New URL for NEMO forge!   http://forge.nemo-ocean.eu

Since March 2022 along with NEMO 4.2 release, the code development moved to a self-hosted GitLab.
This present forge is now archived and remained online for history.
Chap_TRA.tex in branches/NERC/dev_r5549_BDY_ZEROGRAD/DOC/TexFiles/Chapters – NEMO

source: branches/NERC/dev_r5549_BDY_ZEROGRAD/DOC/TexFiles/Chapters/Chap_TRA.tex @ 6808

Last change on this file since 6808 was 6808, checked in by jamesharle, 8 years ago

merge with trunk@6232 for consistency with SSB code

File size: 85.3 KB
Line 
1% ================================================================
2% Chapter 1 ——— Ocean Tracers (TRA)
3% ================================================================
4\chapter{Ocean Tracers (TRA)}
5\label{TRA}
6\minitoc
7
8% missing/update
9% traqsr: need to coordinate with SBC module
10
11%STEVEN :  is the use of the word "positive" to describe a scheme enough, or should it be "positive definite"? I added a comment to this effect on some instances of this below
12
13%\newpage
14\vspace{2.cm}
15%$\ $\newline    % force a new ligne
16
17Using the representation described in Chap.~\ref{DOM}, several semi-discrete
18space forms of the tracer equations are available depending on the vertical
19coordinate used and on the physics used. In all the equations presented
20here, the masking has been omitted for simplicity. One must be aware that
21all the quantities are masked fields and that each time a mean or difference
22operator is used, the resulting field is multiplied by a mask.
23
24The two active tracers are potential temperature and salinity. Their prognostic
25equations can be summarized as follows:
26\begin{equation*}
27\text{NXT} = \text{ADV}+\text{LDF}+\text{ZDF}+\text{SBC}
28                   \ (+\text{QSR})\ (+\text{BBC})\ (+\text{BBL})\ (+\text{DMP})
29\end{equation*}
30
31NXT stands for next, referring to the time-stepping. From left to right, the terms
32on the rhs of the tracer equations are the advection (ADV), the lateral diffusion
33(LDF), the vertical diffusion (ZDF), the contributions from the external forcings
34(SBC: Surface Boundary Condition, QSR: penetrative Solar Radiation, and BBC:
35Bottom Boundary Condition), the contribution from the bottom boundary Layer
36(BBL) parametrisation, and an internal damping (DMP) term. The terms QSR,
37BBC, BBL and DMP are optional. The external forcings and parameterisations
38require complex inputs and complex calculations (e.g. bulk formulae, estimation
39of mixing coefficients) that are carried out in the SBC, LDF and ZDF modules and
40described in chapters \S\ref{SBC}, \S\ref{LDF} and  \S\ref{ZDF}, respectively.
41Note that \mdl{tranpc}, the non-penetrative convection module,  although
42located in the NEMO/OPA/TRA directory as it directly modifies the tracer fields,
43is described with the model vertical physics (ZDF) together with other available
44parameterization of convection.
45
46In the present chapter we also describe the diagnostic equations used to compute
47the sea-water properties (density, Brunt-Vais\"{a}l\"{a} frequency, specific heat and
48freezing point with associated modules \mdl{eosbn2} and \mdl{phycst}).
49
50The different options available to the user are managed by namelist logicals or CPP keys.
51For each equation term  \textit{TTT}, the namelist logicals are \textit{ln\_traTTT\_xxx},
52where \textit{xxx} is a 3 or 4 letter acronym corresponding to each optional scheme.
53The CPP key (when it exists) is \textbf{key\_traTTT}. The equivalent code can be
54found in the \textit{traTTT} or \textit{traTTT\_xxx} module, in the NEMO/OPA/TRA directory.
55
56The user has the option of extracting each tendency term on the rhs of the tracer
57equation for output (\np{ln\_tra\_trd} or \np{ln\_tra\_mxl}~=~true), as described in Chap.~\ref{MISC}.
58
59$\ $\newline    % force a new ligne
60% ================================================================
61% Tracer Advection
62% ================================================================
63\section  [Tracer Advection (\textit{traadv})]
64      {Tracer Advection (\mdl{traadv})}
65\label{TRA_adv}
66%------------------------------------------namtra_adv-----------------------------------------------------
67\namdisplay{namtra_adv}
68%-------------------------------------------------------------------------------------------------------------
69
70The advection tendency of a tracer in flux form is the divergence of the advective
71fluxes. Its discrete expression is given by :
72\begin{equation} \label{Eq_tra_adv}
73ADV_\tau =-\frac{1}{b_t} \left(
74\;\delta _i \left[ e_{2u}\,e_{3u} \;  u\; \tau _u  \right]
75+\delta _j \left[ e_{1v}\,e_{3v}  \;  v\; \tau _v  \right] \; \right)
76-\frac{1}{e_{3t}} \;\delta _k \left[ w\; \tau _w \right]
77\end{equation}
78where $\tau$ is either T or S, and $b_t= e_{1t}\,e_{2t}\,e_{3t}$ is the volume of $T$-cells.
79The flux form in \eqref{Eq_tra_adv} 
80implicitly requires the use of the continuity equation. Indeed, it is obtained
81by using the following equality : $\nabla \cdot \left( \vect{U}\,T \right)=\vect{U} \cdot \nabla T$ 
82which results from the use of the continuity equation,  $\partial _t e_3 + e_3\;\nabla \cdot \vect{U}=0$ 
83(which reduces to $\nabla \cdot \vect{U}=0$ in linear free surface, $i.e.$ \np{ln\_linssh}=true).
84Therefore it is of paramount importance to design the discrete analogue of the
85advection tendency so that it is consistent with the continuity equation in order to
86enforce the conservation properties of the continuous equations. In other words,
87by setting $\tau = 1$ in (\ref{Eq_tra_adv}) we recover the discrete form of
88the continuity equation which is used to calculate the vertical velocity.
89%>>>>>>>>>>>>>>>>>>>>>>>>>>>>
90\begin{figure}[!t]    \begin{center}
91\includegraphics[width=0.9\textwidth]{./TexFiles/Figures/Fig_adv_scheme.pdf}
92\caption{   \label{Fig_adv_scheme} 
93Schematic representation of some ways used to evaluate the tracer value
94at $u$-point and the amount of tracer exchanged between two neighbouring grid
95points. Upsteam biased scheme (ups): the upstream value is used and the black
96area is exchanged. Piecewise parabolic method (ppm): a parabolic interpolation
97is used and the black and dark grey areas are exchanged. Monotonic upstream
98scheme for conservative laws (muscl):  a parabolic interpolation is used and black,
99dark grey and grey areas are exchanged. Second order scheme (cen2): the mean
100value is used and black, dark grey, grey and light grey areas are exchanged. Note
101that this illustration does not include the flux limiter used in ppm and muscl schemes.}
102\end{center}   \end{figure}
103%>>>>>>>>>>>>>>>>>>>>>>>>>>>>
104
105The key difference between the advection schemes available in \NEMO is the choice
106made in space and time interpolation to define the value of the tracer at the
107velocity points (Fig.~\ref{Fig_adv_scheme}).
108
109Along solid lateral and bottom boundaries a zero tracer flux is automatically
110specified, since the normal velocity is zero there. At the sea surface the
111boundary condition depends on the type of sea surface chosen:
112\begin{description}
113\item [linear free surface:] (\np{ln\_linssh}=true) the first level thickness is constant in time:
114the vertical boundary condition is applied at the fixed surface $z=0$ 
115rather than on the moving surface $z=\eta$. There is a non-zero advective
116flux which is set for all advection schemes as
117$\left. {\tau _w } \right|_{k=1/2} =T_{k=1} $, $i.e.$ 
118the product of surface velocity (at $z=0$) by the first level tracer value.
119\item [non-linear free surface:] (\np{ln\_linssh}=false)
120convergence/divergence in the first ocean level moves the free surface
121up/down. There is no tracer advection through it so that the advective
122fluxes through the surface are also zero
123\end{description}
124In all cases, this boundary condition retains local conservation of tracer.
125Global conservation is obtained in non-linear free surface case,
126but \textit{not} in the linear free surface case. Nevertheless, in the latter case,
127it is achieved to a good approximation since the non-conservative
128term is the product of the time derivative of the tracer and the free surface
129height, two quantities that are not correlated \citep{Roullet_Madec_JGR00,Griffies_al_MWR01,Campin2004}.
130
131The velocity field that appears in (\ref{Eq_tra_adv}) and (\ref{Eq_tra_adv_zco})
132is the centred (\textit{now}) \textit{effective} ocean velocity, $i.e.$ the \textit{eulerian} velocity
133(see Chap.~\ref{DYN}) plus the eddy induced velocity (\textit{eiv})
134and/or the mixed layer eddy induced velocity (\textit{eiv})
135when those parameterisations are used (see Chap.~\ref{LDF}).
136
137Several tracer advection scheme are proposed, namely
138a $2^{nd}$ or $4^{th}$ order centred schemes (CEN),
139a $2^{nd}$ or $4^{th}$ order Flux Corrected Transport scheme (FCT),
140a Monotone Upstream Scheme for Conservative Laws scheme (MUSCL),
141a $3^{rd}$ Upstream Biased Scheme (UBS, also often called UP3), and
142a Quadratic Upstream Interpolation for Convective Kinematics with
143Estimated Streaming Terms scheme (QUICKEST).
144The choice is made in the \textit{\ngn{namtra\_adv}} namelist, by
145setting to \textit{true} one of the logicals \textit{ln\_traadv\_xxx}.
146The corresponding code can be found in the \textit{traadv\_xxx.F90} module,
147where \textit{xxx} is a 3 or 4 letter acronym corresponding to each scheme.
148By default ($i.e.$ in the reference namelist, \ngn{namelist\_ref}), all the logicals
149are set to \textit{false}. If the user does not select an advection scheme
150in the configuration namelist (\ngn{namelist\_cfg}), the tracers will \textit{not} be advected !
151
152Details of the advection schemes are given below. The choosing an advection scheme
153is a complex matter which depends on the model physics, model resolution,
154type of tracer, as well as the issue of numerical cost. In particular, we note that
155(1) CEN and FCT schemes require an explicit diffusion operator
156while the other schemes are diffusive enough so that they do not necessarily need additional diffusion ;
157(2) CEN and UBS are not \textit{positive} schemes
158\footnote{negative values can appear in an initially strictly positive tracer field
159which is advected}
160, implying that false extrema are permitted. Their use is not recommended on passive tracers ;
161(3) It is recommended that the same advection-diffusion scheme is
162used on both active and passive tracers. Indeed, if a source or sink of a
163passive tracer depends on an active one, the difference of treatment of
164active and passive tracers can create very nice-looking frontal structures
165that are pure numerical artefacts. Nevertheless, most of our users set a different
166treatment on passive and active tracers, that's the reason why this possibility
167is offered. We strongly suggest them to perform a sensitivity experiment
168using a same treatment to assess the robustness of their results.
169
170% -------------------------------------------------------------------------------------------------------------
171%        2nd and 4th order centred schemes
172% -------------------------------------------------------------------------------------------------------------
173\subsection [centred schemes (CEN) (\np{ln\_traadv\_cen})]
174            {centred schemes (CEN) (\np{ln\_traadv\_cen}=true)}
175\label{TRA_adv_cen}
176
177%        2nd order centred scheme 
178
179The centred advection scheme (CEN) is used when \np{ln\_traadv\_cen}~=~\textit{true}.
180Its order ($2^{nd}$ or $4^{th}$) can be chosen independently on horizontal (iso-level)
181and vertical direction by setting \np{nn\_cen\_h} and \np{nn\_cen\_v} to $2$ or $4$.
182CEN implementation can be found in the \mdl{traadv\_cen} module.
183
184In the $2^{nd}$ order centred formulation (CEN2), the tracer at velocity points
185is evaluated as the mean of the two neighbouring $T$-point values.
186For example, in the $i$-direction :
187\begin{equation} \label{Eq_tra_adv_cen2}
188\tau _u^{cen2} =\overline T ^{i+1/2}
189\end{equation}
190
191CEN2 is non diffusive ($i.e.$ it conserves the tracer variance, $\tau^2)$ 
192but dispersive ($i.e.$ it may create false extrema). It is therefore notoriously
193noisy and must be used in conjunction with an explicit diffusion operator to
194produce a sensible solution. The associated time-stepping is performed using
195a leapfrog scheme in conjunction with an Asselin time-filter, so $T$ in
196(\ref{Eq_tra_adv_cen2}) is the \textit{now} tracer value.
197
198Note that using the CEN2, the overall tracer advection is of second
199order accuracy since both (\ref{Eq_tra_adv}) and (\ref{Eq_tra_adv_cen2})
200have this order of accuracy.
201
202%        4nd order centred scheme 
203
204In the $4^{th}$ order formulation (CEN4), tracer values are evaluated at u- and v-points as
205a $4^{th}$ order interpolation, and thus depend on the four neighbouring $T$-points.
206For example, in the $i$-direction:
207\begin{equation} \label{Eq_tra_adv_cen4}
208\tau _u^{cen4} 
209=\overline{   T - \frac{1}{6}\,\delta _i \left[ \delta_{i+1/2}[T] \,\right]   }^{\,i+1/2}
210\end{equation}
211In the vertical direction (\np{nn\_cen\_v}=$4$), a $4^{th}$ COMPACT interpolation
212has been prefered \citep{Demange_PhD2014}.
213In the COMPACT scheme, both the field and its derivative are interpolated,
214which leads, after a matrix inversion, spectral characteristics
215similar to schemes of higher order \citep{Lele_JCP1992}.
216 
217
218Strictly speaking, the CEN4 scheme is not a $4^{th}$ order advection scheme
219but a $4^{th}$ order evaluation of advective fluxes, since the divergence of
220advective fluxes \eqref{Eq_tra_adv} is kept at $2^{nd}$ order.
221The expression \textit{$4^{th}$ order scheme} used in oceanographic literature
222is usually associated with the scheme presented here.
223Introducing a \textit{true} $4^{th}$ order advection scheme is feasible but,
224for consistency reasons, it requires changes in the discretisation of the tracer
225advection together with changes in the continuity equation,
226and the momentum advection and pressure terms. 
227
228A direct consequence of the pseudo-fourth order nature of the scheme is that
229it is not non-diffusive, $i.e.$ the global variance of a tracer is not preserved using CEN4.
230Furthermore, it must be used in conjunction with an explicit diffusion operator
231to produce a sensible solution.
232As in CEN2 case, the time-stepping is performed using a leapfrog scheme in conjunction
233with an Asselin time-filter, so $T$ in (\ref{Eq_tra_adv_cen4}) is the \textit{now} tracer.
234
235At a $T$-grid cell adjacent to a boundary (coastline, bottom and surface),
236an additional hypothesis must be made to evaluate $\tau _u^{cen4}$.
237This hypothesis usually reduces the order of the scheme.
238Here we choose to set the gradient of $T$ across the boundary to zero.
239Alternative conditions can be specified, such as a reduction to a second order scheme
240for these near boundary grid points.
241
242% -------------------------------------------------------------------------------------------------------------
243%        FCT scheme 
244% -------------------------------------------------------------------------------------------------------------
245\subsection   [Flux Corrected Transport schemes (FCT) (\np{ln\_traadv\_fct})]
246         {Flux Corrected Transport schemes (FCT) (\np{ln\_traadv\_fct}=true)}
247\label{TRA_adv_tvd}
248
249The Flux Corrected Transport schemes (FCT) is used when \np{ln\_traadv\_fct}~=~\textit{true}.
250Its order ($2^{nd}$ or $4^{th}$) can be chosen independently on horizontal (iso-level)
251and vertical direction by setting \np{nn\_fct\_h} and \np{nn\_fct\_v} to $2$ or $4$.
252FCT implementation can be found in the \mdl{traadv\_fct} module.
253
254In FCT formulation, the tracer at velocity points is evaluated using a combination of
255an upstream and a centred scheme. For example, in the $i$-direction :
256\begin{equation} \label{Eq_tra_adv_fct}
257\begin{split}
258\tau _u^{ups}&= \begin{cases}
259               T_{i+1}  & \text{if $\ u_{i+1/2} <     0$} \hfill \\
260               T_i         & \text{if $\ u_{i+1/2} \geq 0$} \hfill \\
261              \end{cases}     \\
262\\
263\tau _u^{fct}&=\tau _u^{ups} +c_u \;\left( {\tau _u^{cen} -\tau _u^{ups} } \right)
264\end{split}
265\end{equation}
266where $c_u$ is a flux limiter function taking values between 0 and 1.
267The FCT order is the one of the centred scheme used ($i.e.$ it depends on the setting of
268\np{nn\_fct\_h} and \np{nn\_fct\_v}.
269There exist many ways to define $c_u$, each corresponding to a different
270FCT scheme. The one chosen in \NEMO is described in \citet{Zalesak_JCP79}.
271$c_u$ only departs from $1$ when the advective term produces a local extremum in the tracer field.
272The resulting scheme is quite expensive but \emph{positive}.
273It can be used on both active and passive tracers.
274A comparison of FCT-2 with MUSCL and a MPDATA scheme can be found in \citet{Levy_al_GRL01}.
275
276An additional option has been added controlled by \np{nn\_fct\_zts}. By setting this integer to
277a value larger than zero, a $2^{nd}$ order FCT scheme is used on both horizontal and vertical direction,
278but on the latter, a split-explicit time stepping is used, with a number of sub-timestep equals
279to \np{nn\_fct\_zts}. This option can be useful when the size of the timestep is limited
280by vertical advection \citep{Lemarie_OM2015)}. Note that in this case, a similar split-explicit
281time stepping should be used on vertical advection of momentum to insure a better stability
282(see \S\ref{DYN_zad}).
283
284For stability reasons (see \S\ref{STP}), $\tau _u^{cen}$ is evaluated in (\ref{Eq_tra_adv_fct})
285using the \textit{now} tracer while $\tau _u^{ups}$ is evaluated using the \textit{before} tracer. In other words,
286the advective part of the scheme is time stepped with a leap-frog scheme
287while a forward scheme is used for the diffusive part.
288
289% -------------------------------------------------------------------------------------------------------------
290%        MUSCL scheme 
291% -------------------------------------------------------------------------------------------------------------
292\subsection[MUSCL scheme  (\np{ln\_traadv\_mus})]
293   {Monotone Upstream Scheme for Conservative Laws (MUSCL) (\np{ln\_traadv\_mus}=T)}
294\label{TRA_adv_mus}
295
296The Monotone Upstream Scheme for Conservative Laws (MUSCL) is used when \np{ln\_traadv\_mus}~=~\textit{true}.
297MUSCL implementation can be found in the \mdl{traadv\_mus} module.
298
299MUSCL has been first implemented in \NEMO by \citet{Levy_al_GRL01}. In its formulation, the tracer at velocity points
300is evaluated assuming a linear tracer variation between two $T$-points
301(Fig.\ref{Fig_adv_scheme}). For example, in the $i$-direction :
302\begin{equation} \label{Eq_tra_adv_mus}
303   \tau _u^{mus} = \left\{      \begin{aligned}
304         &\tau _&+ \frac{1}{2} \;\left( 1-\frac{u_{i+1/2} \;\rdt}{e_{1u}} \right)
305         &\ \widetilde{\partial _i \tau}  & \quad \text{if }\;u_{i+1/2} \geqslant 0      \\
306         &\tau _{i+1/2} &+\frac{1}{2}\;\left( 1+\frac{u_{i+1/2} \;\rdt}{e_{1u} } \right)
307         &\ \widetilde{\partial_{i+1/2} \tau } & \text{if }\;u_{i+1/2} <0
308   \end{aligned}    \right.
309\end{equation}
310where $\widetilde{\partial _i \tau}$ is the slope of the tracer on which a limitation
311is imposed to ensure the \textit{positive} character of the scheme.
312
313The time stepping is performed using a forward scheme, that is the \textit{before} 
314tracer field is used to evaluate $\tau _u^{mus}$.
315
316For an ocean grid point adjacent to land and where the ocean velocity is
317directed toward land, an upstream flux is used. This choice ensure
318the \textit{positive} character of the scheme.
319In addition, fluxes round a grid-point where a runoff is applied can optionally be
320computed using upstream fluxes (\np{ln\_mus\_ups}~=~\textit{true}).
321
322% -------------------------------------------------------------------------------------------------------------
323%        UBS scheme 
324% -------------------------------------------------------------------------------------------------------------
325\subsection   [Upstream-Biased Scheme (UBS) (\np{ln\_traadv\_ubs})]
326         {Upstream-Biased Scheme (UBS) (\np{ln\_traadv\_ubs}=true)}
327\label{TRA_adv_ubs}
328
329The Upstream-Biased Scheme (UBS) is used when \np{ln\_traadv\_ubs}~=~\textit{true}.
330UBS implementation can be found in the \mdl{traadv\_mus} module.
331
332The UBS scheme, often called UP3, is also known as the Cell Averaged QUICK scheme
333(Quadratic Upstream Interpolation for Convective Kinematics). It is an upstream-biased
334third order scheme based on an upstream-biased parabolic interpolation. 
335For example, in the $i$-direction :
336\begin{equation} \label{Eq_tra_adv_ubs}
337   \tau _u^{ubs} =\overline T ^{i+1/2}-\;\frac{1}{6} \left\{     
338   \begin{aligned}
339         &\tau"_i          & \quad \text{if }\ u_{i+1/2} \geqslant 0      \\
340         &\tau"_{i+1}   & \quad \text{if }\ u_{i+1/2}       <       0
341   \end{aligned}    \right.
342\end{equation}
343where $\tau "_i =\delta _i \left[ {\delta _{i+1/2} \left[ \tau \right]} \right]$.
344
345This results in a dissipatively dominant (i.e. hyper-diffusive) truncation
346error \citep{Shchepetkin_McWilliams_OM05}. The overall performance of
347 the advection scheme is similar to that reported in \cite{Farrow1995}.
348It is a relatively good compromise between accuracy and smoothness.
349Nevertheless the scheme is not \emph{positive}, meaning that false extrema are permitted,
350but the amplitude of such are significantly reduced over the centred second
351or fourth order method. therefore it is not recommended that it should be
352applied to a passive tracer that requires positivity.
353
354The intrinsic diffusion of UBS makes its use risky in the vertical direction
355where the control of artificial diapycnal fluxes is of paramount importance \citep{Shchepetkin_McWilliams_OM05, Demange_PhD2014}.
356Therefore the vertical flux is evaluated using either a $2^nd$ order FCT scheme
357or a $4^th$ order COMPACT scheme (\np{nn\_cen\_v}=2 or 4).
358
359For stability reasons  (see \S\ref{STP}),
360the first term  in \eqref{Eq_tra_adv_ubs} (which corresponds to a second order
361centred scheme) is evaluated using the \textit{now} tracer (centred in time)
362while the second term (which is the diffusive part of the scheme), is
363evaluated using the \textit{before} tracer (forward in time).
364This choice is discussed by \citet{Webb_al_JAOT98} in the context of the
365QUICK advection scheme. UBS and QUICK schemes only differ
366by one coefficient. Replacing 1/6 with 1/8 in \eqref{Eq_tra_adv_ubs} 
367leads to the QUICK advection scheme \citep{Webb_al_JAOT98}.
368This option is not available through a namelist parameter, since the
3691/6 coefficient is hard coded. Nevertheless it is quite easy to make the
370substitution in the \mdl{traadv\_ubs} module and obtain a QUICK scheme.
371
372Note that it is straightforward to rewrite \eqref{Eq_tra_adv_ubs} as follows:
373\begin{equation} \label{Eq_traadv_ubs2}
374\tau _u^{ubs} = \tau _u^{cen4} + \frac{1}{12} \left\{ 
375   \begin{aligned}
376   & + \tau"_i       & \quad \text{if }\ u_{i+1/2} \geqslant 0 \\
377   &  - \tau"_{i+1}     & \quad \text{if }\ u_{i+1/2}       <       0
378   \end{aligned}    \right.
379\end{equation}
380or equivalently
381\begin{equation} \label{Eq_traadv_ubs2b}
382u_{i+1/2} \ \tau _u^{ubs} 
383=u_{i+1/2} \ \overline{ T - \frac{1}{6}\,\delta _i\left[ \delta_{i+1/2}[T] \,\right] }^{\,i+1/2}
384- \frac{1}{2} |u|_{i+1/2} \;\frac{1}{6} \;\delta_{i+1/2}[\tau"_i]
385\end{equation}
386
387\eqref{Eq_traadv_ubs2} has several advantages. Firstly, it clearly reveals
388that the UBS scheme is based on the fourth order scheme to which an
389upstream-biased diffusion term is added. Secondly, this emphasises that the
390$4^{th}$ order part (as well as the $2^{nd}$ order part as stated above) has
391to be evaluated at the \emph{now} time step using \eqref{Eq_tra_adv_ubs}.
392Thirdly, the diffusion term is in fact a biharmonic operator with an eddy
393coefficient which is simply proportional to the velocity:
394 $A_u^{lm}= \frac{1}{12}\,{e_{1u}}^3\,|u|$. Note the current version of NEMO uses
395the computationally more efficient formulation \eqref{Eq_tra_adv_ubs}.
396
397% -------------------------------------------------------------------------------------------------------------
398%        QCK scheme 
399% -------------------------------------------------------------------------------------------------------------
400\subsection   [QUICKEST scheme (QCK) (\np{ln\_traadv\_qck})]
401         {QUICKEST scheme (QCK) (\np{ln\_traadv\_qck}=true)}
402\label{TRA_adv_qck}
403
404The Quadratic Upstream Interpolation for Convective Kinematics with
405Estimated Streaming Terms (QUICKEST) scheme proposed by \citet{Leonard1979} 
406is used when \np{ln\_traadv\_qck}~=~\textit{true}.
407QUICKEST implementation can be found in the \mdl{traadv\_mus} module.
408
409QUICKEST is the third order Godunov scheme which is associated with the ULTIMATE QUICKEST
410limiter \citep{Leonard1991}. It has been implemented in NEMO by G. Reffray
411(MERCATOR-ocean) and can be found in the \mdl{traadv\_qck} module.
412The resulting scheme is quite expensive but \emph{positive}.
413It can be used on both active and passive tracers.
414However, the intrinsic diffusion of QCK makes its use risky in the vertical
415direction where the control of artificial diapycnal fluxes is of paramount importance.
416Therefore the vertical flux is evaluated using the CEN2 scheme.
417This no longer guarantees the positivity of the scheme. The use of TVD in the vertical
418direction (as for the UBS case) should be implemented to restore this property.
419
420%%%gmcomment   :  Cross term are missing in the current implementation....
421
422
423% ================================================================
424% Tracer Lateral Diffusion
425% ================================================================
426\section  [Tracer Lateral Diffusion (\textit{traldf})]
427      {Tracer Lateral Diffusion (\mdl{traldf})}
428\label{TRA_ldf}
429%-----------------------------------------nam_traldf------------------------------------------------------
430\namdisplay{namtra_ldf}
431%-------------------------------------------------------------------------------------------------------------
432 
433Options are defined through the  \ngn{namtra\_ldf} namelist variables.
434The options available for lateral diffusion are a laplacian (rotated or not)
435or a biharmonic operator, the latter being more scale-selective (more
436diffusive at small scales). The specification of eddy diffusivity
437coefficients (either constant or variable in space and time) as well as the
438computation of the slope along which the operators act, are performed in the
439\mdl{ldftra} and \mdl{ldfslp} modules, respectively. This is described in Chap.~\ref{LDF}.
440The lateral diffusion of tracers is evaluated using a forward scheme,
441$i.e.$ the tracers appearing in its expression are the \textit{before} tracers in time,
442except for the pure vertical component that appears when a rotation tensor
443is used. This latter term is solved implicitly together with the
444vertical diffusion term (see \S\ref{STP}).
445
446% -------------------------------------------------------------------------------------------------------------
447%        Iso-level laplacian operator
448% -------------------------------------------------------------------------------------------------------------
449\subsection   [Iso-level laplacian operator (lap) (\np{ln\_traldf\_lap})]
450         {Iso-level laplacian operator (lap) (\np{ln\_traldf\_lap}=true) }
451\label{TRA_ldf_lap}
452
453A laplacian diffusion operator ($i.e.$ a harmonic operator) acting along the model
454surfaces is given by:
455\begin{equation} \label{Eq_tra_ldf_lap}
456D_T^{lT} =\frac{1}{b_tT} \left( \;
457   \delta _{i}\left[ A_u^{lT} \; \frac{e_{2u}\,e_{3u}}{e_{1u}} \;\delta _{i+1/2} [T] \right]
458+ \delta _{j}\left[ A_v^{lT} \;  \frac{e_{1v}\,e_{3v}}{e_{2v}} \;\delta _{j+1/2} [T] \right\;\right)
459\end{equation}
460where  $b_t$=$e_{1t}\,e_{2t}\,e_{3t}$  is the volume of $T$-cells.
461It is implemented in the \mdl{traadv\_lap} module.
462
463This lateral operator is computed in \mdl{traldf\_lap}. It is a \emph{horizontal} 
464operator ($i.e.$ acting along geopotential surfaces) in the $z$-coordinate with
465or without partial steps, but is simply an iso-level operator in the $s$-coordinate.
466It is thus used when, in addition to \np{ln\_traldf\_lap}=true, we have
467\np{ln\_traldf\_level}=true or \np{ln\_traldf\_hor}=\np{ln\_zco}=true.
468In both cases, it significantly contributes to diapycnal mixing.
469It is therefore not recommended.
470
471Note that in the partial step $z$-coordinate (\np{ln\_zps}=true), tracers in horizontally
472adjacent cells are located at different depths in the vicinity of the bottom.
473In this case, horizontal derivatives in (\ref{Eq_tra_ldf_lap}) at the bottom level
474require a specific treatment. They are calculated in the \mdl{zpshde} module,
475described in \S\ref{TRA_zpshde}.
476
477% -------------------------------------------------------------------------------------------------------------
478%        Rotated laplacian operator
479% -------------------------------------------------------------------------------------------------------------
480\subsection   [Rotated laplacian operator (iso) (\np{ln\_traldf\_lap})]
481         {Rotated laplacian operator (iso) (\np{ln\_traldf\_lap}=true)}
482\label{TRA_ldf_iso}
483
484If the Griffies trad scheme is not employed
485(\np{ln\_traldf\_grif}=true; see App.\ref{sec:triad}) the general form of the second order lateral tracer subgrid scale physics
486(\ref{Eq_PE_zdf}) takes the following semi-discrete space form in $z$- and
487$s$-coordinates:
488\begin{equation} \label{Eq_tra_ldf_iso}
489\begin{split}
490 D_T^{lT} = \frac{1}{b_t}   & \left\{   \,\;\delta_i \left[   A_u^{lT}  \left(
491     \frac{e_{2u}\,e_{3u}}{e_{1u}} \,\delta_{i+1/2}[T]
492   - e_{2u}\;r_{1u} \,\overline{\overline{ \delta_{k+1/2}[T] }}^{\,i+1/2,k}
493                                                     \right)   \right]   \right.    \\ 
494&             +\delta_j \left[ A_v^{lT} \left(
495          \frac{e_{1v}\,e_{3v}}{e_{2v}}  \,\delta_{j+1/2} [T]
496        - e_{1v}\,r_{2v} \,\overline{\overline{ \delta_{k+1/2} [T] }}^{\,j+1/2,k} 
497                                                    \right)   \right]                 \\ 
498& +\delta_k \left[ A_w^{lT} \left(
499       -\;e_{2w}\,r_{1w} \,\overline{\overline{ \delta_{i+1/2} [T] }}^{\,i,k+1/2}
500                                                    \right.   \right.                 \\ 
501& \qquad \qquad \quad 
502        - e_{1w}\,r_{2w} \,\overline{\overline{ \delta_{j+1/2} [T] }}^{\,j,k+1/2}     \\
503& \left. {\left. {   \qquad \qquad \ \ \ \left. {
504        +\;\frac{e_{1w}\,e_{2w}}{e_{3w}} \,\left( r_{1w}^2 + r_{2w}^2 \right)
505           \,\delta_{k+1/2} [T] } \right) } \right] \quad } \right\} 
506 \end{split}
507 \end{equation}
508where $b_t$=$e_{1t}\,e_{2t}\,e_{3t}$  is the volume of $T$-cells,
509$r_1$ and $r_2$ are the slopes between the surface of computation
510($z$- or $s$-surfaces) and the surface along which the diffusion operator
511acts ($i.e.$ horizontal or iso-neutral surfaces).  It is thus used when,
512in addition to \np{ln\_traldf\_lap}= true, we have \np{ln\_traldf\_iso}=true,
513or both \np{ln\_traldf\_hor}=true and \np{ln\_zco}=true. The way these
514slopes are evaluated is given in \S\ref{LDF_slp}. At the surface, bottom
515and lateral boundaries, the turbulent fluxes of heat and salt are set to zero
516using the mask technique (see \S\ref{LBC_coast}).
517
518The operator in \eqref{Eq_tra_ldf_iso} involves both lateral and vertical
519derivatives. For numerical stability, the vertical second derivative must
520be solved using the same implicit time scheme as that used in the vertical
521physics (see \S\ref{TRA_zdf}). For computer efficiency reasons, this term
522is not computed in the \mdl{traldf\_iso} module, but in the \mdl{trazdf} module
523where, if iso-neutral mixing is used, the vertical mixing coefficient is simply
524increased by $\frac{e_{1w}\,e_{2w} }{e_{3w} }\ \left( {r_{1w} ^2+r_{2w} ^2} \right)$.
525
526This formulation conserves the tracer but does not ensure the decrease
527of the tracer variance. Nevertheless the treatment performed on the slopes
528(see \S\ref{LDF}) allows the model to run safely without any additional
529background horizontal diffusion \citep{Guilyardi_al_CD01}. An alternative scheme
530developed by \cite{Griffies_al_JPO98} which ensures tracer variance decreases
531is also available in \NEMO (\np{ln\_traldf\_grif}=true). A complete description of
532the algorithm is given in App.\ref{sec:triad}.
533
534Note that in the partial step $z$-coordinate (\np{ln\_zps}=true), the horizontal
535derivatives at the bottom level in \eqref{Eq_tra_ldf_iso} require a specific
536treatment. They are calculated in module zpshde, described in \S\ref{TRA_zpshde}.
537
538% -------------------------------------------------------------------------------------------------------------
539%        Iso-level bilaplacian operator
540% -------------------------------------------------------------------------------------------------------------
541\subsection   [Iso-level bilaplacian operator (bilap) (\np{ln\_traldf\_bilap})]
542         {Iso-level bilaplacian operator (bilap) (\np{ln\_traldf\_bilap}=true)}
543\label{TRA_ldf_bilap}
544
545The lateral fourth order bilaplacian operator on tracers is obtained by
546applying (\ref{Eq_tra_ldf_lap}) twice. The operator requires an additional assumption
547on boundary conditions: both first and third derivative terms normal to the
548coast are set to zero. It is used when, in addition to \np{ln\_traldf\_bilap}=true,
549we have \np{ln\_traldf\_level}=true, or both \np{ln\_traldf\_hor}=true and
550\np{ln\_zco}=false. In both cases, it can contribute diapycnal mixing,
551although less than in the laplacian case. It is therefore not recommended.
552
553Note that in the code, the bilaplacian routine does not call the laplacian
554routine twice but is rather a separate routine that can be found in the
555\mdl{traldf\_bilap} module. This is due to the fact that we introduce the
556eddy diffusivity coefficient, A, in the operator as:
557$\nabla \cdot \nabla \left( {A\nabla \cdot \nabla T} \right)$,
558instead of
559$-\nabla \cdot a\nabla \left( {\nabla \cdot a\nabla T} \right)$ 
560where $a=\sqrt{|A|}$ and $A<0$. This was a mistake: both formulations
561ensure the total variance decrease, but the former requires a larger
562number of code-lines.
563
564% -------------------------------------------------------------------------------------------------------------
565%        Rotated bilaplacian operator
566% -------------------------------------------------------------------------------------------------------------
567\subsection   [Rotated bilaplacian operator (bilapg) (\np{ln\_traldf\_bilap})]
568         {Rotated bilaplacian operator (bilapg) (\np{ln\_traldf\_bilap}=true)}
569\label{TRA_ldf_bilapg}
570
571The lateral fourth order operator formulation on tracers is obtained by
572applying (\ref{Eq_tra_ldf_iso}) twice. It requires an additional assumption
573on boundary conditions: first and third derivative terms normal to the
574coast, normal to the bottom and normal to the surface are set to zero. It can be found in the
575\mdl{traldf\_bilapg}.
576
577It is used when, in addition to \np{ln\_traldf\_bilap}=true, we have
578\np{ln\_traldf\_iso}= .true, or both \np{ln\_traldf\_hor}=true and \np{ln\_zco}=true.
579This rotated bilaplacian operator has never been seriously
580tested. There are no guarantees that it is either free of bugs or correctly formulated.
581Moreover, the stability range of such an operator will be probably quite
582narrow, requiring a significantly smaller time-step than the one used with an
583unrotated operator.
584
585% ================================================================
586% Tracer Vertical Diffusion
587% ================================================================
588\section  [Tracer Vertical Diffusion (\textit{trazdf})]
589      {Tracer Vertical Diffusion (\mdl{trazdf})}
590\label{TRA_zdf}
591%--------------------------------------------namzdf---------------------------------------------------------
592\namdisplay{namzdf}
593%--------------------------------------------------------------------------------------------------------------
594
595Options are defined through the  \ngn{namzdf} namelist variables.
596The formulation of the vertical subgrid scale tracer physics is the same
597for all the vertical coordinates, and is based on a laplacian operator.
598The vertical diffusion operator given by (\ref{Eq_PE_zdf}) takes the
599following semi-discrete space form:
600\begin{equation} \label{Eq_tra_zdf}
601\begin{split}
602D^{vT}_T &= \frac{1}{e_{3t}} \; \delta_k \left[ \;\frac{A^{vT}_w}{e_{3w}}  \delta_{k+1/2}[T] \;\right]
603\\
604D^{vS}_T &= \frac{1}{e_{3t}} \; \delta_k \left[ \;\frac{A^{vS}_w}{e_{3w}}  \delta_{k+1/2}[S] \;\right]
605\end{split}
606\end{equation}
607where $A_w^{vT}$ and $A_w^{vS}$ are the vertical eddy diffusivity
608coefficients on temperature and salinity, respectively. Generally,
609$A_w^{vT}=A_w^{vS}$ except when double diffusive mixing is
610parameterised ($i.e.$ \key{zdfddm} is defined). The way these coefficients
611are evaluated is given in \S\ref{ZDF} (ZDF). Furthermore, when
612iso-neutral mixing is used, both mixing coefficients are increased
613by $\frac{e_{1w}\,e_{2w} }{e_{3w} }\ \left( {r_{1w} ^2+r_{2w} ^2} \right)$ 
614to account for the vertical second derivative of \eqref{Eq_tra_ldf_iso}.
615
616At the surface and bottom boundaries, the turbulent fluxes of
617heat and salt must be specified. At the surface they are prescribed
618from the surface forcing and added in a dedicated routine (see \S\ref{TRA_sbc}),
619whilst at the bottom they are set to zero for heat and salt unless
620a geothermal flux forcing is prescribed as a bottom boundary
621condition (see \S\ref{TRA_bbc}).
622
623The large eddy coefficient found in the mixed layer together with high
624vertical resolution implies that in the case of explicit time stepping
625(\np{ln\_zdfexp}=true) there would be too restrictive a constraint on
626the time step. Therefore, the default implicit time stepping is preferred
627for the vertical diffusion since it overcomes the stability constraint.
628A forward time differencing scheme (\np{ln\_zdfexp}=true) using a time
629splitting technique (\np{nn\_zdfexp} $> 1$) is provided as an alternative.
630Namelist variables \np{ln\_zdfexp} and \np{nn\_zdfexp} apply to both
631tracers and dynamics.
632
633% ================================================================
634% External Forcing
635% ================================================================
636\section{External Forcing}
637\label{TRA_sbc_qsr_bbc}
638
639% -------------------------------------------------------------------------------------------------------------
640%        surface boundary condition
641% -------------------------------------------------------------------------------------------------------------
642\subsection   [Surface boundary condition (\textit{trasbc})]
643         {Surface boundary condition (\mdl{trasbc})}
644\label{TRA_sbc}
645
646The surface boundary condition for tracers is implemented in a separate
647module (\mdl{trasbc}) instead of entering as a boundary condition on the vertical
648diffusion operator (as in the case of momentum). This has been found to
649enhance readability of the code. The two formulations are completely
650equivalent; the forcing terms in trasbc are the surface fluxes divided by
651the thickness of the top model layer.
652
653Due to interactions and mass exchange of water ($F_{mass}$) with other Earth system components ($i.e.$ atmosphere, sea-ice, land),
654the change in the heat and salt content of the surface layer of the ocean is due both
655to the heat and salt fluxes crossing the sea surface (not linked with $F_{mass}$)
656 and to the heat and salt content of the mass exchange.
657\sgacomment{ the following does not apply to the release to which this documentation is
658attached and so should not be included ....
659In a forthcoming release, these two parts, computed in the surface module (SBC), will be included directly
660in $Q_{ns}$, the surface heat flux and $F_{salt}$, the surface salt flux.
661The specification of these fluxes is further detailed in the SBC chapter (see \S\ref{SBC}).
662This change will provide a forcing formulation which is the same for any tracer (including temperature and salinity).
663 
664In the current version, the situation is a little bit more complicated. }
665
666The surface module (\mdl{sbcmod}, see \S\ref{SBC}) provides the following
667forcing fields (used on tracers):
668
669$\bullet$ $Q_{ns}$, the non-solar part of the net surface heat flux that crosses the sea surface
670(i.e. the difference between the total surface heat flux and the fraction of the short wave flux that
671penetrates into the water column, see \S\ref{TRA_qsr})
672
673$\bullet$ \textit{emp}, the mass flux exchanged with the atmosphere (evaporation minus precipitation)
674
675$\bullet$ $\textit{emp}_S$, an equivalent mass flux taking into account the effect of ice-ocean mass exchange
676
677$\bullet$ \textit{rnf}, the mass flux associated with runoff (see \S\ref{SBC_rnf} for further detail of how it acts on temperature and salinity tendencies)
678
679The $\textit{emp}_S$ field is not simply the budget of evaporation-precipitation+freezing-melting because
680the sea-ice is not currently embedded in the ocean but levitates above it. There is no mass
681exchanged between the sea-ice and the ocean. Instead we only take into account the salt
682flux associated with the non-zero salinity of sea-ice, and the concentration/dilution effect
683due to the freezing/melting (F/M) process. These two parts of the forcing are then converted into
684an equivalent mass flux given by $\textit{emp}_S - \textit{emp}$. As a result of this mess,
685the surface boundary condition on temperature and salinity is applied as follows:
686
687In the nonlinear free surface case (\key{vvl} is defined):
688\begin{equation} \label{Eq_tra_sbc}
689\begin{aligned}
690 &F^T = \frac{ 1 }{\rho _o \;C_p \,\left. e_{3t} \right|_{k=1} }   
691           &\overline{ \left( Q_{ns} - \textit{emp}\;C_p\,\left. T \right|_{k=1} \right) }^& \\ 
692%
693& F^S =\frac{ 1 }{\rho _o \,\left. e_{3t} \right|_{k=1} } 
694           &\overline{ \left( (\textit{emp}_S - \textit{emp})\;\left. S \right|_{k=1}  \right) }^t   & \\   
695 \end{aligned}
696\end{equation} 
697
698In the linear free surface case (\key{vvl} not defined):
699\begin{equation} \label{Eq_tra_sbc_lin}
700\begin{aligned}
701 &F^T = \frac{ 1 }{\rho _o \;C_p \,\left. e_{3t} \right|_{k=1} }  &\overline{ Q_{ns} }^& \\ 
702%
703& F^S =\frac{ 1 }{\rho _o \,\left. e_{3t} \right|_{k=1} } 
704           &\overline{ \left( \textit{emp}_S\;\left. S \right|_{k=1}  \right) }^t   & \\   
705 \end{aligned}
706\end{equation} 
707where $\overline{x }^t$ means that $x$ is averaged over two consecutive time steps
708($t-\rdt/2$ and $t+\rdt/2$). Such time averaging prevents the
709divergence of odd and even time step (see \S\ref{STP}).
710
711The two set of equations, \eqref{Eq_tra_sbc} and \eqref{Eq_tra_sbc_lin}, are obtained
712by assuming that the temperature of precipitation and evaporation are equal to
713the ocean surface temperature and that their salinity is zero. Therefore, the heat content
714of the \textit{emp} budget must be added to the temperature equation in the variable volume case,
715while it does not appear in the constant volume case. Similarly, the \textit{emp} budget affects
716the ocean surface salinity in the constant volume case (through the concentration dilution effect)
717while it does not appears explicitly in the variable volume case since salinity change will be
718induced by volume change. In both constant and variable volume cases, surface salinity
719will change with ice-ocean salt flux and F/M flux (both contained in $\textit{emp}_S - \textit{emp}$) without mass exchanges.
720
721Note that the concentration/dilution effect due to F/M is computed using
722a constant ice salinity as well as a constant ocean salinity.
723This approximation suppresses the correlation between \textit{SSS} 
724and F/M flux, allowing the ice-ocean salt exchanges to be conservative.
725Indeed, if this approximation is not made, even if the F/M budget is zero
726on average over the whole ocean domain and over the seasonal cycle,
727the associated salt flux is not zero, since sea-surface salinity and F/M flux are
728intrinsically correlated (high \textit{SSS} are found where freezing is
729strong whilst low \textit{SSS} is usually associated with high melting areas).
730
731Even using this approximation, an exact conservation of heat and salt content
732is only achieved in the variable volume case. In the constant volume case,
733there is a small imbalance associated with the product $(\partial_t\eta - \textit{emp}) * \textit{SSS}$.
734Nevertheless, the salt content variation is quite small and will not induce
735a long term drift as there is no physical reason for $(\partial_t\eta - \textit{emp})$ 
736and \textit{SSS} to be correlated \citep{Roullet_Madec_JGR00}.
737Note that, while quite small, the imbalance in the constant volume case is larger
738than the imbalance associated with the Asselin time filter \citep{Leclair_Madec_OM09}.
739This is the reason why the modified filter is not applied in the constant volume case.
740
741% -------------------------------------------------------------------------------------------------------------
742%        Solar Radiation Penetration
743% -------------------------------------------------------------------------------------------------------------
744\subsection   [Solar Radiation Penetration (\textit{traqsr})]
745         {Solar Radiation Penetration (\mdl{traqsr})}
746\label{TRA_qsr}
747%--------------------------------------------namqsr--------------------------------------------------------
748\namdisplay{namtra_qsr}
749%--------------------------------------------------------------------------------------------------------------
750
751Options are defined through the  \ngn{namtra\_qsr} namelist variables.
752When the penetrative solar radiation option is used (\np{ln\_flxqsr}=true),
753the solar radiation penetrates the top few tens of meters of the ocean. If it is not used
754(\np{ln\_flxqsr}=false) all the heat flux is absorbed in the first ocean level.
755Thus, in the former case a term is added to the time evolution equation of
756temperature \eqref{Eq_PE_tra_T} and the surface boundary condition is
757modified to take into account only the non-penetrative part of the surface
758heat flux:
759\begin{equation} \label{Eq_PE_qsr}
760\begin{split}
761\frac{\partial T}{\partial t} &= {\ldots} + \frac{1}{\rho_o\, C_p \,e_3} \; \frac{\partial I}{\partial k}   \\
762Q_{ns} &= Q_\text{Total} - Q_{sr}
763\end{split}
764\end{equation}
765where $Q_{sr}$ is the penetrative part of the surface heat flux ($i.e.$ the shortwave radiation)
766and $I$ is the downward irradiance ($\left. I \right|_{z=\eta}=Q_{sr}$).
767The additional term in \eqref{Eq_PE_qsr} is discretized as follows:
768\begin{equation} \label{Eq_tra_qsr}
769\frac{1}{\rho_o\, C_p \,e_3} \; \frac{\partial I}{\partial k} \equiv \frac{1}{\rho_o\, C_p\, e_{3t}} \delta_k \left[ I_w \right]
770\end{equation}
771
772The shortwave radiation,  $Q_{sr}$, consists of energy distributed across a wide spectral range.
773The ocean is strongly absorbing for wavelengths longer than 700~nm and these
774wavelengths contribute to heating the upper few tens of centimetres. The fraction of $Q_{sr}$ 
775that resides in these almost non-penetrative wavebands, $R$, is $\sim 58\%$ (specified
776through namelist parameter \np{rn\_abs}).  It is assumed to penetrate the ocean
777with a decreasing exponential profile, with an e-folding depth scale, $\xi_0$,
778of a few tens of centimetres (typically $\xi_0=0.35~m$ set as \np{rn\_si0} in the namtra\_qsr namelist).
779For shorter wavelengths (400-700~nm), the ocean is more transparent, and solar energy
780propagates to larger depths where it contributes to
781local heating.
782The way this second part of the solar energy penetrates into the ocean depends on
783which formulation is chosen. In the simple 2-waveband light penetration scheme  (\np{ln\_qsr\_2bd}=true)
784a chlorophyll-independent monochromatic formulation is chosen for the shorter wavelengths,
785leading to the following expression  \citep{Paulson1977}:
786\begin{equation} \label{Eq_traqsr_iradiance}
787I(z) = Q_{sr} \left[Re^{-z / \xi_0} + \left( 1-R\right) e^{-z / \xi_1} \right]
788\end{equation}
789where $\xi_1$ is the second extinction length scale associated with the shorter wavelengths. 
790It is usually chosen to be 23~m by setting the \np{rn\_si0} namelist parameter.
791The set of default values ($\xi_0$, $\xi_1$, $R$) corresponds to a Type I water in
792Jerlov's (1968) classification (oligotrophic waters).
793
794Such assumptions have been shown to provide a very crude and simplistic
795representation of observed light penetration profiles (\cite{Morel_JGR88}, see also
796Fig.\ref{Fig_traqsr_irradiance}). Light absorption in the ocean depends on
797particle concentration and is spectrally selective. \cite{Morel_JGR88} has shown
798that an accurate representation of light penetration can be provided by a 61 waveband
799formulation. Unfortunately, such a model is very computationally expensive.
800Thus, \cite{Lengaigne_al_CD07} have constructed a simplified version of this
801formulation in which visible light is split into three wavebands: blue (400-500 nm),
802green (500-600 nm) and red (600-700nm). For each wave-band, the chlorophyll-dependent
803attenuation coefficient is fitted to the coefficients computed from the full spectral model
804of \cite{Morel_JGR88} (as modified by \cite{Morel_Maritorena_JGR01}), assuming
805the same power-law relationship. As shown in Fig.\ref{Fig_traqsr_irradiance},
806this formulation, called RGB (Red-Green-Blue), reproduces quite closely
807the light penetration profiles predicted by the full spectal model, but with much greater
808computational efficiency. The 2-bands formulation does not reproduce the full model very well.
809
810The RGB formulation is used when \np{ln\_qsr\_rgb}=true. The RGB attenuation coefficients
811($i.e.$ the inverses of the extinction length scales) are tabulated over 61 nonuniform
812chlorophyll classes ranging from 0.01 to 10 g.Chl/L (see the routine \rou{trc\_oce\_rgb} 
813in \mdl{trc\_oce} module). Three types of chlorophyll can be chosen in the RGB formulation:
814(1) a constant 0.05 g.Chl/L value everywhere (\np{nn\_chdta}=0) ; (2) an observed
815time varying chlorophyll (\np{nn\_chdta}=1) ; (3) simulated time varying chlorophyll
816by TOP biogeochemical model (\np{ln\_qsr\_bio}=true). In the latter case, the RGB
817formulation is used to calculate both the phytoplankton light limitation in PISCES
818or LOBSTER and the oceanic heating rate.
819
820The trend in \eqref{Eq_tra_qsr} associated with the penetration of the solar radiation
821is added to the temperature trend, and the surface heat flux is modified in routine \mdl{traqsr}.
822
823When the $z$-coordinate is preferred to the $s$-coordinate, the depth of $w-$levels does
824not significantly vary with location. The level at which the light has been totally
825absorbed ($i.e.$ it is less than the computer precision) is computed once,
826and the trend associated with the penetration of the solar radiation is only added down to that level.
827Finally, note that when the ocean is shallow ($<$ 200~m), part of the
828solar radiation can reach the ocean floor. In this case, we have
829chosen that all remaining radiation is absorbed in the last ocean
830level ($i.e.$ $I$ is masked).
831
832%>>>>>>>>>>>>>>>>>>>>>>>>>>>>
833\begin{figure}[!t]     \begin{center}
834\includegraphics[width=1.0\textwidth]{./TexFiles/Figures/Fig_TRA_Irradiance.pdf}
835\caption{    \label{Fig_traqsr_irradiance}
836Penetration profile of the downward solar irradiance calculated by four models.
837Two waveband chlorophyll-independent formulation (blue), a chlorophyll-dependent
838monochromatic formulation (green), 4 waveband RGB formulation (red),
83961 waveband Morel (1988) formulation (black) for a chlorophyll concentration of
840(a) Chl=0.05 mg/m$^3$ and (b) Chl=0.5 mg/m$^3$. From \citet{Lengaigne_al_CD07}.}
841\end{center}   \end{figure}
842%>>>>>>>>>>>>>>>>>>>>>>>>>>>>
843
844% -------------------------------------------------------------------------------------------------------------
845%        Bottom Boundary Condition
846% -------------------------------------------------------------------------------------------------------------
847\subsection   [Bottom Boundary Condition (\textit{trabbc})]
848         {Bottom Boundary Condition (\mdl{trabbc})}
849\label{TRA_bbc}
850%--------------------------------------------nambbc--------------------------------------------------------
851\namdisplay{namtra_bbc}
852%--------------------------------------------------------------------------------------------------------------
853%>>>>>>>>>>>>>>>>>>>>>>>>>>>>
854\begin{figure}[!t]     \begin{center}
855\includegraphics[width=1.0\textwidth]{./TexFiles/Figures/Fig_TRA_geoth.pdf}
856\caption{   \label{Fig_geothermal}
857Geothermal Heat flux (in $mW.m^{-2}$) used by \cite{Emile-Geay_Madec_OS09}.
858It is inferred from the age of the sea floor and the formulae of \citet{Stein_Stein_Nat92}.}
859\end{center}   \end{figure}
860%>>>>>>>>>>>>>>>>>>>>>>>>>>>>
861
862Usually it is assumed that there is no exchange of heat or salt through
863the ocean bottom, $i.e.$ a no flux boundary condition is applied on active
864tracers at the bottom. This is the default option in \NEMO, and it is
865implemented using the masking technique. However, there is a
866non-zero heat flux across the seafloor that is associated with solid
867earth cooling. This flux is weak compared to surface fluxes (a mean
868global value of $\sim0.1\;W/m^2$ \citep{Stein_Stein_Nat92}), but it warms
869systematically the ocean and acts on the densest water masses.
870Taking this flux into account in a global ocean model increases
871the deepest overturning cell ($i.e.$ the one associated with the Antarctic
872Bottom Water) by a few Sverdrups  \citep{Emile-Geay_Madec_OS09}.
873
874Options are defined through the  \ngn{namtra\_bbc} namelist variables.
875The presence of geothermal heating is controlled by setting the namelist
876parameter  \np{ln\_trabbc} to true. Then, when \np{nn\_geoflx} is set to 1,
877a constant geothermal heating is introduced whose value is given by the
878\np{nn\_geoflx\_cst}, which is also a namelist parameter.
879When  \np{nn\_geoflx} is set to 2, a spatially varying geothermal heat flux is
880introduced which is provided in the \ifile{geothermal\_heating} NetCDF file
881(Fig.\ref{Fig_geothermal}) \citep{Emile-Geay_Madec_OS09}.
882
883% ================================================================
884% Bottom Boundary Layer
885% ================================================================
886\section  [Bottom Boundary Layer (\mdl{trabbl} - \key{trabbl})]
887      {Bottom Boundary Layer (\mdl{trabbl} - \key{trabbl})}
888\label{TRA_bbl}
889%--------------------------------------------nambbl---------------------------------------------------------
890\namdisplay{nambbl}
891%--------------------------------------------------------------------------------------------------------------
892
893Options are defined through the  \ngn{nambbl} namelist variables.
894In a $z$-coordinate configuration, the bottom topography is represented by a
895series of discrete steps. This is not adequate to represent gravity driven
896downslope flows. Such flows arise either downstream of sills such as the Strait of
897Gibraltar or Denmark Strait, where dense water formed in marginal seas flows
898into a basin filled with less dense water, or along the continental slope when dense
899water masses are formed on a continental shelf. The amount of entrainment
900that occurs in these gravity plumes is critical in determining the density
901and volume flux of the densest waters of the ocean, such as Antarctic Bottom Water,
902or North Atlantic Deep Water. $z$-coordinate models tend to overestimate the
903entrainment, because the gravity flow is mixed vertically by convection
904as it goes ''downstairs'' following the step topography, sometimes over a thickness
905much larger than the thickness of the observed gravity plume. A similar problem
906occurs in the $s$-coordinate when the thickness of the bottom level varies rapidly
907downstream of a sill \citep{Willebrand_al_PO01}, and the thickness
908of the plume is not resolved.
909
910The idea of the bottom boundary layer (BBL) parameterisation, first introduced by
911\citet{Beckmann_Doscher1997}, is to allow a direct communication between
912two adjacent bottom cells at different levels, whenever the densest water is
913located above the less dense water. The communication can be by a diffusive flux
914(diffusive BBL), an advective flux (advective BBL), or both. In the current
915implementation of the BBL, only the tracers are modified, not the velocities.
916Furthermore, it only connects ocean bottom cells, and therefore does not include
917all the improvements introduced by \citet{Campin_Goosse_Tel99}.
918
919% -------------------------------------------------------------------------------------------------------------
920%        Diffusive BBL
921% -------------------------------------------------------------------------------------------------------------
922\subsection{Diffusive Bottom Boundary layer (\np{nn\_bbl\_ldf}=1)}
923\label{TRA_bbl_diff}
924
925When applying sigma-diffusion (\key{trabbl} defined and \np{nn\_bbl\_ldf} set to 1),
926the diffusive flux between two adjacent cells at the ocean floor is given by
927\begin{equation} \label{Eq_tra_bbl_diff}
928{\rm {\bf F}}_\sigma=A_l^\sigma \; \nabla_\sigma T
929\end{equation} 
930with $\nabla_\sigma$ the lateral gradient operator taken between bottom cells,
931and  $A_l^\sigma$ the lateral diffusivity in the BBL. Following \citet{Beckmann_Doscher1997},
932the latter is prescribed with a spatial dependence, $i.e.$ in the conditional form
933\begin{equation} \label{Eq_tra_bbl_coef}
934A_l^\sigma (i,j,t)=\left\{ {\begin{array}{l}
935 A_{bbl}  \quad \quad   \mbox{if}  \quad   \nabla_\sigma \rho  \cdot  \nabla H<0 \\ 
936 \\
937 0\quad \quad \;\,\mbox{otherwise} \\ 
938 \end{array}} \right.
939\end{equation} 
940where $A_{bbl}$ is the BBL diffusivity coefficient, given by the namelist
941parameter \np{rn\_ahtbbl} and usually set to a value much larger
942than the one used for lateral mixing in the open ocean. The constraint in \eqref{Eq_tra_bbl_coef} 
943implies that sigma-like diffusion only occurs when the density above the sea floor, at the top of
944the slope, is larger than in the deeper ocean (see green arrow in Fig.\ref{Fig_bbl}).
945In practice, this constraint is applied separately in the two horizontal directions,
946and the density gradient in \eqref{Eq_tra_bbl_coef} is evaluated with the log gradient formulation:
947\begin{equation} \label{Eq_tra_bbl_Drho}
948   \nabla_\sigma \rho / \rho = \alpha \,\nabla_\sigma T + \beta   \,\nabla_\sigma S
949\end{equation} 
950where $\rho$, $\alpha$ and $\beta$ are functions of $\overline{T}^\sigma$,
951$\overline{S}^\sigma$ and $\overline{H}^\sigma$, the along bottom mean temperature,
952salinity and depth, respectively.
953
954% -------------------------------------------------------------------------------------------------------------
955%        Advective BBL
956% -------------------------------------------------------------------------------------------------------------
957\subsection   {Advective Bottom Boundary Layer  (\np{nn\_bbl\_adv}= 1 or 2)}
958\label{TRA_bbl_adv}
959
960\sgacomment{"downsloping flow" has been replaced by "downslope flow" in the following
961if this is not what is meant then "downwards sloping flow" is also a possibility"}
962
963%>>>>>>>>>>>>>>>>>>>>>>>>>>>>
964\begin{figure}[!t]   \begin{center}
965\includegraphics[width=0.7\textwidth]{./TexFiles/Figures/Fig_BBL_adv.pdf}
966\caption{   \label{Fig_bbl} 
967Advective/diffusive Bottom Boundary Layer. The BBL parameterisation is
968activated when $\rho^i_{kup}$ is larger than $\rho^{i+1}_{kdnw}$.
969Red arrows indicate the additional overturning circulation due to the advective BBL.
970The transport of the downslope flow is defined either as the transport of the bottom
971ocean cell (black arrow), or as a function of the along slope density gradient.
972The green arrow indicates the diffusive BBL flux directly connecting $kup$ and $kdwn$
973ocean bottom cells.
974connection}
975\end{center}   \end{figure}
976%>>>>>>>>>>>>>>>>>>>>>>>>>>>>
977
978
979%!!      nn_bbl_adv = 1   use of the ocean velocity as bbl velocity
980%!!      nn_bbl_adv = 2   follow Campin and Goosse (1999) implentation
981%!!        i.e. transport proportional to the along-slope density gradient
982
983%%%gmcomment   :  this section has to be really written
984
985When applying an advective BBL (\np{nn\_bbl\_adv} = 1 or 2), an overturning
986circulation is added which connects two adjacent bottom grid-points only if dense
987water overlies less dense water on the slope. The density difference causes dense
988water to move down the slope.
989
990\np{nn\_bbl\_adv} = 1 : the downslope velocity is chosen to be the Eulerian
991ocean velocity just above the topographic step (see black arrow in Fig.\ref{Fig_bbl})
992\citep{Beckmann_Doscher1997}. It is a \textit{conditional advection}, that is, advection
993is allowed only if dense water overlies less dense water on the slope ($i.e.$ 
994$\nabla_\sigma \rho  \cdot  \nabla H<0$) and if the velocity is directed towards
995greater depth ($i.e.$ $\vect{U}  \cdot  \nabla H>0$).
996
997\np{nn\_bbl\_adv} = 2 : the downslope velocity is chosen to be proportional to $\Delta \rho$,
998the density difference between the higher cell and lower cell densities \citep{Campin_Goosse_Tel99}.
999The advection is allowed only  if dense water overlies less dense water on the slope ($i.e.$ 
1000$\nabla_\sigma \rho  \cdot  \nabla H<0$). For example, the resulting transport of the
1001downslope flow, here in the $i$-direction (Fig.\ref{Fig_bbl}), is simply given by the
1002following expression:
1003\begin{equation} \label{Eq_bbl_Utr}
1004 u^{tr}_{bbl} = \gamma \, g \frac{\Delta \rho}{\rho_o}  e_{1u} \; min \left( {e_{3u}}_{kup},{e_{3u}}_{kdwn} \right)
1005\end{equation}
1006where $\gamma$, expressed in seconds, is the coefficient of proportionality
1007provided as \np{rn\_gambbl}, a namelist parameter, and \textit{kup} and \textit{kdwn} 
1008are the vertical index of the higher and lower cells, respectively.
1009The parameter $\gamma$ should take a different value for each bathymetric
1010step, but for simplicity, and because no direct estimation of this parameter is
1011available, a uniform value has been assumed. The possible values for $\gamma$ 
1012range between 1 and $10~s$ \citep{Campin_Goosse_Tel99}
1013
1014Scalar properties are advected by this additional transport $( u^{tr}_{bbl}, v^{tr}_{bbl} )$ 
1015using the upwind scheme. Such a diffusive advective scheme has been chosen
1016to mimic the entrainment between the downslope plume and the surrounding
1017water at intermediate depths. The entrainment is replaced by the vertical mixing
1018implicit in the advection scheme. Let us consider as an example the
1019case displayed in Fig.\ref{Fig_bbl} where the density at level $(i,kup)$ is
1020larger than the one at level $(i,kdwn)$. The advective BBL scheme
1021modifies the tracer time tendency of the ocean cells near the
1022topographic step by the downslope flow \eqref{Eq_bbl_dw},
1023the horizontal \eqref{Eq_bbl_hor}  and the upward \eqref{Eq_bbl_up} 
1024return flows as follows:
1025\begin{align} 
1026\partial_t T^{do}_{kdw} &\equiv \partial_t T^{do}_{kdw}
1027                                     +  \frac{u^{tr}_{bbl}}{{b_t}^{do}_{kdw}}  \left( T^{sh}_{kup} - T^{do}_{kdw} \right\label{Eq_bbl_dw} \\
1028%
1029\partial_t T^{sh}_{kup} &\equiv \partial_t T^{sh}_{kup} 
1030               + \frac{u^{tr}_{bbl}}{{b_t}^{sh}_{kup}}   \left( T^{do}_{kup} - T^{sh}_{kup} \right)   \label{Eq_bbl_hor} \\
1031%
1032\intertext{and for $k =kdw-1,\;..., \; kup$ :} 
1033%
1034\partial_t T^{do}_{k} &\equiv \partial_t S^{do}_{k}
1035               + \frac{u^{tr}_{bbl}}{{b_t}^{do}_{k}}   \left( T^{do}_{k+1} - T^{sh}_{k} \right)   \label{Eq_bbl_up}
1036\end{align}
1037where $b_t$ is the $T$-cell volume.
1038
1039Note that the BBL transport, $( u^{tr}_{bbl}, v^{tr}_{bbl} )$, is available in
1040the model outputs. It has to be used to compute the effective velocity
1041as well as the effective overturning circulation.
1042
1043% ================================================================
1044% Tracer damping
1045% ================================================================
1046\section  [Tracer damping (\textit{tradmp})]
1047      {Tracer damping (\mdl{tradmp})}
1048\label{TRA_dmp}
1049%--------------------------------------------namtra_dmp-------------------------------------------------
1050\namdisplay{namtra_dmp}
1051%--------------------------------------------------------------------------------------------------------------
1052
1053In some applications it can be useful to add a Newtonian damping term
1054into the temperature and salinity equations:
1055\begin{equation} \label{Eq_tra_dmp}
1056\begin{split}
1057 \frac{\partial T}{\partial t}=\;\cdots \;-\gamma \,\left( {T-T_o } \right\\
1058 \frac{\partial S}{\partial t}=\;\cdots \;-\gamma \,\left( {S-S_o } \right)
1059 \end{split}
1060 \end{equation} 
1061where $\gamma$ is the inverse of a time scale, and $T_o$ and $S_o$ 
1062are given temperature and salinity fields (usually a climatology).
1063Options are defined through the  \ngn{namtra\_dmp} namelist variables.
1064The restoring term is added when the namelist parameter \np{ln\_tradmp} is set to true.
1065It also requires that both \np{ln\_tsd\_init} and \np{ln\_tsd\_tradmp} are set to true
1066in \textit{namtsd} namelist as well as \np{sn\_tem} and \np{sn\_sal} structures are
1067correctly set  ($i.e.$ that $T_o$ and $S_o$ are provided in input files and read
1068using \mdl{fldread}, see \S\ref{SBC_fldread}).
1069The restoring coefficient $\gamma$ is a three-dimensional array read in during the \rou{tra\_dmp\_init} routine. The file name is specified by the namelist variable \np{cn\_resto}. The DMP\_TOOLS tool is provided to allow users to generate the netcdf file.
1070
1071The two main cases in which \eqref{Eq_tra_dmp} is used are \textit{(a)} 
1072the specification of the boundary conditions along artificial walls of a
1073limited domain basin and \textit{(b)} the computation of the velocity
1074field associated with a given $T$-$S$ field (for example to build the
1075initial state of a prognostic simulation, or to use the resulting velocity
1076field for a passive tracer study). The first case applies to regional
1077models that have artificial walls instead of open boundaries.
1078In the vicinity of these walls, $\gamma$ takes large values (equivalent to
1079a time scale of a few days) whereas it is zero in the interior of the
1080model domain. The second case corresponds to the use of the robust
1081diagnostic method \citep{Sarmiento1982}. It allows us to find the velocity
1082field consistent with the model dynamics whilst having a $T$, $S$ field
1083close to a given climatological field ($T_o$, $S_o$).
1084
1085The robust diagnostic method is very efficient in preventing temperature
1086drift in intermediate waters but it produces artificial sources of heat and salt
1087within the ocean. It also has undesirable effects on the ocean convection.
1088It tends to prevent deep convection and subsequent deep-water formation,
1089by stabilising the water column too much.
1090
1091The namelist parameter \np{nn\_zdmp} sets whether the damping should be applied in the whole water column or only below the mixed layer (defined either on a density or $S_o$ criterion). It is common to set the damping to zero in the mixed layer as the adjustment time scale is short here \citep{Madec_al_JPO96}.
1092
1093\subsection[DMP\_TOOLS]{Generating resto.nc using DMP\_TOOLS}
1094
1095DMP\_TOOLS can be used to generate a netcdf file containing the restoration coefficient $\gamma$. Note that in order to maintain bit comparison with previous NEMO versions DMP\_TOOLS must be compiled and run on the same machine as the NEMO model. A mesh\_mask.nc file for the model configuration is required as an input. This can be generated by carrying out a short model run with the namelist parameter \np{nn\_msh} set to 1. The namelist parameter \np{ln\_tradmp} will also need to be set to .false. for this to work. The \nl{nam\_dmp\_create} namelist in the DMP\_TOOLS directory is used to specify options for the restoration coefficient.
1096
1097%--------------------------------------------nam_dmp_create-------------------------------------------------
1098\namdisplay{nam_dmp_create}
1099%-------------------------------------------------------------------------------------------------------
1100
1101\np{cp\_cfg}, \np{cp\_cpz}, \np{jp\_cfg} and \np{jperio} specify the model configuration being used and should be the same as specified in \nl{namcfg}. The variable \nl{lzoom} is used to specify that the damping is being used as in case \textit{a} above to provide boundary conditions to a zoom configuration. In the case of the arctic or antarctic zoom configurations this includes some specific treatment. Otherwise damping is applied to the 6 grid points along the ocean boundaries. The open boundaries are specified by the variables \np{lzoom\_n}, \np{lzoom\_e}, \np{lzoom\_s}, \np{lzoom\_w} in the \nl{nam\_zoom\_dmp} name list.
1102
1103The remaining switch namelist variables determine the spatial variation of the restoration coefficient in non-zoom configurations. \np{ln\_full\_field} specifies that newtonian damping should be applied to the whole model domain. \np{ln\_med\_red\_seas} specifies grid specific restoration coefficients in the Mediterranean Sea for the ORCA4, ORCA2 and ORCA05 configurations. If \np{ln\_old\_31\_lev\_code} is set then the depth variation of the coeffients will be specified as a function of the model number. This option is included to allow backwards compatability of the ORCA2 reference configurations with previous model versions. \np{ln\_coast} specifies that the restoration coefficient should be reduced near to coastlines. This option only has an effect if \np{ln\_full\_field} is true. \np{ln\_zero\_top\_layer} specifies that the restoration coefficient should be zero in the surface layer. Finally \np{ln\_custom} specifies that the custom module will be called. This module is contained in the file custom.F90 and can be edited by users. For example damping could be applied in a specific region.
1104
1105The restoration coefficient can be set to zero in equatorial regions by specifying a positive value of \np{nn\_hdmp}. Equatorward of this latitude the restoration coefficient will be zero with a smooth transition to the full values of a 10$^{\circ}$ latitud band. This is often used because of the short adjustment time scale in the equatorial region \citep{Reverdin1991, Fujio1991, Marti_PhD92}. The time scale associated with the damping depends on the depth as a hyperbolic tangent, with \np{rn\_surf} as surface value, \np{rn\_bot} as bottom value and a transition depth of \np{rn\_dep}
1106
1107% ================================================================
1108% Tracer time evolution
1109% ================================================================
1110\section  [Tracer time evolution (\textit{tranxt})]
1111      {Tracer time evolution (\mdl{tranxt})}
1112\label{TRA_nxt}
1113%--------------------------------------------namdom-----------------------------------------------------
1114\namdisplay{namdom}
1115%--------------------------------------------------------------------------------------------------------------
1116
1117Options are defined through the  \ngn{namdom} namelist variables.
1118The general framework for tracer time stepping is a modified leap-frog scheme
1119\citep{Leclair_Madec_OM09}, $i.e.$ a three level centred time scheme associated
1120with a Asselin time filter (cf. \S\ref{STP_mLF}):
1121\begin{equation} \label{Eq_tra_nxt}
1122\begin{aligned}
1123(e_{3t}T)^{t+\rdt} &= (e_{3t}T)_f^{t-\rdt} &+ 2 \, \rdt  \,e_{3t}^t\ \text{RHS}^t & \\
1124\\
1125(e_{3t}T)_f^\;\ \quad &= (e_{3t}T)^t \;\quad 
1126                                    &+\gamma \,\left[ {(e_{3t}T)_f^{t-\rdt} -2(e_{3t}T)^t+(e_{3t}T)^{t+\rdt}} \right] &  \\
1127                                 & &- \gamma\,\rdt \, \left[ Q^{t+\rdt/2} -  Q^{t-\rdt/2} \right]  &                     
1128\end{aligned}
1129\end{equation} 
1130where RHS is the right hand side of the temperature equation,
1131the subscript $f$ denotes filtered values, $\gamma$ is the Asselin coefficient,
1132and $S$ is the total forcing applied on $T$ ($i.e.$ fluxes plus content in mass exchanges).
1133$\gamma$ is initialized as \np{rn\_atfp} (\textbf{namelist} parameter).
1134Its default value is \np{rn\_atfp}=$10^{-3}$. Note that the forcing correction term in the filter
1135is not applied in linear free surface (\jp{lk\_vvl}=false) (see \S\ref{TRA_sbc}.
1136Not also that in constant volume case, the time stepping is performed on $T$,
1137not on its content, $e_{3t}T$.
1138
1139When the vertical mixing is solved implicitly, the update of the \textit{next} tracer
1140fields is done in module \mdl{trazdf}. In this case only the swapping of arrays
1141and the Asselin filtering is done in the \mdl{tranxt} module.
1142
1143In order to prepare for the computation of the \textit{next} time step,
1144a swap of tracer arrays is performed: $T^{t-\rdt} = T^t$ and $T^t = T_f$.
1145
1146% ================================================================
1147% Equation of State (eosbn2)
1148% ================================================================
1149\section  [Equation of State (\textit{eosbn2}) ]
1150      {Equation of State (\mdl{eosbn2}) }
1151\label{TRA_eosbn2}
1152%--------------------------------------------nameos-----------------------------------------------------
1153\namdisplay{nameos}
1154%--------------------------------------------------------------------------------------------------------------
1155
1156% -------------------------------------------------------------------------------------------------------------
1157%        Equation of State
1158% -------------------------------------------------------------------------------------------------------------
1159\subsection{Equation Of Seawater (\np{nn\_eos} = -1, 0, or 1)}
1160\label{TRA_eos}
1161
1162The Equation Of Seawater (EOS) is an empirical nonlinear thermodynamic relationship
1163linking seawater density, $\rho$, to a number of state variables,
1164most typically temperature, salinity and pressure.
1165Because density gradients control the pressure gradient force through the hydrostatic balance,
1166the equation of state provides a fundamental bridge between the distribution of active tracers
1167and the fluid dynamics. Nonlinearities of the EOS are of major importance, in particular
1168influencing the circulation through determination of the static stability below the mixed layer,
1169thus controlling rates of exchange between the atmosphere  and the ocean interior \citep{Roquet_JPO2015}.
1170Therefore an accurate EOS based on either the 1980 equation of state (EOS-80, \cite{UNESCO1983})
1171or TEOS-10 \citep{TEOS10} standards should be used anytime a simulation of the real
1172ocean circulation is attempted \citep{Roquet_JPO2015}.
1173The use of TEOS-10 is highly recommended because
1174\textit{(i)} it is the new official EOS,
1175\textit{(ii)} it is more accurate, being based on an updated database of laboratory measurements, and
1176\textit{(iii)} it uses Conservative Temperature and Absolute Salinity (instead of potential temperature
1177and practical salinity for EOS-980, both variables being more suitable for use as model variables
1178\citep{TEOS10, Graham_McDougall_JPO13}.
1179EOS-80 is an obsolescent feature of the NEMO system, kept only for backward compatibility.
1180For process studies, it is often convenient to use an approximation of the EOS. To that purposed,
1181a simplified EOS (S-EOS) inspired by \citet{Vallis06} is also available.
1182
1183In the computer code, a density anomaly, $d_a= \rho / \rho_o - 1$,
1184is computed, with $\rho_o$ a reference density. Called \textit{rau0} 
1185in the code, $\rho_o$ is set in \mdl{phycst} to a value of $1,026~Kg/m^3$.
1186This is a sensible choice for the reference density used in a Boussinesq ocean
1187climate model, as, with the exception of only a small percentage of the ocean,
1188density in the World Ocean varies by no more than 2$\%$ from that value \citep{Gill1982}.
1189
1190Options are defined through the  \ngn{nameos} namelist variables, and in particular \np{nn\_eos} 
1191which controls the EOS used (=-1 for TEOS10 ; =0 for EOS-80 ; =1 for S-EOS).
1192\begin{description}
1193
1194\item[\np{nn\_eos}$=-1$] the polyTEOS10-bsq equation of seawater \citep{Roquet_OM2015} is used. 
1195The accuracy of this approximation is comparable to the TEOS-10 rational function approximation,
1196but it is optimized for a boussinesq fluid and the polynomial expressions have simpler
1197and more computationally efficient expressions for their derived quantities
1198which make them more adapted for use in ocean models.
1199Note that a slightly higher precision polynomial form is now used replacement of the TEOS-10
1200rational function approximation for hydrographic data analysis  \citep{TEOS10}.
1201A key point is that conservative state variables are used:
1202Absolute Salinity (unit: g/kg, notation: $S_A$) and Conservative Temperature (unit: $\degres C$, notation: $\Theta$).
1203The pressure in decibars is approximated by the depth in meters.
1204With TEOS10, the specific heat capacity of sea water, $C_p$, is a constant. It is set to
1205$C_p=3991.86795711963~J\,Kg^{-1}\,\degres K^{-1}$, according to \citet{TEOS10}.
1206
1207Choosing polyTEOS10-bsq implies that the state variables used by the model are
1208$\Theta$ and $S_A$. In particular, the initial state deined by the user have to be given as
1209\textit{Conservative} Temperature and \textit{Absolute} Salinity.
1210In addition, setting \np{ln\_useCT} to \textit{true} convert the Conservative SST to potential SST
1211prior to either computing the air-sea and ice-sea fluxes (forced mode)
1212or sending the SST field to the atmosphere (coupled mode).
1213
1214\item[\np{nn\_eos}$=0$] the polyEOS80-bsq equation of seawater is used.
1215It takes the same polynomial form as the polyTEOS10, but the coefficients have been optimized
1216to accurately fit EOS80 (Roquet, personal comm.). The state variables used in both the EOS80
1217and the ocean model are:
1218the Practical Salinity ((unit: psu, notation: $S_p$)) and Potential Temperature (unit: $\degres C$, notation: $\theta$).
1219The pressure in decibars is approximated by the depth in meters. 
1220With thsi EOS, the specific heat capacity of sea water, $C_p$, is a function of temperature,
1221salinity and pressure \citep{UNESCO1983}. Nevertheless, a severe assumption is made in order to
1222have a heat content ($C_p T_p$) which is conserved by the model: $C_p$ is set to a constant
1223value, the TEOS10 value.
1224 
1225\item[\np{nn\_eos}$=1$] a simplified EOS (S-EOS) inspired by \citet{Vallis06} is chosen,
1226the coefficients of which has been optimized to fit the behavior of TEOS10 (Roquet, personal comm.)
1227(see also \citet{Roquet_JPO2015}). It provides a simplistic linear representation of both
1228cabbeling and thermobaricity effects which is enough for a proper treatment of the EOS
1229in theoretical studies \citep{Roquet_JPO2015}.
1230With such an equation of state there is no longer a distinction between
1231\textit{conservative} and \textit{potential} temperature, as well as between \textit{absolute} 
1232and \textit{practical} salinity.
1233S-EOS takes the following expression:
1234\begin{equation} \label{Eq_tra_S-EOS}
1235\begin{split}
1236  d_a(T,S,z)  =  ( & - a_0 \; ( 1 + 0.5 \; \lambda_1 \; T_a + \mu_1 \; z ) * T_\\
1237                                & + b_0 \; ( 1 - 0.5 \; \lambda_2 \; S_a - \mu_2 \; z ) * S_\\
1238                                & - \nu \; T_a \; S_a \;  ) \; / \; \rho_o                     \\
1239  with \ \  T_a = T-10  \; ;  & \;  S_a = S-35  \; ;\;  \rho_o = 1026~Kg/m^3
1240\end{split}
1241\end{equation} 
1242where the computer name of the coefficients as well as their standard value are given in \ref{Tab_SEOS}.
1243In fact, when choosing S-EOS, various approximation of EOS can be specified simply by changing
1244the associated coefficients.
1245Setting to zero the two thermobaric coefficients ($\mu_1$, $\mu_2$) remove thermobaric effect from S-EOS.
1246setting to zero the three cabbeling coefficients ($\lambda_1$, $\lambda_2$, $\nu$) remove cabbeling effect from S-EOS.
1247Keeping non-zero value to $a_0$ and $b_0$ provide a linear EOS function of T and S.
1248
1249\end{description}
1250
1251
1252%>>>>>>>>>>>>>>>>>>>>>>>>>>>>
1253\begin{table}[!tb]
1254\begin{center} \begin{tabular}{|p{26pt}|p{72pt}|p{56pt}|p{136pt}|}
1255\hline
1256coeff.   & computer name   & S-EOS     &  description                      \\ \hline
1257$a_0$       & \np{rn\_a0}     & 1.6550 $10^{-1}$ &  linear thermal expansion coeff.    \\ \hline
1258$b_0$       & \np{rn\_b0}     & 7.6554 $10^{-1}$ &  linear haline  expansion coeff.    \\ \hline
1259$\lambda_1$ & \np{rn\_lambda1}& 5.9520 $10^{-2}$ &  cabbeling coeff. in $T^2$          \\ \hline
1260$\lambda_2$ & \np{rn\_lambda2}& 5.4914 $10^{-4}$ &  cabbeling coeff. in $S^2$       \\ \hline
1261$\nu$       & \np{rn\_nu}     & 2.4341 $10^{-3}$ &  cabbeling coeff. in $T \, S$       \\ \hline
1262$\mu_1$     & \np{rn\_mu1}    & 1.4970 $10^{-4}$ &  thermobaric coeff. in T         \\ \hline
1263$\mu_2$     & \np{rn\_mu2}    & 1.1090 $10^{-5}$ &  thermobaric coeff. in S            \\ \hline
1264\end{tabular}
1265\caption{ \label{Tab_SEOS}
1266Standard value of S-EOS coefficients. }
1267\end{center}
1268\end{table}
1269%>>>>>>>>>>>>>>>>>>>>>>>>>>>>
1270
1271
1272% -------------------------------------------------------------------------------------------------------------
1273%        Brunt-Vais\"{a}l\"{a} Frequency
1274% -------------------------------------------------------------------------------------------------------------
1275\subsection{Brunt-Vais\"{a}l\"{a} Frequency (\np{nn\_eos} = 0, 1 or 2)}
1276\label{TRA_bn2}
1277
1278An accurate computation of the ocean stability (i.e. of $N$, the brunt-Vais\"{a}l\"{a}
1279 frequency) is of paramount importance as determine the ocean stratification and
1280 is used in several ocean parameterisations (namely TKE, GLS, Richardson number dependent
1281 vertical diffusion, enhanced vertical diffusion, non-penetrative convection, tidal mixing
1282 parameterisation, iso-neutral diffusion). In particular, $N^2$ has to be computed at the local pressure
1283 (pressure in decibar being approximated by the depth in meters). The expression for $N^2$ 
1284 is given by:
1285\begin{equation} \label{Eq_tra_bn2}
1286N^2 = \frac{g}{e_{3w}} \left(   \beta \;\delta_{k+1/2}[S] - \alpha \;\delta_{k+1/2}[T]   \right)
1287\end{equation} 
1288where $(T,S) = (\Theta, S_A)$ for TEOS10, $= (\theta, S_p)$ for TEOS-80, or $=(T,S)$ for S-EOS,
1289and, $\alpha$ and $\beta$ are the thermal and haline expansion coefficients.
1290The coefficients are a polynomial function of temperature, salinity and depth which expression
1291depends on the chosen EOS. They are computed through \textit{eos\_rab}, a \textsc{Fortran} 
1292function that can be found in \mdl{eosbn2}.
1293
1294% -------------------------------------------------------------------------------------------------------------
1295%        Freezing Point of Seawater
1296% -------------------------------------------------------------------------------------------------------------
1297\subsection   [Freezing Point of Seawater]
1298         {Freezing Point of Seawater}
1299\label{TRA_fzp}
1300
1301The freezing point of seawater is a function of salinity and pressure \citep{UNESCO1983}:
1302\begin{equation} \label{Eq_tra_eos_fzp}
1303   \begin{split}
1304T_f (S,p) = \left( -0.0575 + 1.710523 \;10^{-3} \, \sqrt{S} 
1305                       -  2.154996 \;10^{-4} \,\right) \ S    \\
1306               - 7.53\,10^{-3} \ \ p
1307   \end{split}
1308\end{equation}
1309
1310\eqref{Eq_tra_eos_fzp} is only used to compute the potential freezing point of
1311sea water ($i.e.$ referenced to the surface $p=0$), thus the pressure dependent
1312terms in \eqref{Eq_tra_eos_fzp} (last term) have been dropped. The freezing
1313point is computed through \textit{eos\_fzp}, a \textsc{Fortran} function that can be found
1314in \mdl{eosbn2}
1315
1316
1317% -------------------------------------------------------------------------------------------------------------
1318%        Potential Energy     
1319% -------------------------------------------------------------------------------------------------------------
1320%\subsection{Potential Energy anomalies}
1321%\label{TRA_bn2}
1322
1323%    =====>>>>> TO BE written
1324%
1325
1326
1327% ================================================================
1328% Horizontal Derivative in zps-coordinate
1329% ================================================================
1330\section  [Horizontal Derivative in \textit{zps}-coordinate (\textit{zpshde})]
1331      {Horizontal Derivative in \textit{zps}-coordinate (\mdl{zpshde})}
1332\label{TRA_zpshde}
1333
1334\gmcomment{STEVEN: to be consistent with earlier discussion of differencing and averaging operators, I've changed "derivative" to "difference" and "mean" to "average"}
1335
1336With partial bottom cells (\np{ln\_zps}=true), in general, tracers in horizontally
1337adjacent cells live at different depths. Horizontal gradients of tracers are needed
1338for horizontal diffusion (\mdl{traldf} module) and for the hydrostatic pressure
1339gradient (\mdl{dynhpg} module) to be active.
1340\gmcomment{STEVEN from gm : question: not sure of  what -to be active- means}
1341Before taking horizontal gradients between the tracers next to the bottom, a linear
1342interpolation in the vertical is used to approximate the deeper tracer as if it actually
1343lived at the depth of the shallower tracer point (Fig.~\ref{Fig_Partial_step_scheme}).
1344For example, for temperature in the $i$-direction the needed interpolated
1345temperature, $\widetilde{T}$, is:
1346
1347%>>>>>>>>>>>>>>>>>>>>>>>>>>>>
1348\begin{figure}[!p]    \begin{center}
1349\includegraphics[width=0.9\textwidth]{./TexFiles/Figures/Partial_step_scheme.pdf}
1350\caption{   \label{Fig_Partial_step_scheme} 
1351Discretisation of the horizontal difference and average of tracers in the $z$-partial
1352step coordinate (\np{ln\_zps}=true) in the case $( e3w_k^{i+1} - e3w_k^i  )>0$.
1353A linear interpolation is used to estimate $\widetilde{T}_k^{i+1}$, the tracer value
1354at the depth of the shallower tracer point of the two adjacent bottom $T$-points.
1355The horizontal difference is then given by: $\delta _{i+1/2} T_k=  \widetilde{T}_k^{\,i+1} -T_k^{\,i}$ 
1356and the average by: $\overline{T}_k^{\,i+1/2}= ( \widetilde{T}_k^{\,i+1/2} - T_k^{\,i} ) / 2$}
1357\end{center}   \end{figure}
1358%>>>>>>>>>>>>>>>>>>>>>>>>>>>>
1359\begin{equation*}
1360\widetilde{T}= \left\{  \begin{aligned} 
1361&T^{\,i+1}      -\frac{ \left( e_{3w}^{i+1} -e_{3w}^i \right)}{ e_{3w}^{i+1} }\;\delta _k T^{i+1} 
1362                        && \quad\text{if  $\ e_{3w}^{i+1} \geq e_{3w}^i$   }  \\
1363                              \\
1364&T^{\,i} \ \ \ \,+\frac{ \left( e_{3w}^{i+1} -e_{3w}^i \right) }{e_{3w}^i       }\;\delta _k T^{i+1}
1365                        && \quad\text{if  $\ e_{3w}^{i+1}    <   e_{3w}^i$   } 
1366            \end{aligned}   \right.
1367\end{equation*}
1368and the resulting forms for the horizontal difference and the horizontal average
1369value of $T$ at a $U$-point are:
1370\begin{equation} \label{Eq_zps_hde}
1371\begin{aligned}
1372 \delta _{i+1/2} T=  \begin{cases}
1373\ \ \ \widetilde {T}\quad\ -T^i     & \ \ \quad\quad\text{if  $\ e_{3w}^{i+1} \geq e_{3w}^i$ } \\
1374                              \\
1375\ \ \ T^{\,i+1}-\widetilde{T}    & \ \ \quad\quad\text{if  $\ e_{3w}^{i+1}    <   e_{3w}^i$   } 
1376                  \end{cases}     \\
1377\\
1378\overline {T}^{\,i+1/2} \ =   \begin{cases}
1379( \widetilde {T}\ \ \;\,-T^{\,i})    / 2  & \;\ \ \quad\text{if  $\ e_{3w}^{i+1} \geq e_{3w}^i$ } \\
1380                              \\
1381( T^{\,i+1}-\widetilde{T} ) / 2     & \;\ \ \quad\text{if  $\ e_{3w}^{i+1}    <   e_{3w}^i$   } 
1382            \end{cases}
1383\end{aligned}
1384\end{equation}
1385
1386The computation of horizontal derivative of tracers as well as of density is
1387performed once for all at each time step in \mdl{zpshde} module and stored
1388in shared arrays to be used when needed. It has to be emphasized that the
1389procedure used to compute the interpolated density, $\widetilde{\rho}$, is not
1390the same as that used for $T$ and $S$. Instead of forming a linear approximation
1391of density, we compute $\widetilde{\rho }$ from the interpolated values of $T$ 
1392and $S$, and the pressure at a $u$-point (in the equation of state pressure is
1393approximated by depth, see \S\ref{TRA_eos} ) :
1394\begin{equation} \label{Eq_zps_hde_rho}
1395\widetilde{\rho } = \rho ( {\widetilde{T},\widetilde {S},z_u })
1396\quad \text{where }\  z_u = \min \left( {z_T^{i+1} ,z_T^i } \right)
1397\end{equation} 
1398
1399This is a much better approximation as the variation of $\rho$ with depth (and
1400thus pressure) is highly non-linear with a true equation of state and thus is badly
1401approximated with a linear interpolation. This approximation is used to compute
1402both the horizontal pressure gradient (\S\ref{DYN_hpg}) and the slopes of neutral
1403surfaces (\S\ref{LDF_slp})
1404
1405Note that in almost all the advection schemes presented in this Chapter, both
1406averaging and differencing operators appear. Yet \eqref{Eq_zps_hde} has not
1407been used in these schemes: in contrast to diffusion and pressure gradient
1408computations, no correction for partial steps is applied for advection. The main
1409motivation is to preserve the domain averaged mean variance of the advected
1410field when using the $2^{nd}$ order centred scheme. Sensitivity of the advection
1411schemes to the way horizontal averages are performed in the vicinity of partial
1412cells should be further investigated in the near future.
1413%%%
1414\gmcomment{gm :   this last remark has to be done}
1415%%%
Note: See TracBrowser for help on using the repository browser.