},
3229  timestamp = {2007.08.05}
3230}
3231
3232@TECHREPORT{Valcke_al_Rep00,
3233  author = {S. Valcke and L. Terray and A. Piacentini },
3234  title = {The OASIS Coupled User Guide Version 2.4},
3235  institution = {CERFACS},
3236  year = {2000},
3237  number = {TR/CMGC/00-10},
3238  owner = {gm}
3239}
3240
3241@ARTICLE{Vancoppenolle_al_OM09b,
3242  author = {M. Vancoppenolle and T. Fichefet and H. Goosse},
3243  title = {Simulating the mass balance and salinity of Arctic and Antarctic
3244   sea ice. 2. Importance of sea ice salinity variations},
3245  journal = {0M},
3246  year = {2009},
3247  volume = {27},
3248  pages = {54--69},
3249  owner = {gm},
3250  timestamp = {2009.08.20}
3251}
3252
3253@ARTICLE{Vancoppenolle_al_OM09a,
3254  author = {M. Vancoppenolle and T. Fichefet and H. Goosse and S. Bouillon and
3255   G. Madec and M. A. Morales Maqueda},
3256  title = {Simulating the mass balance and salinity of Arctic and Antarctic
3257   sea ice. 1. Model description and validation},
3258  journal = OM,
3259  year = {2009},
3260  volume = {27},
3261  pages = {33--53},
3262  doi = {10.1016/j.ocemod.2008.10.005},
3263  owner = {gm},
3264  timestamp = {2008.07.05}
3265}
3266
3267@ARTICLE{Vialard_al_JPO01,
3268  author = {J. Vialard and C. Menkes and J.-P. Boulanger and P. Delecluse and
3269   E. Guilyardi and M.J. McPhaden and G. Madec},
3270  title = {A Model Study of Oceanic Mechanisms Affecting Equatorial Pacific
3271   Sea Surface Temperature During the 1997-98 El Niño},
3272  journal = JPO,
3273  year = {2001},
3274  volume = {31, 7},
3275  pages = {1649--1675},
3276  owner = {gm},
3277  timestamp = {2009.08.20}
3278}
3279
3280@ARTICLE{Weatherly_JMR84,
3281  author = {G. L. Weatherly},
3282  title = {An estimate of bottom frictional dissipation by Gulf Stream fluctuations},
3283  journal = JMR,
3284  year = {1984},
3285  volume = {42, 2},
3286  pages = {289-301},
3287  owner = {gm},
3288  timestamp = {2007.08.06}
3289}
3290
3291@ARTICLE{Weaver_Eby_JPO97,
3292  author = {A. J. Weaver and M. Eby},
3293  title = {On the numerical implementation of advection schemes for use in conjuction
3294   with various mixing
3295   
3296   parameterizations in the GFDL ocean model},
3297  journal = JPO,
3298  year = {1997},
3299  volume = {27},
3300  owner = {gm},
3301  timestamp = {2007.08.06}
3302}
3303
3304@ARTICLE{Webb_al_JAOT98,
3305  author = {D. J. Webb and B. A. de Cuevas and C. S. Richmond},
3306  title = {Improved Advection Schemes for Ocean Models},
3307  journal = JAOT,
3308  year = {1998},
3309  volume = {15},
3310  pages = {1171-1187},
3311  number = {5},
3312  abstract = {Leonard’s widely used QUICK advection scheme is, like the Bryan–Cox–Semtner
3313   ocean model, based on a control volume form of the advection equation.
3314   Unfortunately, in its normal form it cannot be used with the leapfrog–Euler
3315   forward time-stepping schemes used by the ocean model. Farrow and
3316   Stevens overcame the problem by implementing a predictor–corrector
3317   time-stepping scheme, but this is computationally expensive to run.
3318   The present paper shows that the problem can be overcome by splitting
3319   the QUICK operator into an O(δx2) advective term and a velocity
3320   dependent biharmonic diffusion term. These can then be time-stepped
3321   using the combined leapfrog and Euler forward schemes of the Bryan–Cox–Semtner
3322   ocean model, leading to a significant increase in model efficiency.
3323   A small change in the advection operator coefficients may also be
3324   made leading to O(δx4) accuracy. Tests of the improved schemes
3325   are carried out making use of a global eddy-permitting ocean model.
3326   Results are presented from cases where the schemes were applied to
3327   only the tracer fields and also from cases where they were applied
3328   to both the tracer and velocity fields. It is found that the new
3329   schemes have the most effect in the western boundary current regions,
3330   where, for example, the warm core of the Agulhas Current is no longer
3331   broken up by numerical noise.},
3332  date = {October 01, 1998},
3333  owner = {gm},
3334  timestamp = {2007.08.04}
3335}
3336
3337@ARTICLE{Willebrand_al_PO01,
3338  author = {J. Willebrand and B. Barnier and C. Boning and C. Dieterich and P.
3339   D. Killworth and C. Le Provost and Y. Jia and J.-M. Molines and A.
3340   L. New},
3341  title = {Circulation characteristics in three eddy-permitting models of the
3342   North Atlantic},
3343  journal = PO,
3344  year = {2001},
3345  volume = {48, 2},
3346  pages = {123--161},
3347  owner = {gm},
3348  timestamp = {2007.08.04}
3349}
3350
3351@ARTICLE{Williams_al_DAO09,
3352  author = {P.D. Williams and E. Guilyardi and G. Madec and S. Gualdi and E.
3353   Scoccimarro},
3354  title = {The role of mean ocean salinity on climate},
3355  journal = DAO,
3356  year = {2009},
3357  volume = {in press},
3358  owner = {gm},
3359  timestamp = {2009.08.19}
3360}
3361
3362@ARTICLE{Williams_al_GRL07,
3363  author = {P.D. Williams and E. Guilyardi and R. Sutton and J.M. Gregory and
3364   G. Madec},
3365  title = {A new feedback on climate change from the hydrological cycle},
3366  journal = GRL,
3367  year = {2007},
3368  volume = {34},
3369  pages = {L08706},
3370  doi = {10.1029/2007GL029275},
3371  owner = {gm},
3372  timestamp = {2009.08.19}
3373}
3374
3375@ARTICLE{Williams_al_CD06,
3376  author = {P.D. Williams and E. Guilyardi and R. Sutton and J.M. Gregory and
3377   G. Madec},
3378  title = {On the climate response of the low-latitude Pacific ocean to changes
3379   in the global freshwater cycle},
3380  journal = CD,
3381  year = {2006},
3382  volume = {27},
3383  pages = {593--611},
3384  owner = {gm},
3385  timestamp = {2009.08.19}
3386}
3387
3388@ARTICLE{Zalesak_JCP79,
3389  author = {S. T. Zalesak},
3390  title = {Fully multidimensional flux corrected transport algorithms for fluids},
3391  journal = JCP,
3392  year = {1979},
3393  volume = {31},
3394  owner = {gm},
3395  timestamp = {2007.08.04}
3396}
3397
3398@ARTICLE{Zhang_Endoh_JGR92,
3399  author = {Zhang, R.-H. and Endoh, M.},
3400  title = {A free surface general circulation model for the tropical Pacific
3401   Ocean},
3402  journal = JGR,
3403  year = {1992},
3404  volume = {97},
3405  pages = {11,237--11,255},
3406  month = jul,
3407  owner = {gm}
3408}
3409
3410@comment{jabref-meta: groupsversion:3;}
3411
3412@comment{jabref-meta: groupstree:
34130 AllEntriesGroup:;
34141 ExplicitGroup:El Nino\;2\;blanketal97\;;
34152 ExplicitGroup:97/98 event\;0\;;
34162 ExplicitGroup:Forecast\;0\;;
34172 ExplicitGroup:GHG change\;0\;;
34182 ExplicitGroup:in GCMs\;0\;;
34192 ExplicitGroup:in MIPs\;0\;;
34202 ExplicitGroup:momentum balance\;0\;;
34212 ExplicitGroup:Obs analysis\;0\;;
34222 ExplicitGroup:Paleo\;0\;;
34232 ExplicitGroup:Previous events\;0\;;
34242 ExplicitGroup:Reviews\;0\;;
34252 ExplicitGroup:Simple models\;0\;Zhang_Endoh_JGR92\;;
34262 ExplicitGroup:SPL, SC, mean\;0\;;
34272 ExplicitGroup:Teleconnections\;0\;;
34282 ExplicitGroup:Low freq\;0\;;
34292 ExplicitGroup:Theory\;0\;;
34302 ExplicitGroup:Energetics\;0\;;
34311 ExplicitGroup:Diurnal in tropics\;0\;;
34321 ExplicitGroup:Indian\;0\;;
34331 ExplicitGroup:Atlantic\;0\;;
34341 ExplicitGroup:MJO, IO, TIW\;2\;;
34352 ExplicitGroup:Obs\;0\;;
34362 ExplicitGroup:GCM\;0\;;
34372 ExplicitGroup:Mechanims\;0\;;
34382 ExplicitGroup:TIW\;0\;;
34391 ExplicitGroup:Observations\;2\;;
34402 ExplicitGroup:ERBE\;0\;;
34412 ExplicitGroup:Tropical\;0\;;
34422 ExplicitGroup:Global\;0\;;
34432 ExplicitGroup:Clouds\;0\;;
34442 ExplicitGroup:Scale interactions\;0\;;
34451 ExplicitGroup:Mechanisms\;2\;;
34462 ExplicitGroup:CRF\;0\;;
34472 ExplicitGroup:Water vapor\;0\;;
34482 ExplicitGroup:Atmos mechanisms\;0\;;
34491 ExplicitGroup:GCMs\;2\;;
34502 ExplicitGroup:Uncertainty\;0\;;
34512 ExplicitGroup:Momentum balance\;0\;;
34521 ExplicitGroup:Climate change\;0\;;
34532 ExplicitGroup:IPCC AR4\;0\;;
34541 ExplicitGroup:Analysis tools\;0\;;
34551 KeywordGroup:EG publis\;0\;author\;guilyardi\;0\;0\;;
3456}
3457
Note: See TracBrowser for help on using the repository browser.