MODULE tranxt !!====================================================================== !! *** MODULE tranxt *** !! Ocean active tracers: time stepping on temperature and salinity !!====================================================================== !! History : OPA ! 1991-11 (G. Madec) Original code !! 7.0 ! 1993-03 (M. Guyon) symetrical conditions !! 8.0 ! 1996-02 (G. Madec & M. Imbard) opa release 8.0 !! - ! 1996-04 (A. Weaver) Euler forward step !! 8.2 ! 1999-02 (G. Madec, N. Grima) semi-implicit pressure grad. !! NEMO 1.0 ! 2002-08 (G. Madec) F90: Free form and module !! - ! 2002-11 (C. Talandier, A-M Treguier) Open boundaries !! - ! 2005-04 (C. Deltel) Add Asselin trend in the ML budget !! 2.0 ! 2006-02 (L. Debreu, C. Mazauric) Agrif implementation !! 3.0 ! 2008-06 (G. Madec) time stepping always done in trazdf !! 3.1 ! 2009-02 (G. Madec, R. Benshila) re-introduce the vvl option !! 3.3 ! 2010-04 (M. Leclair, G. Madec) semi-implicit hpg with asselin filter + modified LF-RA !! - ! 2010-05 (C. Ethe, G. Madec) merge TRC-TRA !!---------------------------------------------------------------------- !!---------------------------------------------------------------------- !! tra_nxt : time stepping on tracers !! tra_nxt_fix : time stepping on tracers : fixed volume case !! tra_nxt_vvl : time stepping on tracers : variable volume case !!---------------------------------------------------------------------- USE oce ! ocean dynamics and tracers variables USE dom_oce ! ocean space and time domain variables USE sbc_oce ! surface boundary condition: ocean USE sbcrnf ! river runoffs USE sbcisf ! ice shelf melting/freezing USE zdf_oce ! ocean vertical mixing USE domvvl ! variable volume USE dynspg_oce ! surface pressure gradient variables USE dynhpg ! hydrostatic pressure gradient USE trd_oce ! trends: ocean variables USE trdtra ! trends manager: tracers USE traqsr ! penetrative solar radiation (needed for nksr) USE phycst ! physical constant USE ldftra_oce ! lateral physics on tracers USE bdy_oce ! BDY open boundary condition variables USE bdytra ! open boundary condition (bdy_tra routine) ! USE in_out_manager ! I/O manager USE lbclnk ! ocean lateral boundary conditions (or mpp link) USE prtctl ! Print control USE wrk_nemo ! Memory allocation USE timing ! Timing #if defined key_agrif USE agrif_opa_interp #endif IMPLICIT NONE PRIVATE PUBLIC tra_nxt ! routine called by step.F90 PUBLIC tra_nxt_fix ! to be used in trcnxt PUBLIC tra_nxt_vvl ! to be used in trcnxt REAL(wp) :: rbcp ! Brown & Campana parameters for semi-implicit hpg !! * Substitutions # include "domzgr_substitute.h90" !!---------------------------------------------------------------------- !! NEMO/OPA 3.3 , NEMO-Consortium (2010) !! $Id$ !! Software governed by the CeCILL licence (NEMOGCM/NEMO_CeCILL.txt) !!---------------------------------------------------------------------- CONTAINS SUBROUTINE tra_nxt( kt ) !!---------------------------------------------------------------------- !! *** ROUTINE tranxt *** !! !! ** Purpose : Apply the boundary condition on the after temperature !! and salinity fields, achieved the time stepping by adding !! the Asselin filter on now fields and swapping the fields. !! !! ** Method : At this stage of the computation, ta and sa are the !! after temperature and salinity as the time stepping has !! been performed in trazdf_imp or trazdf_exp module. !! !! - Apply lateral boundary conditions on (ta,sa) !! at the local domain boundaries through lbc_lnk call, !! at the one-way open boundaries (lk_bdy=T), !! at the AGRIF zoom boundaries (lk_agrif=T) !! !! - Update lateral boundary conditions on AGRIF children !! domains (lk_agrif=T) !! !! ** Action : - (tb,sb) and (tn,sn) ready for the next time step !! - (ta,sa) time averaged (t,s) (ln_dynhpg_imp = T) !!---------------------------------------------------------------------- INTEGER, INTENT(in) :: kt ! ocean time-step index !! INTEGER :: jk, jn ! dummy loop indices REAL(wp) :: zfact ! local scalars REAL(wp), POINTER, DIMENSION(:,:,:) :: ztrdt, ztrds !!---------------------------------------------------------------------- ! IF( nn_timing == 1 ) CALL timing_start( 'tra_nxt') ! IF( kt == nit000 ) THEN IF(lwp) WRITE(numout,*) IF(lwp) WRITE(numout,*) 'tra_nxt : achieve the time stepping by Asselin filter and array swap' IF(lwp) WRITE(numout,*) '~~~~~~~' ! rbcp = 0.25_wp * (1._wp + atfp) * (1._wp + atfp) * ( 1._wp - atfp) ! Brown & Campana parameter for semi-implicit hpg ENDIF ! Update after tracer on domain lateral boundaries ! #if defined key_agrif CALL Agrif_tra ! AGRIF zoom boundaries #endif ! CALL lbc_lnk( tsa(:,:,:,jp_tem), 'T', 1._wp ) ! local domain boundaries (T-point, unchanged sign) CALL lbc_lnk( tsa(:,:,:,jp_sal), 'T', 1._wp ) ! #if defined key_bdy IF( lk_bdy ) CALL bdy_tra( kt ) ! BDY open boundaries #endif ! set time step size (Euler/Leapfrog) IF( neuler == 0 .AND. kt == nit000 ) THEN ; r2dtra(:) = rdttra(:) ! at nit000 (Euler) ELSEIF( kt <= nit000 + 1 ) THEN ; r2dtra(:) = 2._wp* rdttra(:) ! at nit000 or nit000+1 (Leapfrog) ENDIF ! trends computation initialisation IF( l_trdtra ) THEN CALL wrk_alloc( jpi, jpj, jpk, ztrdt, ztrds ) ztrdt(:,:,jpk) = 0._wp ztrds(:,:,jpk) = 0._wp IF( ln_traldf_iso ) THEN ! diagnose the "pure" Kz diffusive trend CALL trd_tra( kt, 'TRA', jp_tem, jptra_zdfp, ztrdt ) CALL trd_tra( kt, 'TRA', jp_sal, jptra_zdfp, ztrds ) ENDIF ! total trend for the non-time-filtered variables. ! G Nurser 23 Mar 2017. Recalculate trend as Delta(e3t*T)/e3tn; e3tn cancel from tsn terms IF( lk_vvl ) THEN DO jk = 1, jpkm1 zfact = 1.0 / rdttra(jk) ztrdt(:,:,jk) = ( tsa(:,:,jk,jp_tem)*fse3t_a(:,:,jk) / fse3t_n(:,:,jk) - tsn(:,:,jk,jp_tem)) * zfact ztrds(:,:,jk) = ( tsa(:,:,jk,jp_sal)*fse3t_a(:,:,jk) / fse3t_n(:,:,jk) - tsn(:,:,jk,jp_sal)) * zfact END DO ELSE DO jk = 1, jpkm1 zfact = 1.0 / rdttra(jk) ztrdt(:,:,jk) = ( tsa(:,:,jk,jp_tem) - tsn(:,:,jk,jp_tem) ) * zfact ztrds(:,:,jk) = ( tsa(:,:,jk,jp_sal) - tsn(:,:,jk,jp_sal) ) * zfact END DO END IF CALL trd_tra( kt, 'TRA', jp_tem, jptra_tot, ztrdt ) CALL trd_tra( kt, 'TRA', jp_sal, jptra_tot, ztrds ) IF( .NOT.lk_vvl ) THEN ! Store now fields before applying the Asselin filter ! in order to calculate Asselin filter trend later. ztrdt(:,:,:) = tsn(:,:,:,jp_tem) ztrds(:,:,:) = tsn(:,:,:,jp_sal) END IF ENDIF IF( neuler == 0 .AND. kt == nit000 ) THEN ! Euler time-stepping at first time-step (only swap) DO jn = 1, jpts DO jk = 1, jpkm1 tsn(:,:,jk,jn) = tsa(:,:,jk,jn) END DO END DO IF (l_trdtra.AND.lk_vvl) THEN ! Zero Asselin filter contribution must be explicitly written out since for vvl ! Asselin filter is output by tra_nxt_vvl that is not called on this time step ztrdt(:,:,:) = 0._wp ztrds(:,:,:) = 0._wp CALL trd_tra( kt, 'TRA', jp_tem, jptra_atf, ztrdt ) CALL trd_tra( kt, 'TRA', jp_sal, jptra_atf, ztrds ) END IF ELSE ! Leap-Frog + Asselin filter time stepping ! IF( lk_vvl ) THEN ; CALL tra_nxt_vvl( kt, nit000, rdttra, 'TRA', tsb, tsn, tsa, & & sbc_tsc, sbc_tsc_b, jpts ) ! variable volume level (vvl) ELSE ; CALL tra_nxt_fix( kt, nit000, 'TRA', tsb, tsn, tsa, jpts ) ! fixed volume level ENDIF ENDIF ! ! trends computation IF( l_trdtra.AND..NOT.lk_vvl) THEN ! trend of the Asselin filter (tb filtered - tb)/dt DO jk = 1, jpkm1 zfact = 1._wp / r2dtra(jk) ztrdt(:,:,jk) = ( tsb(:,:,jk,jp_tem) - ztrdt(:,:,jk) ) * zfact ztrds(:,:,jk) = ( tsb(:,:,jk,jp_sal) - ztrds(:,:,jk) ) * zfact END DO CALL trd_tra( kt, 'TRA', jp_tem, jptra_atf, ztrdt ) CALL trd_tra( kt, 'TRA', jp_sal, jptra_atf, ztrds ) END IF IF( l_trdtra) CALL wrk_dealloc( jpi, jpj, jpk, ztrdt, ztrds ) ! ! ! control print IF(ln_ctl) CALL prt_ctl( tab3d_1=tsn(:,:,:,jp_tem), clinfo1=' nxt - Tn: ', mask1=tmask, & & tab3d_2=tsn(:,:,:,jp_sal), clinfo2= ' Sn: ', mask2=tmask ) ! IF( nn_timing == 1 ) CALL timing_stop('tra_nxt') ! END SUBROUTINE tra_nxt SUBROUTINE tra_nxt_fix( kt, kit000, cdtype, ptb, ptn, pta, kjpt ) !!---------------------------------------------------------------------- !! *** ROUTINE tra_nxt_fix *** !! !! ** Purpose : fixed volume: apply the Asselin time filter and !! swap the tracer fields. !! !! ** Method : - Apply a Asselin time filter on now fields. !! - save in (ta,sa) an average over the three time levels !! which will be used to compute rdn and thus the semi-implicit !! hydrostatic pressure gradient (ln_dynhpg_imp = T) !! - swap tracer fields to prepare the next time_step. !! This can be summurized for tempearture as: !! ztm = tn + rbcp * [ta -2 tn + tb ] ln_dynhpg_imp = T !! ztm = 0 otherwise !! with rbcp=1/4 * (1-atfp^4) / (1-atfp) !! tb = tn + atfp*[ tb - 2 tn + ta ] !! tn = ta !! ta = ztm (NB: reset to 0 after eos_bn2 call) !! !! ** Action : - (tb,sb) and (tn,sn) ready for the next time step !! - (ta,sa) time averaged (t,s) (ln_dynhpg_imp = T) !!---------------------------------------------------------------------- INTEGER , INTENT(in ) :: kt ! ocean time-step index INTEGER , INTENT(in ) :: kit000 ! first time step index CHARACTER(len=3), INTENT(in ) :: cdtype ! =TRA or TRC (tracer indicator) INTEGER , INTENT(in ) :: kjpt ! number of tracers REAL(wp) , INTENT(inout), DIMENSION(jpi,jpj,jpk,kjpt) :: ptb ! before tracer fields REAL(wp) , INTENT(inout), DIMENSION(jpi,jpj,jpk,kjpt) :: ptn ! now tracer fields REAL(wp) , INTENT(inout), DIMENSION(jpi,jpj,jpk,kjpt) :: pta ! tracer trend ! INTEGER :: ji, jj, jk, jn ! dummy loop indices LOGICAL :: ll_tra_hpg ! local logical REAL(wp) :: ztn, ztd ! local scalars !!---------------------------------------------------------------------- IF( kt == kit000 ) THEN IF(lwp) WRITE(numout,*) IF(lwp) WRITE(numout,*) 'tra_nxt_fix : time stepping', cdtype IF(lwp) WRITE(numout,*) '~~~~~~~~~~~' ENDIF ! IF( cdtype == 'TRA' ) THEN ; ll_tra_hpg = ln_dynhpg_imp ! active tracers case and semi-implicit hpg ELSE ; ll_tra_hpg = .FALSE. ! passive tracers case or NO semi-implicit hpg ENDIF ! DO jn = 1, kjpt ! DO jk = 1, jpkm1 DO jj = 1, jpj DO ji = 1, jpi ztn = ptn(ji,jj,jk,jn) ztd = pta(ji,jj,jk,jn) - 2. * ztn + ptb(ji,jj,jk,jn) ! time laplacian on tracers ! ptb(ji,jj,jk,jn) = ztn + atfp * ztd ! ptb <-- filtered ptn ptn(ji,jj,jk,jn) = pta(ji,jj,jk,jn) ! ptn <-- pta ! IF( ll_tra_hpg ) pta(ji,jj,jk,jn) = ztn + rbcp * ztd ! pta <-- Brown & Campana average END DO END DO END DO ! END DO ! END SUBROUTINE tra_nxt_fix SUBROUTINE tra_nxt_vvl( kt, kit000, p2dt, cdtype, ptb, ptn, pta, psbc_tc, psbc_tc_b, kjpt ) !!---------------------------------------------------------------------- !! *** ROUTINE tra_nxt_vvl *** !! !! ** Purpose : Time varying volume: apply the Asselin time filter !! and swap the tracer fields. !! !! ** Method : - Apply a thickness weighted Asselin time filter on now fields. !! - save in (ta,sa) a thickness weighted average over the three !! time levels which will be used to compute rdn and thus the semi- !! implicit hydrostatic pressure gradient (ln_dynhpg_imp = T) !! - swap tracer fields to prepare the next time_step. !! This can be summurized for tempearture as: !! ztm = ( e3t_n*tn + rbcp*[ e3t_b*tb - 2 e3t_n*tn + e3t_a*ta ] ) ln_dynhpg_imp = T !! /( e3t_n + rbcp*[ e3t_b - 2 e3t_n + e3t_a ] ) !! ztm = 0 otherwise !! tb = ( e3t_n*tn + atfp*[ e3t_b*tb - 2 e3t_n*tn + e3t_a*ta ] ) !! /( e3t_n + atfp*[ e3t_b - 2 e3t_n + e3t_a ] ) !! tn = ta !! ta = zt (NB: reset to 0 after eos_bn2 call) !! !! ** Action : - (tb,sb) and (tn,sn) ready for the next time step !! - (ta,sa) time averaged (t,s) (ln_dynhpg_imp = T) !!---------------------------------------------------------------------- INTEGER , INTENT(in ) :: kt ! ocean time-step index INTEGER , INTENT(in ) :: kit000 ! first time step index REAL(wp) , INTENT(in ), DIMENSION(jpk) :: p2dt ! time-step CHARACTER(len=3), INTENT(in ) :: cdtype ! =TRA or TRC (tracer indicator) INTEGER , INTENT(in ) :: kjpt ! number of tracers REAL(wp) , INTENT(inout), DIMENSION(jpi,jpj,jpk,kjpt) :: ptb ! before tracer fields REAL(wp) , INTENT(inout), DIMENSION(jpi,jpj,jpk,kjpt) :: ptn ! now tracer fields REAL(wp) , INTENT(inout), DIMENSION(jpi,jpj,jpk,kjpt) :: pta ! tracer trend REAL(wp) , INTENT(in ), DIMENSION(jpi,jpj,kjpt) :: psbc_tc ! surface tracer content REAL(wp) , INTENT(in ), DIMENSION(jpi,jpj,kjpt) :: psbc_tc_b ! before surface tracer content !! LOGICAL :: ll_tra_hpg, ll_traqsr, ll_rnf, ll_isf ! local logical INTEGER :: ji, jj, jk, jn ! dummy loop indices REAL(wp) :: zfact, zfact1, ztc_a , ztc_n , ztc_b , ztc_f , ztc_d ! local scalar REAL(wp) :: zfact2, ze3t_b, ze3t_n, ze3t_a, ze3t_f, ze3t_d ! - - REAL(wp), POINTER, DIMENSION(:,:,:,:) :: ztrd_atf !!---------------------------------------------------------------------- ! IF( kt == kit000 ) THEN IF(lwp) WRITE(numout,*) IF(lwp) WRITE(numout,*) 'tra_nxt_vvl : time stepping', cdtype IF(lwp) WRITE(numout,*) '~~~~~~~~~~~' ENDIF ! IF( cdtype == 'TRA' ) THEN ll_tra_hpg = ln_dynhpg_imp ! active tracers case and semi-implicit hpg ll_traqsr = ln_traqsr ! active tracers case and solar penetration ll_rnf = ln_rnf ! active tracers case and river runoffs IF (nn_isf .GE. 1) THEN ll_isf = .TRUE. ! active tracers case and ice shelf melting/freezing ELSE ll_isf = .FALSE. END IF ELSE ll_tra_hpg = .FALSE. ! passive tracers case or NO semi-implicit hpg ll_traqsr = .FALSE. ! active tracers case and NO solar penetration ll_rnf = .FALSE. ! passive tracers or NO river runoffs ll_isf = .FALSE. ! passive tracers or NO ice shelf melting/freezing ENDIF ! IF( ( l_trdtra .and. cdtype == 'TRA' ) .OR. ( l_trdtrc .and. cdtype == 'TRC' ) ) THEN CALL wrk_alloc( jpi, jpj, jpk, kjpt, ztrd_atf ) ztrd_atf(:,:,:,:) = 0.0_wp ENDIF DO jn = 1, kjpt DO jk = 1, jpkm1 zfact = 0.5_wp / p2dt(jk) zfact1 = atfp * p2dt(jk) zfact2 = zfact1 / rau0 DO jj = 1, jpj DO ji = 1, jpi ze3t_b = fse3t_b(ji,jj,jk) ze3t_n = fse3t_n(ji,jj,jk) ze3t_a = fse3t_a(ji,jj,jk) ! ! tracer content at Before, now and after ztc_b = ptb(ji,jj,jk,jn) * ze3t_b ztc_n = ptn(ji,jj,jk,jn) * ze3t_n ztc_a = pta(ji,jj,jk,jn) * ze3t_a ! ze3t_d = ze3t_a - 2. * ze3t_n + ze3t_b ztc_d = ztc_a - 2. * ztc_n + ztc_b ! ze3t_f = ze3t_n + atfp * ze3t_d ztc_f = ztc_n + atfp * ztc_d ! IF( jk == mikt(ji,jj) ) THEN ! first level ze3t_f = ze3t_f - zfact2 * ( (emp_b(ji,jj) - emp(ji,jj) ) & & - (rnf_b(ji,jj) - rnf(ji,jj) ) & & + (fwfisf_b(ji,jj) - fwfisf(ji,jj)) ) ztc_f = ztc_f - zfact1 * ( psbc_tc(ji,jj,jn) - psbc_tc_b(ji,jj,jn) ) ENDIF ! solar penetration (temperature only) IF( ll_traqsr .AND. jn == jp_tem .AND. jk <= nksr ) & & ztc_f = ztc_f - zfact1 * ( qsr_hc(ji,jj,jk) - qsr_hc_b(ji,jj,jk) ) ! river runoff IF( ll_rnf .AND. jk <= nk_rnf(ji,jj) ) & & ztc_f = ztc_f - zfact1 * ( rnf_tsc(ji,jj,jn) - rnf_tsc_b(ji,jj,jn) ) & & * fse3t_n(ji,jj,jk) / h_rnf(ji,jj) ! ice shelf IF( ll_isf ) THEN ! level fully include in the Losch_2008 ice shelf boundary layer IF ( jk >= misfkt(ji,jj) .AND. jk < misfkb(ji,jj) ) & ztc_f = ztc_f - zfact1 * ( risf_tsc(ji,jj,jn) - risf_tsc_b(ji,jj,jn) ) & & * fse3t_n(ji,jj,jk) * r1_hisf_tbl (ji,jj) ! level partially include in Losch_2008 ice shelf boundary layer IF ( jk == misfkb(ji,jj) ) & ztc_f = ztc_f - zfact1 * ( risf_tsc(ji,jj,jn) - risf_tsc_b(ji,jj,jn) ) & & * fse3t_n(ji,jj,jk) * r1_hisf_tbl (ji,jj) * ralpha(ji,jj) END IF ze3t_f = 1.e0 / ze3t_f ptb(ji,jj,jk,jn) = ztc_f * ze3t_f ! ptb <-- ptn filtered ptn(ji,jj,jk,jn) = pta(ji,jj,jk,jn) ! ptn <-- pta ! IF( ll_tra_hpg ) THEN ! semi-implicit hpg (T & S only) ze3t_d = 1.e0 / ( ze3t_n + rbcp * ze3t_d ) pta(ji,jj,jk,jn) = ze3t_d * ( ztc_n + rbcp * ztc_d ) ! ta <-- Brown & Campana average ENDIF IF( ( l_trdtra .and. cdtype == 'TRA' ) .OR. ( l_trdtrc .and. cdtype == 'TRC' ) ) THEN ztrd_atf(ji,jj,jk,jn) = (ztc_f - ztc_n) * zfact/ze3t_n ENDIF END DO END DO END DO ! END DO ! IF( l_trdtra .and. cdtype == 'TRA' ) THEN CALL trd_tra( kt, cdtype, jp_tem, jptra_atf, ztrd_atf(:,:,:,jp_tem) ) CALL trd_tra( kt, cdtype, jp_sal, jptra_atf, ztrd_atf(:,:,:,jp_sal) ) CALL wrk_dealloc( jpi, jpj, jpk, kjpt, ztrd_atf ) ENDIF IF( l_trdtrc .and. cdtype == 'TRC' ) THEN DO jn = 1, kjpt CALL trd_tra( kt, cdtype, jn, jptra_atf, ztrd_atf(:,:,:,jn) ) END DO CALL wrk_dealloc( jpi, jpj, jpk, kjpt, ztrd_atf ) ENDIF END SUBROUTINE tra_nxt_vvl !!====================================================================== END MODULE tranxt