New URL for NEMO forge!   http://forge.nemo-ocean.eu

Since March 2022 along with NEMO 4.2 release, the code development moved to a self-hosted GitLab.
This present forge is now archived and remained online for history.
Biblio.bib in branches/DEV_r2191_3partymerge2010/DOC/TexFiles/Biblio – NEMO

source: branches/DEV_r2191_3partymerge2010/DOC/TexFiles/Biblio/Biblio.bib @ 2205

Last change on this file since 2205 was 2205, checked in by acc, 14 years ago

#733 DEV_r2191_3partymerge2010. Merged in changes from DEV_r1924_nocs_latphys

  • Property svn:executable set to *
File size: 80.6 KB
Line 
1%% This BibTeX bibliography file was created using BibDesk.
2%% http://bibdesk.sourceforge.net/
3
4
5%% Created for agn at 2010-09-07 17:22:40 +0100
6
7
8%% Saved with string encoding Unicode (UTF-8)
9
10
11@comment{jabref-meta: groupsversion:3;}
12@comment{jabref-meta: groupstree: 0 AllEntriesGroup:; 1 ExplicitGroup:El Nino\;2\;blanketal97\;; 2 ExplicitGroup:97/98 event\;0\;; 2 ExplicitGroup:Forecast\;0\;; 2 ExplicitGroup:GHG change\;0\;; 2 ExplicitGroup:in GCMs\;0\;; 2 ExplicitGroup:in MIPs\;0\;; 2 ExplicitGroup:momentum balance\;0\;; 2 ExplicitGroup:Obs analysis\;0\;; 2 ExplicitGroup:Paleo\;0\;; 2 ExplicitGroup:Previous events\;0\;; 2 ExplicitGroup:Reviews\;0\;; 2 ExplicitGroup:Simple models\;0\;Zhang1992\;; 2 ExplicitGroup:SPL, SC, mean\;0\;; 2 ExplicitGroup:Teleconnections\;0\;; 2 ExplicitGroup:Low freq\;0\;; 2 ExplicitGroup:Theory\;0\;; 2 ExplicitGroup:Energetics\;0\;; 1 ExplicitGroup:Diurnal in tropics\;0\;; 1 ExplicitGroup:Indian\;0\;; 1 ExplicitGroup:Atlantic\;0\;; 1 ExplicitGroup:MJO, IO, TIW\;2\;; 2 ExplicitGroup:Obs\;0\;; 2 ExplicitGroup:GCM\;0\;; 2 ExplicitGroup:Mechanims\;0\;; 2 ExplicitGroup:TIW\;0\;; 1 ExplicitGroup:Observations\;2\;; 2 ExplicitGroup:ERBE\;0\;; 2 ExplicitGroup:Tropical\;0\;; 2 ExplicitGroup:Global\;0\;; 2 ExplicitGroup:Clouds\;0\;; 2 ExplicitGroup:Scale interactions\;0\;; 1 ExplicitGroup:Mechanisms\;2\;; 2 ExplicitGroup:CRF\;0\;; 2 ExplicitGroup:Water vapor\;0\;; 2 ExplicitGroup:Atmos mechanisms\;0\;; 1 ExplicitGroup:GCMs\;2\;; 2 ExplicitGroup:Uncertainty\;0\;; 2 ExplicitGroup:Momentum balance\;0\;; 1 ExplicitGroup:Climate change\;0\;; 2 ExplicitGroup:IPCC AR4\;0\;; 1 ExplicitGroup:Analysis tools\;0\;; 1 KeywordGroup:EG publis\;0\;author\;guilyardi\;0\;0\;; }
13
14
15@string{ap = {Academic Press}}
16
17@string{areps = {Annual Review of Earth Planetary Science}}
18
19@string{arfm = {Annual Review of Fluid Mechanics}}
20
21@string{asl = {Atmospheric Science Letters}}
22
23@string{aw = {Addison-Wesley}}
24
25@string{cd = {Clim. Dyn.}}
26
27@string{cp = {Clarendon Press}}
28
29@string{cup = {Cambridge University Press}}
30
31@string{d = {Dover Publications}}
32
33@string{dao = {Dyn. Atmos. Ocean}}
34
35@string{dsr = {Deep-Sea Res.}}
36
37@string{e = {Eyrolles}}
38
39@string{grl = {Geophys. Res. Let.}}
40
41@string{i = {Interscience}}
42
43@string{jaot = {J. Atmos. Ocean Tech.}}
44
45@string{jas = {J. Atmos. Sc.}}
46
47@string{jc = {J. Climate}}
48
49@string{jcp = {J. Comput. Phys.}}
50
51@string{jgr = {J. Geophys. Res}}
52
53@string{jhup = {The Johns Hopkins University Press}}
54
55@string{jmr = {J. Mar. Res.}}
56
57@string{jms = {J. Mar. Sys.}}
58
59@string{jmsj = {J. Met. Soc. Japan}}
60
61@string{jpo = {J. Phys. Oceanogr.}}
62
63@string{jws = {John Wiley and Sons}}
64
65@string{m = {Macmillan}}
66
67@string{mgh = {McGraw-Hill}}
68
69@string{mwr = {Mon. Wea. Rev.}}
70
71@string{nature = {Nat.}}
72
73@string{nh = {North-Holland}}
74
75@string{ocean = {Oceanology}}
76
77@string{os = {Ocean Science}}
78
79@string{oup = {Oxford University Press}}
80
81@string{ph = {Prentice-Hall}}
82
83@string{po = {Prog. Oceangr.}}
84
85@string{pp = {Pergamon Press}}
86
87@string{prsl = {Proceedings of the Royal Society of London}}
88
89@string{qjrms = {Quart J Roy Meteor Soc}}
90
91@string{recherche = {La Recherche}}
92
93@string{science = {Science}}
94
95@string{sv = {Springer-Verlag}}
96
97@string{tellus = {Tellus}}
98
99
100@article{Adcroft_Campin_OM04,
101   Author = {A. Adcroft and J.-M. Campin},
102   Journal = {Ocean Modelling},
103   Owner = {gm},
104   Timestamp = {2008.01.27},
105   Title = {Re-scaled height coordinates for accurate representation of free-surface flows in ocean circulation models},
106   Volume = {7},
107   Year = {2004}}
108
109@article{Arakawa1966,
110   Author = {A. Arakawa},
111   Journal = JCP,
112   Owner = {gm},
113   Pages = {119-149},
114   Timestamp = {2007.08.04},
115   Title = {Computational design for long term numerical integration of the equations of fluid motion, two-dimensional incompressible flow, Part. I.},
116   Volume = {I},
117   Year = {1966}}
118
119@article{Arakawa1990,
120   Abstract = {To incorporate potential enstrophy dissipation into discrete shallow
121   water equations with no or arbitrarily small energy dissipation,
122   a family of finite-difference schemes have been derived with which
123   potential enstrophy is guaranteed to decrease while energy is conserved
124   (when the mass flux is nondivergent and time is continuous). Among
125   this family of schemes, there is a member that minimizes the spurious
126   impact of infinite potential vorticities associated with infinitesimal
127   fluid depth. The scheme is, therefore, useful for problems in which
128   the free surface may intersect with the lower boundary.},
129   Author = {A. Arakawa and Y.-J. G. Hsu},
130   Date = {October 01, 1990},
131   Journal = MWR,
132   Number = {10},
133   Owner = {gm},
134   Pages = {1960--1969},
135   Timestamp = {2007.08.05},
136   Title = {Energy Conserving and Potential-Enstrophy Dissipating Schemes for the Shallow Water Equations},
137   Volume = {118},
138   Year = {1990}}
139
140@article{Arakawa1981,
141   Abstract = {To improve the simulation of nonlinear aspects of the flow over steep
142   topography, a potential enstrophy and energy conserving scheme for
143   the shallow water equations is derived. It is pointed out that a
144   family of schemes can conserve total energy for general flow and
145   potential enstrophy for flow with no mass flux divergence. The newly
146   derived scheme is a unique member of this family, that conserves
147   both potential enstrophy and energy for general flow. Comparison
148   by means of numerical experiment with a scheme that conserves (potential)
149   enstrophy for purely horizontal nondivergent flow demonstrated the
150   considerable superiority of the newly derived potential enstrophy
151   and energy conserving scheme, not only in suppressing a spurious
152   energy cascade but also in determining the overall flow regime. The
153   potential enstrophy and energy conserving scheme for a spherical
154   grid is also presented.},
155   Author = {Arakawa, Akio and Lamb, Vivian R.},
156   Date = {January 01, 1981},
157   Journal = MWR,
158   Number = {1},
159   Owner = {gm},
160   Pages = {18--36},
161   Timestamp = {2007.08.05},
162   Title = {A Potential Enstrophy and Energy Conserving Scheme for the Shallow Water Equations},
163   Volume = {109},
164   Year = {1981}}
165
166@article{Arhan2006,
167   Author = {M. Arhan and A.M. Treguier and B. Bourles and S. Michel},
168   Journal = JPO,
169   Pages = {1502-1522},
170   Title = {Diagnosing the annual cycle of the Equatorial Undercurrent in the Atlantic Ocean from a general circulation model},
171   Volume = {36},
172   Year = {2006}}
173
174@article{ASSELIN1972,
175   Abstract = {A simple filter for controlling high-frequency computational and physical
176   modes arising in time integrations is proposed. A linear analysis
177   of the filter with leapfrog, implicit, and semi-implicit, differences
178   is made. The filter very quickly removes the computational mode and
179   is also very useful in damping high-frequency physical waves. The
180   stability of the leapfrog scheme is adversely affected when a large
181   filter parameter is used, but the analysis shows that the use of
182   centered differences with frequency filter is still more advantageous
183   than the use of the Euler-backward method. An example of the use
184   of the filter in an actual forecast with the meteorological equations
185   is shown.},
186   Author = {R. Asselin},
187   Date = {June 01, 1972},
188   Journal = MWR,
189   Number = {6},
190   Owner = {gm},
191   Pages = {487-490},
192   Timestamp = {2007.08.03},
193   Title = {Frequency Filter for Time Integrations},
194   Volume = {100},
195   Year = {1972}}
196
197@article{Barnier_al_OD06,
198   Author = {B. Barnier and G. Madec and T. Penduff and J.-M. Molines and A.-M. Treguier and J. Le Sommer and A. Beckmann and A. Biastoch and C. Boning and J. Dengg and C. Derval and E. Durand and S. Gulev and E. Remy and C. Talandier and S. Theetten and M. Maltrud and J. McClean and B. De Cuevas},
199   Journal = {Ocean Dyn.},
200   Owner = {gm},
201   Pages = {doi: 10.1007/s10236-006-0082-1.},
202   Timestamp = {2008.01.25},
203   Title = {Impact of partial steps and momentum advection schemes in a global ocean circulation model at eddy-permitting resolution.},
204   Year = {2006}}
205
206@incollection{Barnier1996,
207   Author = {B. Barnier and P. Marchesiello and A.P. de Miranda},
208   Booktitle = {The South Atlantic: Present and Past Circulation},
209   Editor = {G.Wefer and W.H. Berger and G Siedler and D. Webb},
210   Pages = {289-304},
211   Publisher = {Springer-Verlag, Berlin},
212   Title = {Modeling the ocean circulation in the South Atlantic: A strategy for dealing with open boundaries},
213   Year = {1996}}
214
215@article{Barnier1998,
216   Author = {B. Barnier and P. Marchesiello and A. P. de Miranda and J.M. Molines and M. Coulibaly},
217   Journal = {Deep Sea Res.},
218   Pages = {543-572},
219   Title = {A sigma-coordinate primitive equation model for studying the circulation in the South Atlantic I, Model configuration with error estimates},
220   Volume = {45},
221   Year = {1998}}
222
223@article{Beckmann1998,
224   Author = {A. Beckmann},
225   Journal = {Ocean modelling and parameterization, E. P. Chassignet and J. Verron (eds.), NATO Science Series, Kluwer Academic Publishers},
226   Owner = {gm},
227   Timestamp = {2007.08.04},
228   Title = {The representation of bottom boundary layer processes in numerical ocean circulation models.},
229   Year = {1998}}
230
231@article{BeckDos1998,
232   Author = {A. Beckmann and R. D\"{o}scher},
233   Journal = JPO,
234   Owner = {gm},
235   Pages = {581-591},
236   Timestamp = {2007.08.04},
237   Title = {A method for improved representation of dense water spreading over topography in geopotential-coordinate models},
238   Volume = {27},
239   Year = {1998}}
240
241@article{Beckmann1993,
242   Abstract = {A sigma coordinate ocean circulation model is employed to study flow
243   trapped to a tall seamount in a periodic f-plane channel. In Part
244   I, errors arising from the pressure gradient formulation in the steep
245   topography/strong stratification limit are examined. To illustrate
246   the error properties, a linearized adiabatic version of the model
247   is considered, both with and without forcing, and starting from a
248   resting state with level isopycnals. The systematic discretization
249   errors from the horizontal pressure gradient terms are shown analytically
250   to increase with steeper topography (relative to a fixed horizontal
251   grid) and for stronger stratification (as measured by the Burger
252   number). For an initially quiescent unforced ocean, the pressure
253   gradient errors produce a spurious oscillating current that, at the
254   end of 10 days, is approximately 1 cm s−1 in amplitude. The
255   period of the spurious oscillation (about 0.5 days) is shown to be
256   a consequence of the particular form of the pressure gradient terms
257   in the sigma coordinate system. With the addition of an alongchannel
258   diurnal forcing, resonantly generated seamount-trapped waves are
259   observed to form. Error levels in these solutions are less than those
260   in the unforced cases; spurious time-mean currents are several orders
261   of magnitude less in amplitude than the resonant propagating waves.
262   However, numerical instability is encountered in a wider range of
263   parameter space. The properties of these resonantly generated waves
264   is explored in detail in Part II of this study. Several new formulations
265   of the pressure gradient terms are tested. Two of the formulations—constructed
266   to have additional conservation properties relative to the traditional
267   form of the pressure gradient terms (conservation of JEBAR and conservation
268   of energy)—are found to have error properties generally similar
269   to those of the traditional formulation. A corrected gradient algorithm,
270   based upon vertical interpolation of the pressure field, has a dramatically
271   reduced error level but a much more restrictive range of stable behavior.},
272   Author = {A. Beckmann and D. B. Haidvogel},
273   Date = {August 01, 1993},
274   Journal = {Journal of Physical Oceanography},
275   Number = {8},
276   Owner = {gm},
277   Pages = {1736--1753},
278   Timestamp = {2007.08.03},
279   Title = {Numerical Simulation of Flow around a Tall Isolated Seamount. Part I - Problem Formulation and Model Accuracy},
280   Volume = {23},
281   Year = {1993}}
282
283@article{Blanke_al_JPO99,
284   Author = {B. Blanke and M. Arhan and G. Madec and S. Roche},
285   Journal = JPO,
286   Owner = {gm},
287   Pages = {2753-2768},
288   Timestamp = {2008.05.27},
289   Title = {Warm Water Paths in the Equatorial Atlantic as Diagnosed with a General Circulation Model},
290   Volume = {29, 11},
291   Year = {1999}}
292
293@article{Blanke1993,
294   Author = {B. Blanke and P. Delecluse},
295   Journal = JPO,
296   Pages = {1363-1388},
297   Title = {Low frequency variability of the tropical Atlantic ocean simulated by a general circulation model with mixed layer physics},
298   Volume = {23},
299   Year = {1993}}
300
301@article{blanketal97,
302   Abstract = {One open question in El Nin˜o–Southern Oscillation (ENSO) simulation
303   and predictability is the role of random
304   
305   forcing by atmospheric variability with short correlation times, on
306   coupled variability with interannual timescales.
307   
308   The discussion of this question requires a quantitative assessment
309   of the stochastic component of the wind stress
310   
311   forcing. Self-consistent estimates of this noise (the stochastic forcing)
312   can be made quite naturally in an empirical
313   
314   atmospheric model that uses a statistical estimate of the relationship
315   between sea surface temperature (SST) and
316   
317   wind stress anomaly patterns as the deterministic feedback between
318   the ocean and the atmosphere. The authors
319   
320   use such an empirical model as the atmospheric component of a hybrid
321   coupled model, coupled to the GFDL
322   
323   ocean general circulation model. The authors define as residual the
324   fraction of the Florida State University wind
325   
326   stress not explained by the empirical atmosphere run from observed
327   SST, and a noise product is constructed by
328   
329   random picks among monthly maps of this residual.
330   
331   The impact of included or excluded noise is assessed with several
332   ensembles of simulations. The model is
333   
334   run in coupled regimes where, in the absence of noise, it is perfectly
335   periodic: in the presence of prescribed
336   
337   seasonal variability, the model is strongly frequency locked on a
338   2-yr period; in annual average conditions it
339   
340   has a somewhat longer inherent ENSO period (30 months). Addition of
341   noise brings an irregular behavior that
342   
343   is considerably richer in spatial patterns as well as in temporal
344   structures. The broadening of the model ENSO
345   
346   spectral peak is roughly comparable to observed. The tendency to frequency
347   lock to subharmonic resonances
348   
349   of the seasonal cycle tends to increase the broadening and to emphasize
350   lower frequencies. An inclination to
351   
352   phase lock to preferred seasons persists even in the presence of noise-induced
353   irregularity. Natural uncoupled
354   
355   atmospheric variability is thus a strong candidate for explaining
356   the observed aperiodicity in ENSO time series.
357   
358   Model–model hindcast experiments also suggest the importance of atmospheric
359   noise in setting limits to ENSO
360   
361   predictability.},
362   Author = {B. Blanke and J. D. Neelin and D. Gutzler},
363   Journal = JC,
364   Pages = {1473-1486},
365   Pdf = {Blanke_etal_JC97.pdf},
366   Title = {Estimating the effect of stochastic wind forcing on ENSO irregularity},
367   Volume = {10},
368   Year = {1997}}
369
370@article{Blanke_Raynaud_JPO97,
371   Author = {B. Blanke and S. Raynaud},
372   Journal = JPO,
373   Owner = {gm},
374   Pages = {1038-1053},
375   Timestamp = {2008.05.27},
376   Title = {Kinematics of the Pacific Equatorial Undercurrent: An Eulerian and Lagrangian Approach from GCM Results},
377   Volume = {27, 6},
378   Year = {1997}}
379
380@article{Blayo2005,
381   Author = {E. Blayo and L. Debreu},
382   Journal = {Ocean Modelling},
383   Pages = {231-252},
384   Title = {Revisiting open boundary conditions from the point of view of characteristic variables},
385   Volume = {9},
386   Year = {2005}}
387
388@article{Bougeault1989,
389   Abstract = {The possibility of extending existing techniques for turbulence parameterization
390   in the planetary boundary layer to attitude, orography-induced turbulence
391   events is examined. Starting from a well-tested scheme, we show that
392   it is possible to generalize the specification method of the length
393   scales, with no deterioration of the scheme performance in the boundary
394   layer. The new scheme is implemented in a two-dimensional version
395   of a limited-area, numerical model used for the simulation of mesobeta-scale
396   atmospheric flows. Three well-known cases of orographically induced
397   turbulence are studied. The comparison with observations and former
398   studies shows a satisfactory behavior of the new scheme.},
399   Author = {P. Bougeault and P. Lacarrere},
400   Date = {August 01, 1989},
401   Journal = MWR,
402   Number = {8},
403   Owner = {gm},
404   Pages = {1872-1890},
405   Timestamp = {2007.08.06},
406   Title = {Parameterization of Orography-Induced Turbulence in a Mesobeta--Scale Model},
407   Volume = {117},
408   Year = {1989}}
409
410@article{Brown1978,
411   Abstract = {A simple method for integrating the primitive equations is presented
412   which allows for a timestep increment up to twice that of the conventional
413   leapfrog scheme. It consists of a time-averaging operator, which
414   incorporates three consecutive time levels, on the pressure gradient
415   terms in the equations of motion. An attractive feature of the method
416   is its case in programming, since the resulting finite-difference
417   equations can he solved explicitly.Presented here are linear analyses
418   of the method applied to the barotropic and two-layer baroclinic
419   gravity waves. Also presented is an analysis of the method with a
420   time-damping device incorporated, which is an alternative in controlling
421   linearly amplifying computational modes.},
422   Author = {J. A. Brown and K. A. Campana},
423   Journal = MWR,
424   Month = aug,
425   Number = {8},
426   Owner = {gm},
427   Pages = {1125-1136},
428   Timestamp = {2007.08.05},
429   Title = {An Economical Time-Differencing System for Numerical Weather Prediction},
430   Volume = {106},
431   Year = {1978}}
432
433@article{Bryan1997,
434   Author = {K. Bryan},
435   Journal = JCP,
436   Owner = {gm},
437   Timestamp = {2007.08.10},
438   Title = {A Numerical Method for the Study of the Circulation of the World Ocean},
439   Volume = {135, 2},
440   Year = {1997}}
441
442@article{Bryan1984,
443   Author = {K. Bryan},
444   Journal = JPO,
445   Owner = {gm},
446   Timestamp = {2007.08.10},
447   Title = {Accelerating the convergence to equilibrium of ocean-climate models},
448   Volume = {14},
449   Year = {1984}}
450
451@article{Bryden1973,
452   Author = {H. L. Bryden},
453   Journal = DSR,
454   Owner = {gm},
455   Pages = {401-408},
456   Timestamp = {2007.08.04},
457   Title = {New polynomials for thermal expansion, adiabatic temperature gradient and potential temperature of sea water},
458   Volume = {20},
459   Year = {1973}}
460
461@article{Campin2004,
462   Author = {J.-M. Campin and A. Adcroft and C. Hill and J. Marshall},
463   Journal = {Ocean Modelling},
464   Owner = {gm},
465   Pages = {221-244},
466   Timestamp = {2007.08.04},
467   Title = {Conservation of properties in a free-surface model},
468   Volume = {6, 3-4},
469   Year = {2004}}
470
471@article{Campin_Goosse_Tel99,
472   Author = {J. M. Campin and H. Goosse},
473   Journal = {Tellus},
474   Owner = {gm},
475   Pages = {412-430},
476   Timestamp = {2008.01.20},
477   Title = {Parameterization of density-driven downsloping flow for a coarse-resolution ocean model in z-coordinate},
478   Volume = {51},
479   Year = {1999}}
480
481@article{Cox1987,
482   Author = {M. Cox},
483   Journal = {Ocean Modelling},
484   Owner = {gm},
485   Pages = {1-9},
486   Timestamp = {2007.08.03},
487   Title = {Isopycnal diffusion in a z-coordinate ocean model},
488   Volume = {74},
489   Year = {1987}}
490
491@article{Dorscher_Beckmann_JAOT00,
492   Author = {R. D\"{o}scher and A. Beckmann},
493   Journal = JAOT,
494   Owner = {gm},
495   Pages = {698-707},
496   Timestamp = {2008.01.23},
497   Title = {Effects of a Bottom Boundary Layer Parameterization in a Coarse-Resolution Model of the North Atlantic Ocean},
498   Volume = {17},
499   Year = {2000}}
500
501@article{Debreu_al_CG2008,
502   Author = {L. Debreu and C. Vouland and E. Blayo},
503   Journal = {Computers and Geosciences},
504   Owner = {gm},
505   Pages = {8-13},
506   Timestamp = {2008.02.03},
507   Title = {AGRIF: Adaptive Grid Refinement In Fortran},
508   Volume = {34},
509   Year = {2008}}
510
511@article{Delecluse_Madec_Bk00,
512   Author = {P. Delecluse and G. Madec},
513   Journal = {In \textit{Modeling the Earth's Climate and its Variability}, Les Houches, Session, LXVII 1997, Eds. W. R. Holland, S. Joussaume and F. David, Elsevier Science,},
514   Owner = {gm},
515   Pages = {237-313},
516   Timestamp = {2008.02.03},
517   Title = {Ocean modelling and the role of the ocean in the climate system},
518   Year = {2000}}
519
520@article{Dukowicz1994,
521   Author = {J. K. Dukowicz and R. D. Smith},
522   Journal = JGR,
523   Owner = {gm},
524   Pages = {7991-8014},
525   Timestamp = {2007.08.03},
526   Title = {Implicit free-surface method for the Bryan-Cox-Semtner ocean model},
527   Volume = {99},
528   Year = {1994}}
529
530@incollection{Durran2001,
531   Author = {D.R. Durran},
532   Booktitle = {Advances in Mathematical Modelling of Atmosphere and Ocean Dynamics},
533   Editor = {P.F. Hodnett},
534   Publisher = {Kluwer Academic Publishers},
535   Title = {Open boundary conditions: fact and fiction},
536   Year = {2001}}
537
538@article{Dutay.J.C2004,
539   Abstract = {We compare simulations of the injection of mantle helium-3 into the
540   deep ocean from six global coarse resolution models which participated
541   in the Ocean Carbon Model Intercomparison Project (OCMIP). We also
542   discuss the results of a study carried out with one of the models,
543   which examines the effect of the subgrid-scale mixing parameterization.
544   These sensitivity tests provide useful information to interpret the
545   differences among the OCMIP models and between model simulations
546   and the data.
547   
548   We find that the OCMIP models, which parameterize subgrid-scale mixing
549   using an eddy-induced velocity, tend to
550   
551   underestimate the ventilation of the deep ocean, based on diagnostics
552   with d3He. In these models, this parameterization is implemented
553   with a constant thickness diffusivity coefficient. In future simulations,
554   we recommend using such a parameterization with spatially and temporally
555   varying coefficients in order to moderate its effect on stratification.
556   
557   The performance of the models with regard to the formation of AABW
558   confirms the conclusion from a previous evaluation with CFC-11. Models
559   coupled with a sea-ice model produce a substantial bottom water formation
560   in the Southern Ocean that tends to overestimate AABW ventilation,
561   while models that are not coupled with a sea-ice model systematically
562   underestimate the formation of AABW.
563   
564   We also analyze specific features of the deep 3He distribution (3He
565   plumes) that are particularly well depicted in the data and which
566   put severe constraints on the deep circulation. We show that all
567   the models fail to reproduce a correct propagation of these plumes
568   in the deep ocean. The resolution of the models may be too coarse
569   to reproduce the strong and narrow currents in the deep ocean, and
570   the models do not incorporate the geothermal heating that may also
571   contribute to the generation of these currents. We also use the context
572   of OCMIP-2 to explore the potential of mantle helium-3 as a tool
573   to compare and evaluate modeled deep-ocean circulations. Although
574   the source function of mantle helium is known with a rather large
575   uncertainty, we find that the parameterization used for the injection
576   of mantle helium-3 is sufficient to generate realistic results, even
577   in the Atlantic Ocean where a previous pioneering study [J. Geophys.
578   Res. 100 (1995) 3829] claimed this parameterization generates
579   
580   inadequate results. These results are supported by a multi-tracer
581   evaluation performed by considering the simulated distributions of
582   both helium-3 and natural 14C, and comparing the simulated tracer
583   fields with available data.},
584   Author = {J. -C. Dutay and P. J. -Baptiste and J. -M. Campin and A. Ishida and E. M. -Reimer and R. J. Matear and A. Mouchet and I. J. Totterdell and Y. Yamanaka and K. Rodgers and G. Madec and J.C. Orr},
585   Journal = {Journal of Marine Systems},
586   Owner = {sandra},
587   Pages = {1-22},
588   Pdf = {Dutay_etal_OCMIP_JMS04.pdf},
589   Timestamp = {2006.10.17},
590   Title = {Evaluation of OCMIP-2 ocean models’ deep circulation with mantle helium-3},
591   Year = {2004}}
592
593@article{Eiseman1980,
594   Author = {P. R. Eiseman and A. P. Stone},
595   Journal = {SIAM Review},
596   Owner = {gm},
597   Pages = {12-27},
598   Timestamp = {2007.08.03},
599   Title = {Conservation lows of fluid dynamics -- A survey},
600   Volume = {22},
601   Year = {1980}}
602
603@article{Emile-Geay_Madec_OSD08,
604   Author = {J. Emile-Geay and G. Madec},
605   Journal = {Ocean Sci. Discuss.},
606   Owner = {gm},
607   Pages = {281-325},
608   Timestamp = {2008.07.16},
609   Title = {Geothermal heating, diapycnal mixing and the abyssal circulation},
610   Volume = {5},
611   Year = {2008}}
612
613@phdthesis{Farge1987,
614   Author = {M. Farge},
615   Owner = {gm},
616   School = {Doctorat es Mathematiques, Paris VI University, 401 pp.},
617   Timestamp = {2007.08.03},
618   Title = {Dynamique non lineaire des ondes et des tourbillons dans les equations de Saint Venant},
619   Year = {1987}}
620
621@article{Farrow1995,
622   Author = {D. E. Farrow and D. P. Stevens},
623   Journal = JPO,
624   Owner = {gm},
625   Pages = {1731-1741.},
626   Timestamp = {2007.08.04},
627   Title = {A new tracer advection scheme for Bryan--Cox type ocean general circulation models},
628   Volume = {25},
629   Year = {1995}}
630
631@article{Fujio1991,
632   Author = {S. Fujio and N. Imasato},
633   Journal = JGR,
634   Month = jan,
635   Owner = {gm},
636   Pages = {759-774},
637   Timestamp = {2007.08.04},
638   Title = {Diagnostic calculation for circulation and water mass movement in the deep Pacific},
639   Volume = {96},
640   Year = {1991}}
641
642@article{Gargett1984,
643   Author = {A. E. Gargett},
644   Journal = JMR,
645   Owner = {gm},
646   Timestamp = {2007.08.06},
647   Title = {Vertical eddy diffusivity in the ocean interior},
648   Volume = {42},
649   Year = {1984}}
650
651@article{Gaspar1990,
652   Author = {P. Gaspar and Y. Gr{\'e}goris and J.-M. Lefevre},
653   Journal = JGR,
654   Owner = {gm},
655   Timestamp = {2007.08.06},
656   Title = {A simple eddy kinetic energy model for simulations of the oceanic vertical mixing\: Tests at Station Papa and long-term upper ocean study site},
657   Volume = {95(C9)},
658   Year = {1990}}
659
660@article{Gent1990,
661   Abstract = {A subgrid-scale form for mesoscale eddy mixing on isopycnal surfaces
662   is proposed for use in non-eddy-resolving ocean circulation models.
663   The mixing is applied in isopycnal coordinates to isopycnal layer
664   thickness, or inverse density gradient, as well as to passive scalars,
665   temperature and salinity. The transformation of these mixing forms
666   to physical coordinates is also presented.},
667   Author = {P. R. Gent and J. C. Mcwilliams},
668   Date = {January 01, 1990},
669   Journal = JPO,
670   Number = {1},
671   Owner = {gm},
672   Pages = {150-155},
673   Timestamp = {2007.08.03},
674   Title = {Isopycnal Mixing in Ocean Circulation Models},
675   Volume = {20},
676   Year = {1990}}
677
678@article{Gerdes1993a,
679   Author = {R. Gerdes},
680   Journal = JGR,
681   Owner = {gm},
682   Timestamp = {2007.08.03},
683   Title = {A primitive equation ocean circulation model using a general vertical coordinate transformation 1. Description and testing of the model},
684   Volume = {98},
685   Year = {1993}}
686
687@article{Gerdes1993b,
688   Author = {R. Gerdes},
689   Journal = JGR,
690   Owner = {gm},
691   Pages = {14703-14726},
692   Timestamp = {2007.08.03},
693   Title = {A primitive equation ocean circulation model using a general vertical coordinate transformation 2. Application to an overflow problem},
694   Volume = {98},
695   Year = {1993}}
696
697@techreport{Gibson_TR86,
698   Author = {J. K. Gibson},
699   Institution = {Operational Dep., ECMWF, Reading, UK.},
700   Owner = {gm},
701   Timestamp = {2008.02.03},
702   Title = {Standard software development and maintenance},
703   Year = {1986}}
704
705@book{Gill1982,
706   Author = {A. E. Gill},
707   Publisher = {International Geophysics Series, Academic Press, New-York},
708   Title = {Atmosphere-Ocean Dynamics},
709   Year = {1982}}
710
711@article{Goosse_al_JGR99,
712   Author = {H. Goosse and E. Deleersnijder and T. Fichefet and M. England},
713   Journal = JGR,
714   Owner = {gm},
715   Pages = {13,681-13,695},
716   Timestamp = {2008.05.27},
717   Title = {Sensitivity of a global coupled ocean-sea ice model to the parameterization of vertical mixing},
718   Volume = {104},
719   Year = {1999}}
720
721@article{Griffes2005,
722   Abstract = {This paper summarizes the formulation of the ocean component to the
723   Geophysical
724   
725   Fluid Dynamics Laboratory’s (GFDL) coupled climate model used for
726   the 4th IPCC As- Assessment
727   
728   (AR4) of global climate change. In particular, it reviews elements
729   of ocean
730   
731   sessment climate models and how they are pieced together for use in
732   a state-of-the-art coupled 5
733   
734   model. Novel issues are also highlighted, with particular attention
735   given to sensitivity of
736   
737   the coupled simulation to physical parameterizations and numerical
738   methods. Features
739   
740   of the model described here include the following: (1) tripolar grid
741   to resolve the Arctic
742   
743   Ocean without polar filtering, (2) partial bottom step representation
744   of topography to
745   
746   better represent topographically influenced advective and wave processes,
747   (3) more 10
748   
749   accurate equation of state, (4) three-dimensional flux limited tracer
750   advection to reduce
751   
752   overshoots and undershoots, (5) incorporation of regional climatological
753   variability in
754   
755   shortwave penetration, (6) neutral physics parameterization for representation
756   of the
757   
758   pathways of tracer transport, (7) staggered time stepping for tracer
759   conservation and
760   
761   numerical eciency, (8) anisotropic horizontal viscosities for representation
762   of equato- 15
763   
764   rial currents, (9) parameterization of exchange with marginal seas,
765   (10) incorporation
766   
767   of a free surface that accomodates a dynamic ice model and wave propagation,
768   (11)
769   
770   transport of water across the ocean free surface to eliminate unphysical
771   “virtual tracer
772   
773   flux” methods, (12) parameterization of tidal mixing on continental
774   shelves.},
775   Author = {S. M. Griffes and A. Gnanadesikan and K. W. Dixon and J. P. Dunne and R. Gerdes and M. J. Harrison and A. Rosati and J. L. Russell and B. L. Samuels and M. J. Spelman and M. Winton and R. Zhang},
776   Journal = OS,
777   Owner = {sandra},
778   Pages = {165–246},
779   Pdf = {Griffies_al_OSD05.pdf},
780   Timestamp = {2007.01.25},
781   Title = {Formulation of an ocean model for global climate simulations},
782   Year = {2005}}
783
784@book{Griffies2004,
785   Author = {S. M. Griffies},
786   Owner = {gm},
787   Publisher = {Princeton University Press, 434pp},
788   Timestamp = {2007.08.05},
789   Title = {Fundamentals of ocean climate models},
790   Year = {2004}}
791
792@article{Griffies_JPO98,
793   Author = {S. M. Griffies},
794   Date-Modified = {2010-09-07 17:22:40 +0100},
795   Journal = JPO,
796   Owner = {gm},
797   Pages = {831--841},
798   Timestamp = {2008.06.28},
799   Title = {The {G}ent-{M}c{W}illiams skew-flux},
800   Volume = {28},
801   Year = {1998}}
802
803@article{Griffies1998,
804   Abstract = {This paper considers the requirements that must be satisfied in order
805   to provide a stable and physically based isoneutral tracer diffusion
806   scheme in a z-coordinate ocean model. Two properties are emphasized:
807   1) downgradient orientation of the diffusive fluxes along the neutral
808   directions and 2) zero isoneutral diffusive flux of locally referenced
809   potential density. It is shown that the Cox diffusion scheme does
810   not respect either of these properties, which provides an explanation
811   for the necessity to add a nontrivial background horizontal diffusion
812   to that scheme. A new isoneutral diffusion scheme is proposed that
813   aims to satisfy the stated properties and is found to require no
814   horizontal background diffusion.},
815   Author = {S. M. Griffies and A. Gnanadesikan and R. C. Pacanowski and V. D. Larichev and J. K. Dukowicz and R. D. Smith},
816   Date = {May 01, 1998},
817   Journal = JPO,
818   Number = {5},
819   Owner = {gm},
820   Pages = {805-830},
821   Timestamp = {2007.08.05},
822   Title = {Isoneutral Diffusion in a z-Coordinate Ocean Model},
823   Volume = {28},
824   Year = {1998}}
825
826@article{Griffies2001,
827   Abstract = {This paper details a free surface method using an explicit time stepping
828   scheme for use in z-coordinate ocean models. One key property that
829   makes the method especially suitable for climate simulations is its
830   very stable numerical time stepping scheme, which allows for the
831   use of a long density time step, as commonly employed with coarse-resolution
832   rigid-lid models. Additionally, the effects of the undulating free
833   surface height are directly incorporated into the baroclinic momentum
834   and tracer equations. The novel issues related to local and global
835   tracer conservation when allowing for the top cell to undulate are
836   the focus of this work. The method presented here is quasi-conservative
837   locally and globally of tracer when the baroclinic and tracer time
838   steps are equal. Important issues relevant for using this method
839   in regional as well as large-scale climate models are discussed and
840   illustrated, and examples of scaling achieved on parallel computers
841   provided.},
842   Author = {S. M. Griffies and R. C. Pacanowski and M. Schmidt and V. Balaji},
843   Date = {May 01, 2001},
844   Journal = MWR,
845   Number = {5},
846   Owner = {gm},
847   Pages = {1081-1098},
848   Timestamp = {2007.08.04},
849   Title = {Tracer Conservation with an Explicit Free Surface Method for z-Coordinate Ocean Models},
850   Volume = {129},
851   Year = {2001}}
852
853@article{Guily2001,
854   Author = {E. Guilyardi and G. Madec and L. Terray},
855   Journal = CD,
856   Number = {8},
857   Pages = {589-599},
858   Pdf = {/home/ericg/TeX/Papers/Published_pdfs/Guilyardi_al_CD01.pdf},
859   Title = {The role of lateral ocean physics in the upper ocean thermal balance of a coupled ocean-atmosphere GCM},
860   Volume = {17},
861   Year = {2001}}
862
863@article{Guyon_al_EP99,
864   Author = {M. Guyon and G. Madec and F.-X. Roux and M. Imbard},
865   Journal = {Lecture Notes in Computer Science},
866   Owner = {gm},
867   Pages = {603-607},
868   Timestamp = {2008.05.27},
869   Title = {A Parallel ocean model for high resolution studies},
870   Volume = {Euro-Par'99},
871   Year = {1999}}
872
873@article{Guyon_al_CalPar99,
874   Author = {M. Guyon and G. Madec and F.-X. Roux and M. Imbard and C. Herbaut and P. Fronier},
875   Journal = {Calculateurs Paralleles},
876   Owner = {gm},
877   Pages = {499-517},
878   Timestamp = {2008.05.27},
879   Title = {Parallelization of the OPA ocean model},
880   Volume = {11, 4},
881   Year = {1999}}
882
883@book{Haltiner1980,
884   Author = {G. J. Haltiner and R. T. Williams},
885   Owner = {gm},
886   Publisher = {John Wiley {\&} Sons Eds., second edition, 477pp},
887   Timestamp = {2007.08.03},
888   Title = {Numerical prediction and dynamic meteorology},
889   Year = {1980}}
890
891@article{Haney1991,
892   Abstract = {The error in computing the pressure gradient force near steep topography
893   using terms following (σ) coordinates is investigated in an
894   ocean model using the family of vertical differencing schemes proposed
895   by Arakawa and Suarez. The truncation error is estimated by substituting
896   known buoyancy profiles into the finite difference hydrostatic and
897   pressure gradient terms. The error due to “hydrostatic inconsistency,”
898   which is not simply a space truncation error, is also documented.
899   The results show that the pressure gradient error is spread throughout
900   the water column, and it is sensitive to the vertical resolution
901   and to the placement of the grid points relative to the vertical
902   structure of the buoyancy field being modeled. Removing a reference
903   state, as suggested for the atmosphere by Gary, reduces the truncation
904   error associated with the two lowest vertical modes by a factor of
905   2 to 3. As an example, the error in computing the pressure gradient
906   using a standard 10-level primitive equation model applied to buoyancy
907   profiles and topographic slopes typical of the California Current
908   region corresponds to a false geostrophic current of the order of
909   10–12 cm s−1. The analogous error in a hydrostatically
910   consistent 30-level model with the reference state removed is about
911   an order of magnitude smaller.},
912   Author = {R. L. Haney},
913   Date = {April 01, 1991},
914   Journal = JPO,
915   Number = {4},
916   Owner = {gm},
917   Pages = {610--619},
918   Timestamp = {2007.08.03},
919   Title = {On the Pressure Gradient Force over Steep Topography in Sigma Coordinate Ocean Models},
920   Volume = {21},
921   Year = {1991}}
922
923@article{Hsu1990,
924   Abstract = {In constructing a numerical model of the atmosphere, we must choose
925   an appropriate vertical coordinate. Among the various possibilities,
926   isentropic vertical coordinates such as the θ-coordinate seem
927   to have the greatest potential, in spite of the technical difficulties
928   in treating the intersections of coordinate surfaces with the lower
929   boundary. The purpose of this paper is to describe the θ-coordinate
930   model we have developed and to demonstrate its potential through
931   simulating the nonlinear evolution of a baroclinic wave.In the model
932   we have developed, vertical discretization maintains important integral
933   constraints, such as conservation of the angular momentum and total
934   energy. In treating the intersections of coordinate surfaces with
935   the lower boundary, we have followed the massless-layer approach
936   in which the intersecting coordinate surfaces are extended along
937   the boundary by introducing massless layers. Although this approach
938   formally eliminates the intersection problem, it raises other computational
939   problems. Horizontal discretization of the continuity and momentum
940   equations in the model has been carefully designed to overcome these
941   problems.Selected results from a 10-day integration with the 25-layer,
942   β-plane version of the model are presented. It seems that the
943   model can simulate the nonlinear evolution of a baroclinic wave and
944   associated dynamical processes without major computational difficulties.},
945   Author = {Hsu, Yueh-Jiuan G. and Arakawa, Akio},
946   Date = {October 01, 1990},
947   Journal = MWR,
948   Number = {10},
949   Owner = {gm},
950   Pages = {1933--1959},
951   Timestamp = {2007.08.05},
952   Title = {Numerical Modeling of the Atmosphere with an Isentropic Vertical Coordinate},
953   Volume = {118},
954   Year = {1990}}
955
956@article{JackMcD1995,
957   Author = {D. R. Jackett and T. J. McDougall},
958   Journal = JAOT,
959   Owner = {gm},
960   Pages = {381-389},
961   Timestamp = {2007.08.04},
962   Title = {Minimal adjustment of hydrographic data to achieve static stability},
963   Volume = {12},
964   Year = {1995}}
965
966@book{Jerlov1968,
967   Author = {N. G. Jerlov},
968   Owner = {gm},
969   Publisher = {194pp},
970   Timestamp = {2007.08.04},
971   Title = {Optical Oceanography},
972   Year = {1968}}
973
974@book{Jerlov_Bk1968,
975   Author = {N. G. Jerlov},
976   Owner = {gm},
977   Pages = {194pp},
978   Publisher = {Elsevier},
979   Timestamp = {2008.08.31},
980   Year = {1968}}
981
982@inproceedings{Killworth1989,
983   Author = {P. D. Killworth},
984   Booktitle = {Parameterization of small-scale processes},
985   Editor = {Hawaiian winter workshop},
986   Month = {January 17-20},
987   Organization = {University of Hawaii at Manoa},
988   Owner = {gm},
989   Timestamp = {2007.08.06},
990   Title = {On the parameterization of deep convection in ocean models},
991   Year = {1989}}
992
993@article{Killworth1992,
994   Author = {P. D. Killworth},
995   Journal = JPO,
996   Pages = {1379-1387},
997   Title = {An equivalent-barotropic mode in the fine resolution Antarctic model},
998   Volume = {22},
999   Year = {1992}}
1000
1001@article{Killworth1991,
1002   Abstract = {A version of the Bryan–Cox–Semtner numerical ocean general
1003   circulation model, adapted to include a free surface, is described.
1004   The model is designed for the following uses: tidal studies
1005   (a tidal option is explicitly included); assimilation of altimetric
1006   data (since the surface elevation is now a prognostic variable);
1007   and in situations where accurate relaxation to obtain the streamfunction
1008   in the original model is too time consuming. Comparison is made between
1009   a 300-year run of the original model and the free-surface version,
1010   using a very coarse North Atlantic calculation as the basis. The
1011   results are very similar, differing only in the streamfunction over
1012   topography; this is to be expected, since the treatment of topographic
1013   torques on the barotropic flow differs because of the nature of the
1014   modifications.},
1015   Author = {Killworth, P. D. and Stainforth, D. and Webb, D. J. and Paterson, S. M.},
1016   Date = {September 01, 1991},
1017   Journal = JPO,
1018   Number = {9},
1019   Owner = {gm},
1020   Pages = {1333--1348},
1021   Timestamp = {2007.08.03},
1022   Title = {The Development of a Free-Surface Bryan-Cox-Semtner Ocean Model},
1023   Volume = {21},
1024   Year = {1991}}
1025
1026@article{Kolmogorov1942,
1027   Author = {A. N. Kolmogorov},
1028   Journal = {Izv. Akad. Nauk SSSR, Ser. Fiz.},
1029   Owner = {gm},
1030   Pages = {56-58},
1031   Timestamp = {2007.08.06},
1032   Title = {The equation of turbulent motion in an incompressible fluid},
1033   Volume = {6},
1034   Year = {1942}}
1035
1036@phdthesis{Levy1996,
1037   Author = {M. L\'{e}vy},
1038   Owner = {gm},
1039   School = {Universit\'{e} Pierre et Marie Curie, Paris, France, 207pp},
1040   Timestamp = {2007.08.04},
1041   Title = {Mod\'{e}lisation des processus biog\'{e}ochimiques en M\'{e}diterran\'{e}e nord-occidentale. Cycle saisonnier et variabilit\'{e} m\'{e}so\'{e}chelle},
1042   Year = {1996}}
1043
1044@article{Levy2001,
1045   Author = {M. L\'{e}vy and A. Estubier and G Madec},
1046   Journal = GRL,
1047   Owner = {gm},
1048   Timestamp = {2007.08.04},
1049   Title = {Choice of an advection scheme for biogeochemical models},
1050   Volume = {28},
1051   Year = {2001}}
1052
1053@article{Levy1998,
1054   Author = {M. L\'{e}vy and L. M\'{e}mery and G. Madec},
1055   Journal = JMS,
1056   Owner = {gm},
1057   Timestamp = {2007.08.10},
1058   Title = {The onset of a bloom after deep winter convection in the Northwestern Mediterranean Sea: mesoscale process study with a primitive equation model},
1059   Volume = {16/1-2},
1060   Year = {1998}}
1061
1062@book{LargeYeager2004,
1063   Author = {W. Large and S. Yeager},
1064   Owner = {gm},
1065   Publisher = {NCAR Technical Note, NCAR/TN-460+STR, CGD Division of the National Center for Atmospheric Research},
1066   Timestamp = {2007.08.06},
1067   Title = {Diurnal to decadal global forcing for ocean and sea-ice models: the data sets and flux climatologies},
1068   Year = {2004}}
1069
1070@article{Large_al_RG94,
1071   Author = {W. G. Large and J. C. McWilliams and S. C. Doney},
1072   Doi = {10.1029/94RG01872},
1073   Journal = {Reviews of Geophysics},
1074   Owner = {gm},
1075   Pages = {363-404},
1076   Timestamp = {2007.08.03},
1077   Title = {Oceanic vertical mixing - a review and a model with a nonlocal boundary layer parameterization},
1078   Volume = {32},
1079   Year = {1994},
1080   Bdsk-Url-1 = {http://dx.doi.org/10.1029/94RG01872}}
1081
1082@phdthesis{Lazar1997,
1083   Author = {A. Lazar},
1084   Owner = {gm},
1085   School = {Universit\'{e} Pierre et Marie Curie, Paris, France, 200pp},
1086   Timestamp = {2007.08.06},
1087   Title = {La branche froide de la circulation thermohaline - sensibilit\'{e} \`{a} la diffusion turbulente dans un mod\`{e}le de circulation g\'{e}n\'{e}rale id\'{e}alis\'{e}e},
1088   Year = {1997}}
1089
1090@article{Lazar1999,
1091   Abstract = {Numerous numerical simulations of basin-scale ocean circulation display
1092   a vast interior downwelling and a companion intense western boundary
1093   layer upwelling at midlatitude below the thermocline. These features,
1094   related to the so-called Veronis effect, are poorly rationalized
1095   and depart strongly from the classical vision of the deep circulation
1096   where upwelling is considered to occur in the interior. Furthermore,
1097   they significantly alter results of ocean general circulation models
1098   (OGCMs) using horizontal Laplacian diffusion. Recently, some studies
1099   showed that the parameterization for mesoscale eddy effects formulated
1100   by Gent and McWilliams allows integral quantities like the streamfunction
1101   and meridional heat transport to be free of these undesired effects.
1102   In this paper, an idealized OGCM is used to validate an analytical
1103   rationalization of the processes at work and help understand the
1104   physics. The results show that the features associated with the Veronis
1105   effect can be related quantitatively to three different width scales
1106   that characterize the baroclinic structure of the deep western boundary
1107   current. In addition, since one of these scales may be smaller than
1108   the Munk barotropic layer, usually considered to determine the minimum
1109   resolution and horizontal viscosity for numerical models, the authors
1110   recommend that it be taken into account. Regarding the introduction
1111   of the new parameterization, diagnostics in terms of heat balances
1112   underline some interesting similarities between local heat fluxes
1113   by eddy-induced velocities and horizontal diffusion at low and midlatitudes
1114   when a common large diffusivity (here 2000 m2 s−1) is used.
1115   The near-quasigeostrophic character of the flow explains these results.
1116   As a consequence, the response of the Eulerian-mean circulation is
1117   locally similar for runs using either of the two parameterizations.
1118   However, it is shown that the advective nature of the eddy-induced
1119   heat fluxes results in a very different effective circulation, which
1120   is the one felt by tracers.},
1121   Author = {A. Lazar and G. Madec and P. Delecluse},
1122   Date = {November 01, 1999},
1123   Journal = JPO,
1124   Number = {11},
1125   Owner = {gm},
1126   Pages = {2945-2961},
1127   Timestamp = {2007.08.06},
1128   Title = {The Deep Interior Downwelling, the Veronis Effect, and Mesoscale Tracer Transport Parameterizations in an OGCM},
1129   Volume = {29},
1130   Year = {1999}}
1131
1132@article{Lengaigne_al_JGR03,
1133   Author = {M. Lengaigne and G. Madec and G. Alory and C. Menkes},
1134   Journal = JGR,
1135   Owner = {gm},
1136   Pages = {3345, doi:10.1029/2002JC001704},
1137   Timestamp = {2008.01.26},
1138   Title = {Sensitivity of the tropical Pacific Ocean to isopycnal diffusion on tracer and dynamics},
1139   Volume = {108 (C11)},
1140   Year = {2003}}
1141
1142@article{Leonard1991,
1143   Author = {B. P. Leonard},
1144   Journal = {Computer Methods in Applied Mechanics and Engineering},
1145   Owner = {gm},
1146   Pages = {17-74},
1147   Timestamp = {2007.08.04},
1148   Title = {The ULTIMATE conservative difference scheme applied to unsteady one--dimensional advection},
1149   Year = {1991}}
1150
1151@techreport{Leonard1988,
1152   Author = {B. P. Leonard},
1153   Institution = {Technical Memorandum TM-100916 ICOMP-88-11, NASA},
1154   Owner = {gm},
1155   Timestamp = {2007.08.04},
1156   Title = {Universal limiter for transient interpolation modelling of the advective transport equations},
1157   Year = {1988}}
1158
1159@article{Leonard1979,
1160   Author = {B. P. Leonard},
1161   Journal = {Computer Methods in Applied Mechanics and Engineering},
1162   Month = jun,
1163   Owner = {gm},
1164   Pages = {59-98},
1165   Timestamp = {2007.08.04},
1166   Title = {A stable and accurate convective modelling procedure based on quadratic upstream interpolation},
1167   Volume = {19},
1168   Year = {1979}}
1169
1170@techreport{Levier2007,
1171   Author = {B. Levier and A.-M. Tr\'{e}guier and G. Madec and V. Garnier},
1172   Institution = {MERSEA MERSEA IP report WP09-CNRS-STR-03-1A, 47pp, available on the NEMO web site},
1173   Owner = {gm},
1174   Timestamp = {2007.08.03},
1175   Title = {Free surface and variable volume in the NEMO code},
1176   Year = {2007}}
1177
1178@book{levitus82,
1179   Author = {S Levitus},
1180   Note = {173 p.},
1181   Publisher = {NOAA professional paper No. 13, 174pp},
1182   Title = {Climatological Atlas of the world ocean},
1183   Year = {1982}}
1184
1185@techreport{Lott1989,
1186   Author = {F. Lott and G. Madec},
1187   Institution = {LODYC, France, 36pp.},
1188   Number = {3},
1189   Owner = {gm},
1190   Timestamp = {2007.08.03},
1191   Title = {Implementation of bottom topography in the Ocean General Circulation Model OPA of the LODYC: formalism and experiments.},
1192   Year = {1989}}
1193
1194@article{Lott1990,
1195   Author = {F. Lott and G. Madec and J. Verron},
1196   Journal = {Ocean Modelling},
1197   Owner = {gm},
1198   Pages = {1-4},
1199   Timestamp = {2007.08.03},
1200   Title = {Topographic experiments in an Ocean General Circulation Model},
1201   Volume = {88},
1202   Year = {1990}}
1203
1204@book{Madec_Bk08,
1205   Author = {G. Madec},
1206   Owner = {gm},
1207   Publisher = {Note du P\^ole de mod\'{e}lisation, Institut Pierre- Simon Laplace (IPSL), France, No 27, ISSN No 1288-1619},
1208   Timestamp = {2008.07.05},
1209   Title = {NEMO ocean engine},
1210   Year = {2008}}
1211
1212@phdthesis{Madec1990,
1213   Author = {G. Madec},
1214   Owner = {gm},
1215   School = {Universit\'{e}Pierre et Marie Curie, Paris, France, 194pp.},
1216   Timestamp = {2007.08.10},
1217   Title = {La formation d'eau profonde et son impact sur la circulation r\'{e}gionale en M\'{e}diterran\'{e}e Occidentale - une approche num\'{e}rique},
1218   Year = {1990}}
1219
1220@article{Madec1991a,
1221   Author = {G. Madec and M. Chartier and M. Cr\'{e}pon},
1222   Journal = DAO,
1223   Owner = {gm},
1224   Timestamp = {2007.08.06},
1225   Title = {Effect of thermohaline forcing variability on deep water formation in the Northwestern Mediterranean Sea - a high resulution three-dimensional study},
1226   Year = {1991}}
1227
1228@article{Madec1991b,
1229   Author = {G. Madec and M. Chartier and P. Delecluse and M. Cr\'{e}pon},
1230   Journal = JPO,
1231   Owner = {gm},
1232   Timestamp = {2007.08.06},
1233   Title = {A three-dimensional numerical study of deep water formation in the Northwestern Mediterranean Sea .},
1234   Volume = {21},
1235   Year = {1991}}
1236
1237@inbook{Madec1991c,
1238   Author = {G. Madec and M. Cr\'{e}pon},
1239   Chapter = {Thermohaline-driven deep water formation in the Northwestern Mediterranean Sea},
1240   Owner = {gm},
1241   Publisher = {Elsevier Oceanographic Series},
1242   Timestamp = {2007.08.06},
1243   Title = {Deep convection and deep water formation in the oceans},
1244   Year = {1991}}
1245
1246@article{Madec1997,
1247   Author = {G. Madec and P. Delecluse},
1248   Journal = {Int. WOCE Newsletter},
1249   Owner = {gm},
1250   Pages = {12-15},
1251   Timestamp = {2007.08.06},
1252   Title = {The OPA/ARPEGE and OPA/LMD Global Ocean-Atmosphere Coupled Model},
1253   Volume = {26},
1254   Year = {1997}}
1255
1256@techreport{Madec1998,
1257   Author = {G. Madec and P. Delecluse and M. Imbard and C. Levy},
1258   Institution = {LODYC/IPSL Note 11},
1259   Title = {OPA 8 Ocean General Circulation Model - Reference Manual},
1260   Year = {1998}}
1261
1262@article{MadecImb1996,
1263   Author = {G Madec and M Imbard},
1264   Journal = CD,
1265   Pages = {381-388},
1266   Title = {A global ocean mesh to overcome the north pole singularity},
1267   Volume = {12},
1268   Year = {1996}}
1269
1270@article{Madec1996,
1271   Abstract = {The large-scale processes preconditioning the winter deep-water formation
1272   in the northwestern Mediterranean Sea are investigated with a primitive
1273   equation numerical model where convection is parameterized by a non-penetrative
1274   convective adjustment algorithm. The ocean is forced by momentum
1275   and buoyancy fluxes that have the gross features of mean winter forcing
1276   found in the MEDOC area. The wind-driven barotropic circulation appears
1277   to be a major ingredient of the preconditioning phase of deep-water
1278   formation. After three months, the ocean response is dominated by
1279   a strong barotropic cyclonic vortex located under the forcing area,
1280   which fits the Sverdrup balance away from the northern coast. In
1281   the vortex center, the whole water column remains trapped under the
1282   forcing area all winter. This trapping enables the thermohaline forcing
1283   to drive deep-water formation efficiently. Sensitivity studies show
1284   that, β effect and bottom topography play a paramount role and
1285   confirm that deep convection occurs only in areas that combine a
1286   strong surface thermohaline forcing and a weak barotropic advection
1287   so that water masses are submitted to the negative buoyancy fluxes
1288   for a much longer time. In particular, the impact of the Rhône
1289   Deep Sea Fan on the barotropic circulation dominates the β effect:
1290   the barotropic flow is constrained to follow the bathymetric contours
1291   and the cyclonic vortex is shifted southward so that the fluid above
1292   the fan remains quiescent. Hence, buoyancy fluxes trigger deep convection
1293   above the fan in agreement with observations. The selection of the
1294   area of deep-water formation through the defection of the barotropic
1295   circulation by the topography seems a more efficient mechanism than
1296   those associated with the wind- driven barotropic vortex. This is
1297   due to its permanency, while the latter may be too sensitive to time
1298   and space variations of the forcing.},
1299   Author = {G. Madec and F. Lott and P. Delecluse and M. Cr\'{e}pon},
1300   Journal = JPO,
1301   Month = aug,
1302   Number = {8},
1303   Owner = {gm},
1304   Pages = {1393-1408},
1305   Timestamp = {2007.08.03},
1306   Title = {Large-Scale Preconditioning of Deep-Water Formation in the Northwestern Mediterranean Sea},
1307   Volume = {26},
1308   Year = {1996}}
1309
1310@article{Madec1988,
1311   Author = {G. Madec and C. Rahier and M. Chartier},
1312   Journal = {Ocean Modelling},
1313   Owner = {gm},
1314   Timestamp = {2007.08.10},
1315   Title = {A comparison of two-dimensional elliptic solvers for the barotropic streamfunction in a multilevel OGCM},
1316   Volume = {78},
1317   Year = {1988}}
1318
1319@article{Maltrud1998,
1320   Author = {M. E. Maltrud and R. D. Smith and A. J. Semtner and R. C. Malone},
1321   Journal = JGR,
1322   Owner = {gm},
1323   Pages = {30,825-30,854},
1324   Timestamp = {2007.08.05},
1325   Title = {Global eddy-resolving ocean simulations driven by 1985-1995 atmospheric winds},
1326   Volume = {103(C13)},
1327   Year = {1998}}
1328
1329@article{Marchesiello2001,
1330   Author = {P. Marchesiello and J. Mc Williams and A. Shchepetkin},
1331   Journal = {Ocean Modelling},
1332   Pages = {1-20},
1333   Title = {Open boundary conditions for long-term integrations of Regional Oceanic Models},
1334   Volume = {3},
1335   Year = {2001}}
1336
1337@book{MIT-GCM_2004,
1338   Author = {J. Marshall and A. Adcroft and J.-M. Campin and P. Heimbach and A. Molod and S. Dutkiewicz and H. Hill and M. Losch and B. Fox-Kemper and D. Menemenlis and D. Ferreira and E. Hill and M. Follows and C. Hill and C. Evangelinos and G. Forget},
1339   Editor = {MIT Department of EAPS},
1340   Owner = {gm},
1341   Timestamp = {2008.07.04},
1342   Title = {MIT-gcm User Manual},
1343   Year = {2004}}
1344
1345@phdthesis{MartiTh1992,
1346   Author = {O. Marti},
1347   Owner = {gm},
1348   School = {Universit\'{e} Pierre et Marie Curie, Paris, France, 201pp},
1349   Timestamp = {2007.08.04},
1350   Title = {Etude de l'oc\'{e}an mondial : mod\'{e}lisation de la circulation et du transport de traceurs anthropog\'{e}niques},
1351   Year = {1992}}
1352
1353@article{Marti1992,
1354   Author = {O. Marti and G. Madec and P. Delecluse},
1355   Journal = JGR,
1356   Month = aug,
1357   Owner = {gm},
1358   Pages = {12763-12766},
1359   Timestamp = {2007.08.03},
1360   Title = {Comment on "Net diffusivity in ocean general circulation models with nonuniform grids" by F. L. Yin and I. Y. Fung},
1361   Volume = {97},
1362   Year = {1992}}
1363
1364@article{McDougall1987,
1365   Abstract = {Scalar properties in the ocean are stirred (and subsequently mixed)
1366   rather efficiently by mesoscale eddies and two-dimensional turbulence
1367   along “neutral surfaces”, defined such that when water
1368   parcels are moved small distances in the neutral surface, they experience
1369   no buoyant restoring forces. By contrast, work would have to be done
1370   on a moving fluid parcel in order to keep it on a potential density
1371   surface. The differences between neutral surfaces and potential density
1372   surfaces are due to the variation of α/β with pressure
1373   (where α is the thermal expansion coefficient and β is
1374   the saline contraction coefficient). By regarding the equation of
1375   state of seawater as a function of salinity, potential temperature,
1376   and pressure, rather than in terms of salinity, temperature, and
1377   pressure, it is possible to quantify the differences between neutral
1378   surfaces and potential density surfaces. In particular, the spatial
1379   gradients of scalar properties (e.g., S, θ, tritium or potential
1380   vorticity) on a neutral surface can be quite different to the corresponding
1381   gradients in a potential density surface. For example, at a potential
1382   temperature of 4°C and a pressure of 1000 db, the lateral gradient
1383   of potential temperature in a potential density surface (referenced
1384   to sea level) is too large by between 50% and 350% (depending
1385   on the stability ratio Rp of the water column) compared with the
1386   physically relevant gradient of potential temperature on the neutral
1387   surface. Three-examples of neutral surfaces are presented, based
1388   on the Levitus atlas of the North Atlantic.},
1389   Author = {T. J. McDougall},
1390   Date = {November 01, 1987},
1391   Journal = {Journal of Physical Oceanography},
1392   Number = {11},
1393   Owner = {gm},
1394   Pages = {1950-1964},
1395   Timestamp = {2007.08.04},
1396   Title = {Neutral Surfaces},
1397   Volume = {17},
1398   Year = {1987}}
1399
1400@article{McDougall_Taylor_JMR84,
1401   Author = {T. J. McDougall and J. R. Taylor},
1402   Journal = {Journal of Marine Research},
1403   Owner = {gm},
1404   Pages = {1-14},
1405   Timestamp = {2008.05.20},
1406   Title = {Flux measurements across a finger interface at low values of the stability ratio},
1407   Volume = {42},
1408   Year = {1984}}
1409
1410@article{Merryfield1999,
1411   Abstract = {A global ocean model is described in which parameterizations of diapycnal
1412   mixing by double-diffusive fingering and layering are added to a
1413   stability-dependent background turbulent diffusivity. Model runs
1414   with and without double-diffusive mixing are compared for annual-mean
1415   and seasonally varying surface forcing. Sensitivity to different
1416   double-diffusive mixing parameterizations is considered. In all cases,
1417   the locales and extent of salt fingering (as diagnosed from buoyancy
1418   ratio Rρ) are grossly comparable to climatology, although fingering
1419   in the models tends to be less intense than observed. Double-diffusive
1420   mixing leads to relatively minor changes in circulation but exerts
1421   significant regional influences on temperature and salinity.},
1422   Author = {W. J. Merryfield and G. Holloway and A. E. Gargett},
1423   Date = {June 01, 1999},
1424   Journal = JPO,
1425   Number = {6},
1426   Owner = {gm},
1427   Pages = {1124-1142},
1428   Timestamp = {2007.08.06},
1429   Title = {A Global Ocean Model with Double-Diffusive Mixing},
1430   Volume = {29},
1431   Year = {1999}}
1432
1433@book{Mesinger_Arakawa_Bk76,
1434   Author = {F. Mesinger and A. Arakawa},
1435   Owner = {gm},
1436   Publisher = {GARP Publication Series No 17},
1437   Timestamp = {2008.02.09},
1438   Title = {Numerical methods used in Atmospheric models},
1439   Year = {1976}}
1440
1441@article{Murray1996,
1442   Author = {R. J. Murray},
1443   Journal = JCP,
1444   Month = {July},
1445   Number = {2},
1446   Owner = {gm},
1447   Pages = {251-273},
1448   Timestamp = {2007.08.03},
1449   Title = {Explicit Generation of Orthogonal Grids for Ocean Models},
1450   Volume = {126},
1451   Year = {1996}}
1452
1453@phdthesis{OlivierPh2001,
1454   Author = {F. Olivier},
1455   Owner = {gm},
1456   School = {Universit\'{e} Pierre et Marie Curie, Paris, France},
1457   Timestamp = {2007.08.14},
1458   Title = {Etude de l'activit\'{e} biologique et de la circulation oc\'{e}anique dans un jet g\'{e}ostrophique: le front Alm\'{e}ria-Oran},
1459   Year = {2001}}
1460
1461@article{PacPhil1981,
1462   Abstract = {Measurements indicate that mixing processes are intense in the surface
1463   layers of the ocean but weak below the thermocline, except for the
1464   region below the core of the Equatorial Undercurrent where vertical
1465   temperature gradients are small and the shear is large. Parameterization
1466   of these mixing processes by means of coefficients of eddy mixing
1467   that are Richardson-number dependent, leads to realistic simulations
1468   of the response of the equatorial oceans to different windstress
1469   patterns. In the case of eastward winds results agree well with measurements
1470   in the Indian Ocean. In the case of westward winds it is of paramount
1471   importance that the nonzero heat flux into the ocean be taken into
1472   account. This beat flux stabilizes the upper layers and reduces the
1473   intensity of the mixing, especially in the cast. With an appropriate
1474   surface boundary condition, the results are relatively insensitive
1475   to values assigned to constants in the parameterization formula.},
1476   Author = {R.C. Pacanowski and S.G.H. Philander},
1477   Date = {November 01, 1981},
1478   Journal = JPO,
1479   Number = {11},
1480   Owner = {gm},
1481   Pages = {1443-1451},
1482   Timestamp = {2007.08.03},
1483   Title = {Parameterization of Vertical Mixing in Numerical Models of Tropical Oceans},
1484   Volume = {11},
1485   Year = {1981}}
1486
1487@article{Pacanowski_Gnanadesikan_MWR98,
1488   Author = {R. C. Pacanowski and A. Gnanadesikan},
1489   Journal = MWR,
1490   Owner = {gm},
1491   Pages = {3248-3270},
1492   Timestamp = {2008.01.26},
1493   Title = {Transient response in a z-level ocean model that resolves topography with partial-cells},
1494   Volume = {126},
1495   Year = {1998}}
1496
1497@article{Paulson1977,
1498   Abstract = {Observations were made of downward solar radiation as a function of
1499   depth during an experiment in the North Pacific (35°N, 155°W).
1500   The irradiance meter employed was sensitive to solar radiation of
1501   wavelength 400–1000 nm arriving from above at a horizontal
1502   surface. Because of selective absorption of the short and long wavelengths,
1503   the irradiance decreases much faster than exponential in the upper
1504   few meters, falling to one-third of the incident value between 2
1505   and 3 m depth. Below 10 m the decrease was exponential at a rate
1506   characteristic of moderately clear water of Type IA. Neglecting one
1507   case having low sun altitude, the observations are well represented
1508   by the expression I/I0=Rez/ζ1+(1−R)ezζ2,
1509   where I is the irradiance at depth −z, I0 is the irradiance
1510   at the surface less reflected solar radiation, R=0.62, ζ1
1511   and ζ2 are attenuation lengths equal to 1.5 and 20 m, respectively,
1512   and z is the vertical space coordinate, positive upward with the
1513   origin at mean sea level. The depth at which the irradiance falls
1514   to 10% of its surface value is nearly the same as observations
1515   of Secchi depth when cases with high wind speed or low solar altitude
1516   are neglected. Parameters R, ζ1, and ζ2 are computed for
1517   the entire range of oceanic water types.},
1518   Author = {C. A. Paulson and J. J. Simpson},
1519   Date = {November 01, 1977},
1520   Journal = JPO,
1521   Number = {6},
1522   Owner = {gm},
1523   Pages = {952-956},
1524   Timestamp = {2007.08.04},
1525   Title = {Irradiance Measurements in the Upper Ocean},
1526   Volume = {7},
1527   Year = {1977}}
1528
1529@article{Penduff2000,
1530   Author = {T. Penduff and B. Barnier and A. Colin de Verdi\`{e}re},
1531   Journal = JGR,
1532   Pages = {11,279-11,297},
1533   Title = {Self-adapting open boundaries for a regional model of the eastern North Atlantic},
1534   Volume = {105},
1535   Year = {2000}}
1536
1537@article{Penduff2007,
1538   Author = {T. Penduff and J. Le Sommer and B. Barnier and A.M. Treguier and J. Molines and G. Madec},
1539   Journal = {Ocean Science},
1540   Pages = {in revision},
1541   Title = {Influence of numerical schemes on current-topography interactions in 1/4$^{\circ}$ global ocean simulations},
1542   Volume = {?},
1543   Year = {2007}}
1544
1545@article{Phillips1959,
1546   Author = {R. S. Phillips},
1547   Doi = {doi:10.2307/1993202},
1548   Journal = {Transactions of the American Mathematical Society},
1549   Owner = {gm},
1550   Pages = {193-254},
1551   Timestamp = {2007.08.10},
1552   Title = {Dissipative Operators and Hyperbolic Systems of Partial Differential Equations},
1553   Volume = {90(2)},
1554   Year = {1959},
1555   Bdsk-Url-1 = {http://dx.doi.org/10.2307/1993202}}
1556
1557@article{Redi_JPO82,
1558   Author = {M. H. Redi},
1559   Journal = JPO,
1560   Owner = {gm},
1561   Pages = {1154-1158},
1562   Timestamp = {2008.02.02},
1563   Title = {Oceanic isopycnal mixing by coordinate rotation},
1564   Volume = {13},
1565   Year = {1982}}
1566
1567@article{Reverdin1991,
1568   Author = {G. Reverdin and P. Delecluse and C. L\'{e}vy and P. Andrich and A. Morli\`{e}re and J. M. Verstraete},
1569   Journal = PO,
1570   Owner = {gm},
1571   Pages = {273-340},
1572   Timestamp = {2007.08.04},
1573   Title = {The near surface tropical Atlantic in 1982-1984 : results from a numerical simulation and a data analysis},
1574   Volume = {27},
1575   Year = {1991}}
1576
1577@book{Richtmyer1967,
1578   Author = {R. D. Richtmyer and K. W. Morton},
1579   Owner = {gm},
1580   Publisher = {Interscience Publisher, Second Edition, 405pp},
1581   Timestamp = {2007.08.04},
1582   Title = {Difference methods for initial-value problems},
1583   Year = {1967}}
1584
1585@article{Robert1966,
1586   Author = {A. J. Robert},
1587   Journal = {J. Meteo. Soc. Japan},
1588   Owner = {gm},
1589   Timestamp = {2007.08.04},
1590   Title = {The integration of a Low order spectral form of the primitive meteorological equations},
1591   Volume = {44, 2},
1592   Year = {1966}}
1593
1594@incollection{Roed1986,
1595   Author = {L.P. Roed and C.K. Cooper},
1596   Booktitle = {Advanced Physical Oceanography Numerical Modelling},
1597   Editor = {J.J. O'Brien},
1598   Publisher = {NATO ASI Series, vol. 186.},
1599   Title = {Open boundary conditions in numerical ocean models},
1600   Year = {1986}}
1601
1602@article{Roullet2000,
1603   Author = {G. Roullet and G. Madec},
1604   Journal = JGR,
1605   Owner = {sandra},
1606   Pages = {23,927-23,942},
1607   Pdf = {Roullet_Madec_JGR00.pdf},
1608   Timestamp = {2007.03.22},
1609   Title = {salt conservation, free surface, and varying levels: a new formulation for ocean general circulation models},
1610   Volume = {105},
1611   Year = {2000}}
1612
1613@article{Sadourny1975,
1614   Abstract = {Two simple numerical models of the shallow-water equations identical
1615   in all respects but for their con-servation properties have been
1616   tested regarding their internal mixing processes. The experiments
1617   show that violation of enstrophy conservation results in a spurious
1618   accumulation of rotational energy in the smaller scales, reflected
1619   by an unrealistic increase of enstrophy, which ultimately produces
1620   a finite rate of energy dissipation in the zero viscosity limit,
1621   thus violating the well-known dynamics of two-dimensional flow. Further,
1622   the experiments show a tendency to equipartition of the kinetic energy
1623   of the divergent part of the flow in the inviscid limit, suggesting
1624   the possibility of a divergent energy cascade in the physical system,
1625   as well as a possible influence of the energy mixing on the process
1626   of adjustment toward balanced flow.},
1627   Author = {R. Sadourny},
1628   Date = {April 01, 1975},
1629   Journal = JAS,
1630   Number = {4},
1631   Owner = {gm},
1632   Pages = {680-689},
1633   Timestamp = {2007.08.05},
1634   Title = {The Dynamics of Finite-Difference Models of the Shallow-Water Equations},
1635   Volume = {32},
1636   Year = {1975}}
1637
1638@article{Sarmiento1982,
1639   Author = {J. L. Sarmiento and K. Bryan},
1640   Journal = JGR,
1641   Owner = {gm},
1642   Pages = {394-409},
1643   Timestamp = {2007.08.04},
1644   Title = {Ocean transport model for the North Atlantic},
1645   Volume = {87},
1646   Year = {1982}}
1647
1648@article{Sacha2005,
1649   Author = {A. F. Shchepetkin and J. C. McWilliams},
1650   Journal = {Ocean Modelling},
1651   Owner = {gm},
1652   Pages = {347-404},
1653   Timestamp = {2007.08.04},
1654   Title = {The regional oceanic modeling system (ROMS) - a split-explicit, free-surface, topography-following-coordinate oceanic modelr},
1655   Volume = {9, 4},
1656   Year = {2005}}
1657
1658@article{Sacha2003,
1659   Author = {A. F. Shchepetkin and J. C. McWilliams},
1660   Journal = JGR,
1661   Owner = {gm},
1662   Pages = {3090, doi:10.1029/2001JC001047},
1663   Timestamp = {2007.08.05},
1664   Title = {A method for computing horizontal pressure-gradient force in an oceanic model with a nonaligned vertical coordinate},
1665   Volume = {108(C3)},
1666   Year = {2003}}
1667
1668@article{Shchepetkin1996,
1669   Abstract = {Dissipation in numerical ocean models has two purposes: to simulate
1670   processes in which the friction is physically relevant and to prevent
1671   numerical instability by suppressing accumulation of energy in the
1672   smallest resolved scales. This study shows that even for the latter
1673   case the form of the friction term should be chosen in a physically
1674   consistent way. Violation of fundamental physical principles reduces
1675   the fidelity of the numerical solution, even if the friction is small.
1676   Several forms of the lateral friction, commonly used in numerical
1677   ocean models, are discussed in the context of shallow-water equations
1678   with nonuniform layer thickness. It is shown that in a numerical
1679   model tuned for the minimal dissipation, the improper form of the
1680   friction term creates finite artificial vorticity sources that do
1681   not vanish with increased resolution, even if the viscous coefficient
1682   is reduced consistently with resolution. An alternative numerical
1683   implementation of the no-slip boundary conditions for an arbitrary
1684   coast line is considered. It was found that the quality of the numerical
1685   solution may be considerably improved by discretization of the viscous
1686   stress tensor in such a way that the numerical boundary scheme approximates
1687   not only the stress tensor to a certain order of accuracy but also
1688   simulates the truncation error of the numerical scheme used in the
1689   interior of the domain. This ensures error cancellation during subsequent
1690   use of the elements of the tensor in the discrete version of the
1691   momentum equations, allowing for approximation of them without decrease
1692   in the order of accuracy near the boundary.},
1693   Author = {A. F. Shchepetkin and J. J. O'Brien},
1694   Date = {June 01, 1996},
1695   Journal = MWR,
1696   Number = {6},
1697   Owner = {gm},
1698   Pages = {1285-1300},
1699   Timestamp = {2007.08.14},
1700   Title = {A Physically Consistent Formulation of Lateral Friction in Shallow-Water Equation Ocean Models},
1701   Volume = {124},
1702   Year = {1996}}
1703
1704@article{Simmons2003,
1705   Abstract = {Astronomical data reveals that approximately 3.5 terawatts (TW) of
1706   tidal energy is dissipated in the
1707   
1708   ocean. Tidal models and satellite altimetry suggest that 1 TW of this
1709   energy is converted from the barotropic
1710   
1711   to internal tides in the deep ocean, predominantly around regions
1712   of rough topography such as midocean
1713   
1714   ridges. Aglobal tidal model is used to compute turbulent energy levels
1715   associated with the dissipation
1716   
1717   of internal tides, and the diapycnal mixing supported by this energy
1718   ?ux is computed using a simple parameterization.
1719   
1720   The mixing parameterization has been incorporated into a coarse resolution
1721   numerical model of the
1722   
1723   global ocean. This parameterization o?ers an energetically consistent
1724   and practical means of improving the
1725   
1726   representation of ocean mixing processes in climate models. Novel
1727   features of this implementation are that
1728   
1729   the model explicitly accounts for the tidal energy source for mixing,
1730   and that the mixing evolves both
1731   
1732   spatially and temporally with the model state. At equilibrium, the
1733   globally averaged di?usivity pro?le
1734   
1735   ranges from 0.3 cm2 s1 at thermocline depths to 7.7 cm2 s1 in the
1736   abyss with a depth average of 0.9
1737   
1738   cm2 s1, in close agreement with inferences from global balances.
1739   Water properties are strongly in?uenced
1740   
1741   by the combination of weak mixing in the main thermocline and enhanced
1742   mixing in the deep ocean.
1743   
1744   Climatological comparisons show that the parameterized mixing scheme
1745   results in a substantial reduction},
1746   Author = {H. L. Simmons and S. R. Jayne and L. C. St. Laurent and A. J. Weaver},
1747   Journal = OM,
1748   Owner = {sandra},
1749   Pages = {1-19},
1750   Pdf = {Simmons_mixing_OM2003.pdf},
1751   Timestamp = {2007.03.22},
1752   Title = {Tidally driven mixing in a numerical model of the ocean general circulation},
1753   Year = {2003}}
1754
1755@article{Song1994,
1756   Author = {Y. Song and D. Haidvogel},
1757   Journal = JCP,
1758   Owner = {gm},
1759   Timestamp = {2007.08.04},
1760   Title = {A Semi-implicit Ocean Circulation Model Using a Generalized Topography-Following Coordinate System Authors:},
1761   Volume = {115, 1},
1762   Year = {1994}}
1763
1764@article{Song1998,
1765   Abstract = {A Jacobian formulation of the pressure gradient force for use in models
1766   with topography-following coordinates is proposed. It can be used
1767   in conjunction with any vertical coordinate system and is easily
1768   implemented. Vertical variations in the pressure gradient are expressed
1769   in terms of a vertical integral of the Jacobian of density and depth
1770   with respect to the vertical computational coordinate. Finite difference
1771   approximations are made on the density field, consistent with piecewise
1772   linear and continuous fields, and accurate pressure gradients are
1773   obtained by vertically integrating the discrete Jacobian from sea
1774   surface.Two discrete schemes are derived and examined in detail:
1775   the first using standard centered differencing in the generalized
1776   vertical coordinate and the second using a vertical weighting such
1777   that the finite differences are centered with respect to the Cartesian
1778   z coordinate. Both schemes achieve second-order accuracy for any
1779   vertical coordinate system and are significantly more accurate than
1780   conventional schemes based on estimating the pressure gradients by
1781   finite differencing a previously determined pressure field.The standard
1782   Jacobian formulation is constructed to give exact pressure gradient
1783   results, independent of the bottom topography, if the buoyancy field
1784   varies bilinearly with horizontal position, x, and the generalized
1785   vertical coordinate, s, over each grid cell. Similarly, the weighted
1786   Jacobian scheme is designed to achieve exact results, when the buoyancy
1787   field varies linearly with z and arbitrarily with x, that is, b(x,z)
1788   = b0(x) + b1(x)z.When horizontal resolution cannot be made
1789   fine enough to avoid hydrostatic inconsistency, errors can be substantially
1790   reduced by the choice of an appropriate vertical coordinate. Tests
1791   with horizontally uniform, vertically varying, and with horizontally
1792   and vertically varying buoyancy fields show that the standard Jacobian
1793   formulation achieves superior results when the condition for hydrostatic
1794   consistency is satisfied, but when coarse horizontal resolution causes
1795   this condition to be strongly violated, the weighted Jacobian may
1796   give superior results.},
1797   Author = {Y. T. Song},
1798   Date = {December 01, 1998},
1799   Journal = MWR,
1800   Number = {12},
1801   Owner = {gm},
1802   Pages = {3213-3230},
1803   Timestamp = {2007.08.05},
1804   Title = {A General Pressure Gradient Formulation for Ocean Models. Part I: Scheme Design and Diagnostic Analysis},
1805   Volume = {126},
1806   Year = {1998}}
1807
1808@article{SongWright1998,
1809   Abstract = {A new formulation of the pressure gradient force for use in models
1810   with topography-following coordinates is proposed and diagnostically
1811   analyzed in Part I. Here, it is shown that important properties of
1812   the continuous equations are retained by the resulting numerical
1813   schemes, and their performance in prognostic simulations is examined.
1814   Numerical consistency is investigated with respect to global energy
1815   conservation, depth-integrated momentum changes, and the representation
1816   of the bottom pressure torque. The performances of the numerical
1817   schemes are tested in prognostic integrations of an ocean model to
1818   demonstrate numerical accuracy and long-term integral stability.
1819   Two typical geometries, an isolated tall seamount and an unforced
1820   basin with sloping boundaries, are considered for the special case
1821   of no external forcing and horizontal isopycnals to test numerical
1822   accuracy. These test problems confirm that the proposed schemes yield
1823   accurate approximations to the pressure gradient force. Integral
1824   consistency conditions are verified and the energetics of the “advective
1825   elimination” of the pressure gradient error (Mellor et al)
1826   is considered.A large-scale wind-driven basin with and without topography
1827   is used to test the model’s long-term integral performance
1828   and the effects of bottom pressure torque on the transport in western
1829   boundary currents. Integrations are carried out for 10 years in each
1830   case and results show that the schemes are stable, and the steep
1831   topography causes no obvious numerical problems. A realistic meandering
1832   western boundary current is well developed with detached cold cyclonic
1833   and warm anticyclonic eddies as it extends across the basin. In addition,
1834   the results with topography show earlier separation and enhanced
1835   transport in the western boundary currents due to the bottom pressure
1836   torque.},
1837   Author = {Y. T. Song and D. G. Wright},
1838   Date = {December 01, 1998},
1839   Journal = MWR,
1840   Number = {12},
1841   Owner = {gm},
1842   Pages = {3231-3247},
1843   Timestamp = {2007.08.05},
1844   Title = {A General Pressure Gradient Formulation for Ocean Models. Part II - Energy, Momentum, and Bottom Torque Consistency},
1845   Volume = {126},
1846   Year = {1998}}
1847
1848@phdthesis{Speich1992,
1849   Author = {S. Speich},
1850   Owner = {gm},
1851   School = {Universit\'{e} Pierre et Marie Curie, Paris, France},
1852   Timestamp = {2007.08.06},
1853   Title = {Etude du for\c{c}age de la circulation g\'{e}n\'{e}rale oc\'{e}anique par les d\'{e}troits - cas de la mer d'Alboran},
1854   Year = {1992}}
1855
1856@article{Speich1996,
1857   Author = {S. Speich and G. Madec and M. Cr\'{e}pon},
1858   Journal = JPO,
1859   Owner = {gm},
1860   Timestamp = {2007.08.06},
1861   Title = {The circulation in the Alboran Sea - a sensitivity study},
1862   Volume = {26},
1863   Year = {1996}}
1864
1865@article{Steele2001,
1866   Abstract = {A new gridded ocean climatology, the Polar Science Center Hydrographic
1867   Climatology (PHC), has been created that merges the 1998 version
1868   of the World Ocean Atlas with the new regional Arctic Ocean Atlas.
1869   The result is a global climatology for temperature and salinity that
1870   contains a good description of the Arctic Ocean and its environs.
1871   Monthly, seasonal, and annual average products have been generated.
1872   How the original datasets were prepared for merging, how the optimal
1873   interpolation procedure was performed, and characteristics of the
1874   resulting dataset are discussed, followed by a summary and discussion
1875   of future plans.},
1876   Author = {M. Steele and R. Morley and W. Ermold},
1877   Date = {May 01, 2001},
1878   Journal = {Journal of Climate},
1879   Number = {9},
1880   Owner = {gm},
1881   Pages = {2079--2087},
1882   Timestamp = {2007.08.06},
1883   Title = {PHC- A Global Ocean Hydrography with a High-Quality Arctic Ocean},
1884   Volume = {14},
1885   Year = {2001}}
1886
1887@article{Stein1992,
1888   Author = {C. A. Stein and S. Stein},
1889   Journal = {Nature},
1890   Owner = {gm},
1891   Pages = {123-129},
1892   Timestamp = {2007.08.04},
1893   Title = {A model for the global variation in oceanic depth and heat flow with lithospheric age},
1894   Volume = {359},
1895   Year = {1992}}
1896
1897@article{Thiem2006,
1898   Author = {O. Thiem and J. Berntsen},
1899   Journal = {Ocean Modelling},
1900   Owner = {gm},
1901   Timestamp = {2007.08.05},
1902   Title = {Internal pressure errors in sigma-coordinate ocean models due to anisotropy},
1903   Volume = {12, 1-2},
1904   Year = {2006}}
1905
1906@article{Timmermann_al_OM05,
1907   Author = {R. Timmermann and H. Goosse and G. Madec and T. Fichefet, and C. Ethe and V. Duli\`{e}re},
1908   Journal = {Ocean Modelling},
1909   Owner = {gm},
1910   Pages = {175--201},
1911   Timestamp = {2008.07.05},
1912   Title = {On the representation of high latitude processes in the ORCA-LIM global coupled sea ice-ocean model.},
1913   Volume = {8},
1914   Year = {2005}}
1915
1916@article{Treguier1992,
1917   Author = {A.M. Tr\'{e}guier},
1918   Journal = JGR,
1919   Pages = {687-701},
1920   Title = {Kinetic energy analysis of an eddy resolving, primitive equation North Atlantic model},
1921   Volume = {97},
1922   Year = {1992}}
1923
1924@article{Treguier2001,
1925   Author = {A.M Tr\'{e}guier and B. Barnier and A.P. de Miranda and J.M. Molines and N. Grima and M. Imbard and G. Madec and C. Messager and T. Reynaud and S. Michel},
1926   Journal = JGR,
1927   Pages = {22115-22129},
1928   Title = {An Eddy Permitting model of the Atlantic circulation: evaluating open boundary conditions},
1929   Volume = {106},
1930   Year = {2001}}
1931
1932@article{Treguier1996,
1933   Author = {A.-M. Tr\'{e}guier and J. Dukowicz and K. Bryan},
1934   Journal = JGR,
1935   Owner = {gm},
1936   Pages = {20877-20881},
1937   Timestamp = {2007.08.03},
1938   Title = {Properties of nonuniform grids used in ocean general circulation models},
1939   Volume = {101},
1940   Year = {1996}}
1941
1942@article{Treguier1997,
1943   Abstract = {A parameterization of mesoscale eddy fluxes in the ocean should be
1944   consistent with the fact that the ocean interior is nearly adiabatic.
1945   Gent and McWilliams have described a framework in which this can
1946   be approximated in z-coordinate primitive equation models by incorporating
1947   the effects of eddies on the buoyancy field through an eddy-induced
1948   velocity. It is also natural to base a parameterization on the simple
1949   picture of the mixing of potential vorticity in the interior and
1950   the mixing of buoyancy at the surface. The authors discuss the various
1951   constraints imposed by these two requirements and attempt to clarify
1952   the appropriate boundary conditions on the eddy-induced velocities
1953   at the surface. Quasigeostrophic theory is used as a guide to the
1954   simplest way of satisfying these constraints.},
1955   Author = {A. M. Tr\'{e}guier and I. M. Held and V. D. Larichev},
1956   Date = {April 01, 1997},
1957   Journal = JPO,
1958   Number = {4},
1959   Owner = {gm},
1960   Pages = {567-580},
1961   Timestamp = {2007.08.03},
1962   Title = {Parameterization of Quasigeostrophic Eddies in Primitive Equation Ocean Models},
1963   Volume = {27},
1964   Year = {1997}}
1965
1966@book{UNESCO1983,
1967   Author = {UNESCO},
1968   Owner = {gm},
1969   Publisher = {Techn. Paper in Mar. Sci, 44, UNESCO},
1970   Timestamp = {2007.08.04},
1971   Title = {Algorithms for computation of fundamental property of sea water},
1972   Year = {1983}}
1973
1974@techreport{OASIS2006,
1975   Author = {S. Valcke},
1976   Institution = {PRISM Support Initiative Report No 3, CERFACS, Toulouse, France, 64 pp},
1977   Owner = {gm},
1978   Timestamp = {2007.08.05},
1979   Title = {OASIS3 User Guide (prism\_2-5)},
1980   Year = {2006}}
1981
1982@techreport{valal00,
1983   Author = {S. Valcke and L. Terray and A. Piacentini},
1984   Institution = {CERFACS},
1985   Number = {TR/CMGC/00-10},
1986   Title = {The OASIS Coupled User Guide Version 2.4},
1987   Year = {2000}}
1988
1989@article{Vancoppenolle_al_OM08,
1990   Author = {M. Vancoppenolle and T. Fichefet and H. Goosse and S. Bouillon and G. Madec and M. A. Morales Maqueda},
1991   Journal = {Ocean Modelling},
1992   Owner = {gm},
1993   Timestamp = {2008.07.05},
1994   Title = {Simulating the mass balance and salinity of Arctic and Antarctic sea ice. 1. Model description and validation},
1995   Volume = {in press},
1996   Year = {2008}}
1997
1998@article{Weatherly1984,
1999   Author = {G. L. Weatherly},
2000   Journal = JMR,
2001   Owner = {gm},
2002   Pages = {289-301},
2003   Timestamp = {2007.08.06},
2004   Title = {An estimate of bottom frictional dissipation by Gulf Stream fluctuations},
2005   Volume = {42, 2},
2006   Year = {1984}}
2007
2008@article{Weaver1997,
2009   Author = {A. J. Weaver and M. Eby},
2010   Journal = JPO,
2011   Owner = {gm},
2012   Timestamp = {2007.08.06},
2013   Title = {On the numerical implementation of advection schemes for use in conjuction with various mixing parameterizations in the GFDL ocean model},
2014   Volume = {27},
2015   Year = {1997}}
2016
2017@article{Webb1998,
2018   Abstract = {Leonard’s widely used QUICK advection scheme is, like the Bryan–Cox–Semtner
2019   ocean model, based on a control volume form of the advection equation.
2020   Unfortunately, in its normal form it cannot be used with the leapfrog–Euler
2021   forward time-stepping schemes used by the ocean model. Farrow and
2022   Stevens overcame the problem by implementing a predictor–corrector
2023   time-stepping scheme, but this is computationally expensive to run.
2024   The present paper shows that the problem can be overcome by splitting
2025   the QUICK operator into an O(δx2) advective term and a velocity
2026   dependent biharmonic diffusion term. These can then be time-stepped
2027   using the combined leapfrog and Euler forward schemes of the Bryan–Cox–Semtner
2028   ocean model, leading to a significant increase in model efficiency.
2029   A small change in the advection operator coefficients may also be
2030   made leading to O(δx4) accuracy. Tests of the improved schemes
2031   are carried out making use of a global eddy-permitting ocean model.
2032   Results are presented from cases where the schemes were applied to
2033   only the tracer fields and also from cases where they were applied
2034   to both the tracer and velocity fields. It is found that the new
2035   schemes have the most effect in the western boundary current regions,
2036   where, for example, the warm core of the Agulhas Current is no longer
2037   broken up by numerical noise.},
2038   Author = {D. J. Webb and B. A. de Cuevas and C. S. Richmond},
2039   Date = {October 01, 1998},
2040   Journal = JAOT,
2041   Number = {5},
2042   Owner = {gm},
2043   Pages = {1171-1187},
2044   Timestamp = {2007.08.04},
2045   Title = {Improved Advection Schemes for Ocean Models},
2046   Volume = {15},
2047   Year = {1998}}
2048
2049@article{Willebrand2001,
2050   Author = {J. Willebrand and B. Barnier and C. Boning and C. Dieterich and P. D. Killworth and C. Le Provost and Y. Jia and J.-M. Molines and A. L. New},
2051   Journal = {Progress in Oceanography},
2052   Owner = {gm},
2053   Pages = {123-161},
2054   Timestamp = {2007.08.04},
2055   Title = {Circulation characteristics in three eddy-permitting models of the North Atlantic},
2056   Volume = {48, 2},
2057   Year = {2001}}
2058
2059@article{Zalesak1979,
2060   Author = {S. T. Zalesak},
2061   Journal = JCP,
2062   Owner = {gm},
2063   Timestamp = {2007.08.04},
2064   Title = {Fully multidimensional flux corrected transport algorithms for fluids},
2065   Volume = {31},
2066   Year = {1979}}
2067
2068@article{Zhang1992,
2069   Author = {Zhang, R.-H. and Endoh, M.},
2070   Journal = JGR,
2071   Month = jul,
2072   Owner = {gm},
2073   Pages = {11237-11255},
2074   Title = {A free surface general circulation model for the tropical Pacific Ocean},
2075   Volume = {97},
2076   Year = {1992}}
Note: See TracBrowser for help on using the repository browser.