MODULE domwri !!====================================================================== !! *** MODULE domwri *** !! Ocean initialization : write the ocean domain mesh file(s) !!====================================================================== !! History : OPA ! 1997-02 (G. Madec) Original code !! 8.1 ! 1999-11 (M. Imbard) NetCDF FORMAT with IOIPSL !! NEMO 1.0 ! 2002-08 (G. Madec) F90 and several file !! 3.0 ! 2008-01 (S. Masson) add dom_uniq !! 4.0 ! 2011-01 (A. R. Porter, STFC Daresbury) dynamical allocation !!---------------------------------------------------------------------- !!---------------------------------------------------------------------- !! dom_wri : create and write mesh and mask file(s) !! dom_uniq : !!---------------------------------------------------------------------- USE dom_oce ! ocean space and time domain USE in_out_manager ! I/O manager USE iom ! I/O library USE lbclnk ! lateral boundary conditions - mpp exchanges USE lib_mpp ! MPP library USE wrk_nemo ! Memory allocation USE timing ! Timing IMPLICIT NONE PRIVATE PUBLIC dom_wri ! routine called by inidom.F90 !! * Substitutions # include "vectopt_loop_substitute.h90" !!---------------------------------------------------------------------- !! NEMO/OPA 3.3 , NEMO Consortium (2010) !! $Id$ !! Software governed by the CeCILL licence (NEMOGCM/NEMO_CeCILL.txt) !!---------------------------------------------------------------------- CONTAINS SUBROUTINE dom_wri !!---------------------------------------------------------------------- !! *** ROUTINE dom_wri *** !! !! ** Purpose : Create the NetCDF file(s) which contain(s) all the !! ocean domain informations (mesh and mask arrays). This (these) !! file(s) is (are) used for visualisation (SAXO software) and !! diagnostic computation. !! !! ** Method : Write in a file all the arrays generated in routines !! domhgr, domzgr, and dommsk. Note: the file contain depends on !! the vertical coord. used (z-coord, partial steps, s-coord) !! MOD(nmsh, 3) = 1 : 'mesh_mask.nc' file !! = 2 : 'mesh.nc' and mask.nc' files !! = 0 : 'mesh_hgr.nc', 'mesh_zgr.nc' and !! 'mask.nc' files !! For huge size domain, use option 2 or 3 depending on your !! vertical coordinate. !! !! if nmsh <= 3: write full 3D arrays for e3[tuvw] and gdep[tuvw] !! if 3 < nmsh <= 6: write full 3D arrays for e3[tuvw] and 2D arrays !! corresponding to the depth of the bottom t- and w-points !! if 6 < nmsh <= 9: write 2D arrays corresponding to the depth and the !! thickness (e3[tw]_ps) of the bottom points !! !! ** output file : meshmask.nc : domain size, horizontal grid-point position, !! masks, depth and vertical scale factors !!---------------------------------------------------------------------- !! INTEGER :: inum0 ! temprary units for 'mesh_mask.nc' file INTEGER :: inum1 ! temprary units for 'mesh.nc' file INTEGER :: inum2 ! temprary units for 'mask.nc' file INTEGER :: inum3 ! temprary units for 'mesh_hgr.nc' file INTEGER :: inum4 ! temprary units for 'mesh_zgr.nc' file CHARACTER(len=21) :: clnam0 ! filename (mesh and mask informations) CHARACTER(len=21) :: clnam1 ! filename (mesh informations) CHARACTER(len=21) :: clnam2 ! filename (mask informations) CHARACTER(len=21) :: clnam3 ! filename (horizontal mesh informations) CHARACTER(len=21) :: clnam4 ! filename (vertical mesh informations) INTEGER :: ji, jj, jk ! dummy loop indices ! ! workspaces REAL(wp), POINTER, DIMENSION(:,: ) :: zprt, zprw REAL(wp), POINTER, DIMENSION(:,:,:) :: zdepu, zdepv !!---------------------------------------------------------------------- ! IF( nn_timing == 1 ) CALL timing_start('dom_wri') ! CALL wrk_alloc( jpi, jpj, zprt, zprw ) CALL wrk_alloc( jpi, jpj, jpk, zdepu, zdepv ) ! IF(lwp) WRITE(numout,*) IF(lwp) WRITE(numout,*) 'dom_wri : create NetCDF mesh and mask information file(s)' IF(lwp) WRITE(numout,*) '~~~~~~~' clnam0 = 'mesh_mask' ! filename (mesh and mask informations) clnam1 = 'mesh' ! filename (mesh informations) clnam2 = 'mask' ! filename (mask informations) clnam3 = 'mesh_hgr' ! filename (horizontal mesh informations) clnam4 = 'mesh_zgr' ! filename (vertical mesh informations) SELECT CASE ( MOD(nmsh, 3) ) ! ! ============================ CASE ( 1 ) ! create 'mesh_mask.nc' file ! ! ============================ CALL iom_open( TRIM(clnam0), inum0, ldwrt = .TRUE., kiolib = jprstlib ) inum2 = inum0 ! put all the informations inum3 = inum0 ! in unit inum0 inum4 = inum0 ! ! ============================ CASE ( 2 ) ! create 'mesh.nc' and ! ! 'mask.nc' files ! ! ============================ CALL iom_open( TRIM(clnam1), inum1, ldwrt = .TRUE., kiolib = jprstlib ) CALL iom_open( TRIM(clnam2), inum2, ldwrt = .TRUE., kiolib = jprstlib ) inum3 = inum1 ! put mesh informations inum4 = inum1 ! in unit inum1 ! ! ============================ CASE ( 0 ) ! create 'mesh_hgr.nc' ! ! 'mesh_zgr.nc' and ! ! 'mask.nc' files ! ! ============================ CALL iom_open( TRIM(clnam2), inum2, ldwrt = .TRUE., kiolib = jprstlib ) CALL iom_open( TRIM(clnam3), inum3, ldwrt = .TRUE., kiolib = jprstlib ) CALL iom_open( TRIM(clnam4), inum4, ldwrt = .TRUE., kiolib = jprstlib ) ! END SELECT ! ! masks (inum2) IF(nn_timing == 3) CALL timing_start('rst_put') CALL iom_rstput( 0, 0, inum2, 'tmask', tmask, ktype = jp_i1 ) ! ! land-sea mask CALL iom_rstput( 0, 0, inum2, 'umask', umask, ktype = jp_i1 ) CALL iom_rstput( 0, 0, inum2, 'vmask', vmask, ktype = jp_i1 ) CALL iom_rstput( 0, 0, inum2, 'fmask', fmask, ktype = jp_i1 ) IF(nn_timing == 3) CALL timing_stop('rst_put') CALL dom_uniq( zprw, 'T' ) DO jj = 1, jpj DO ji = 1, jpi jk=mikt(ji,jj) zprt(ji,jj) = tmask(ji,jj,jk) * zprw(ji,jj) ! ! unique point mask END DO END DO ! ! unique point mask IF(nn_timing == 3) CALL timing_start('rst_put') CALL iom_rstput( 0, 0, inum2, 'tmaskutil', zprt, ktype = jp_i1 ) IF(nn_timing == 3) CALL timing_stop('rst_put') CALL dom_uniq( zprw, 'U' ) DO jj = 1, jpj DO ji = 1, jpi jk=miku(ji,jj) zprt(ji,jj) = umask(ji,jj,jk) * zprw(ji,jj) ! ! unique point mask END DO END DO IF(nn_timing == 3) CALL timing_start('rst_put') CALL iom_rstput( 0, 0, inum2, 'umaskutil', zprt, ktype = jp_i1 ) IF(nn_timing == 3) CALL timing_stop('rst_put') CALL dom_uniq( zprw, 'V' ) DO jj = 1, jpj DO ji = 1, jpi jk=mikv(ji,jj) zprt(ji,jj) = vmask(ji,jj,jk) * zprw(ji,jj) ! ! unique point mask END DO END DO IF(nn_timing == 3) CALL timing_start('rst_put') CALL iom_rstput( 0, 0, inum2, 'vmaskutil', zprt, ktype = jp_i1 ) IF(nn_timing == 3) CALL timing_stop('rst_put') CALL dom_uniq( zprw, 'F' ) DO jj = 1, jpj DO ji = 1, jpi jk=mikf(ji,jj) zprt(ji,jj) = fmask(ji,jj,jk) * zprw(ji,jj) ! ! unique point mask END DO END DO IF(nn_timing == 3) CALL timing_start('rst_put') CALL iom_rstput( 0, 0, inum2, 'fmaskutil', zprt, ktype = jp_i1 ) ! ! horizontal mesh (inum3) CALL iom_rstput( 0, 0, inum3, 'glamt', glamt, ktype = jp_r4 ) ! ! latitude CALL iom_rstput( 0, 0, inum3, 'glamu', glamu, ktype = jp_r4 ) CALL iom_rstput( 0, 0, inum3, 'glamv', glamv, ktype = jp_r4 ) CALL iom_rstput( 0, 0, inum3, 'glamf', glamf, ktype = jp_r4 ) CALL iom_rstput( 0, 0, inum3, 'gphit', gphit, ktype = jp_r4 ) ! ! longitude CALL iom_rstput( 0, 0, inum3, 'gphiu', gphiu, ktype = jp_r4 ) CALL iom_rstput( 0, 0, inum3, 'gphiv', gphiv, ktype = jp_r4 ) CALL iom_rstput( 0, 0, inum3, 'gphif', gphif, ktype = jp_r4 ) CALL iom_rstput( 0, 0, inum3, 'e1t', e1t, ktype = jp_r8 ) ! ! e1 scale factors CALL iom_rstput( 0, 0, inum3, 'e1u', e1u, ktype = jp_r8 ) CALL iom_rstput( 0, 0, inum3, 'e1v', e1v, ktype = jp_r8 ) CALL iom_rstput( 0, 0, inum3, 'e1f', e1f, ktype = jp_r8 ) CALL iom_rstput( 0, 0, inum3, 'e2t', e2t, ktype = jp_r8 ) ! ! e2 scale factors CALL iom_rstput( 0, 0, inum3, 'e2u', e2u, ktype = jp_r8 ) CALL iom_rstput( 0, 0, inum3, 'e2v', e2v, ktype = jp_r8 ) CALL iom_rstput( 0, 0, inum3, 'e2f', e2f, ktype = jp_r8 ) CALL iom_rstput( 0, 0, inum3, 'ff', ff, ktype = jp_r8 ) ! ! coriolis factor ! note that mbkt is set to 1 over land ==> use surface tmask zprt(:,:) = ssmask(:,:) * REAL( mbkt(:,:) , wp ) CALL iom_rstput( 0, 0, inum4, 'mbathy', zprt, ktype = jp_i2 ) ! ! nb of ocean T-points zprt(:,:) = ssmask(:,:) * REAL( mikt(:,:) , wp ) CALL iom_rstput( 0, 0, inum4, 'misf', zprt, ktype = jp_i2 ) ! ! nb of ocean T-points zprt(:,:) = ssmask(:,:) * REAL( risfdep(:,:) , wp ) CALL iom_rstput( 0, 0, inum4, 'isfdraft', zprt, ktype = jp_r4 ) ! ! nb of ocean T-points IF( ln_sco ) THEN ! s-coordinate CALL iom_rstput( 0, 0, inum4, 'hbatt', hbatt ) CALL iom_rstput( 0, 0, inum4, 'hbatu', hbatu ) CALL iom_rstput( 0, 0, inum4, 'hbatv', hbatv ) CALL iom_rstput( 0, 0, inum4, 'hbatf', hbatf ) ! CALL iom_rstput( 0, 0, inum4, 'gsigt', gsigt ) ! ! scaling coef. CALL iom_rstput( 0, 0, inum4, 'gsigw', gsigw ) CALL iom_rstput( 0, 0, inum4, 'gsi3w', gsi3w ) CALL iom_rstput( 0, 0, inum4, 'esigt', esigt ) CALL iom_rstput( 0, 0, inum4, 'esigw', esigw ) ! CALL iom_rstput( 0, 0, inum4, 'e3t_0', e3t_0 ) ! ! scale factors CALL iom_rstput( 0, 0, inum4, 'e3u_0', e3u_0 ) CALL iom_rstput( 0, 0, inum4, 'e3v_0', e3v_0 ) CALL iom_rstput( 0, 0, inum4, 'e3w_0', e3w_0 ) CALL iom_rstput( 0, 0, inum4, 'rx1', rx1 ) ! ! Max. grid stiffness ratio ! CALL iom_rstput( 0, 0, inum4, 'gdept_1d' , gdept_1d ) ! ! stretched system CALL iom_rstput( 0, 0, inum4, 'gdepw_1d' , gdepw_1d ) CALL iom_rstput( 0, 0, inum4, 'gdept_0', gdept_0, ktype = jp_r4 ) CALL iom_rstput( 0, 0, inum4, 'gdepw_0', gdepw_0, ktype = jp_r4 ) ENDIF IF(nn_timing == 3) CALL timing_stop('rst_put') IF( ln_zps ) THEN ! z-coordinate - partial steps ! IF( nmsh <= 6 ) THEN ! ! 3D vertical scale factors IF(nn_timing == 3) CALL timing_start('rst_put') CALL iom_rstput( 0, 0, inum4, 'e3t_0', e3t_0 ) CALL iom_rstput( 0, 0, inum4, 'e3u_0', e3u_0 ) CALL iom_rstput( 0, 0, inum4, 'e3v_0', e3v_0 ) CALL iom_rstput( 0, 0, inum4, 'e3w_0', e3w_0 ) IF(nn_timing == 3) CALL timing_stop('rst_put') ELSE ! ! 2D masked bottom ocean scale factors DO jj = 1,jpj DO ji = 1,jpi e3tp(ji,jj) = e3t_0(ji,jj,mbkt(ji,jj)) * ssmask(ji,jj) e3wp(ji,jj) = e3w_0(ji,jj,mbkt(ji,jj)) * ssmask(ji,jj) END DO END DO IF(nn_timing == 3) CALL timing_start('rst_put') CALL iom_rstput( 0, 0, inum4, 'e3t_ps', e3tp ) CALL iom_rstput( 0, 0, inum4, 'e3w_ps', e3wp ) IF(nn_timing == 3) CALL timing_stop('rst_put') END IF ! IF( nmsh <= 3 ) THEN ! ! 3D depth CALL iom_rstput( 0, 0, inum4, 'gdept_0', gdept_0, ktype = jp_r4 ) DO jk = 1,jpk DO jj = 1, jpjm1 DO ji = 1, fs_jpim1 ! vector opt. zdepu(ji,jj,jk) = MIN( gdept_0(ji,jj,jk) , gdept_0(ji+1,jj ,jk) ) zdepv(ji,jj,jk) = MIN( gdept_0(ji,jj,jk) , gdept_0(ji ,jj+1,jk) ) END DO END DO END DO CALL lbc_lnk( zdepu, 'U', 1. ) ; CALL lbc_lnk( zdepv, 'V', 1. ) IF(nn_timing == 3) CALL timing_start('rst_put') CALL iom_rstput( 0, 0, inum4, 'gdepu', zdepu, ktype = jp_r4 ) CALL iom_rstput( 0, 0, inum4, 'gdepv', zdepv, ktype = jp_r4 ) CALL iom_rstput( 0, 0, inum4, 'gdepw_0', gdepw_0, ktype = jp_r4 ) IF(nn_timing == 3) CALL timing_stop('rst_put') ELSE ! ! 2D bottom depth DO jj = 1,jpj DO ji = 1,jpi zprt(ji,jj) = gdept_0(ji,jj,mbkt(ji,jj) ) * ssmask(ji,jj) zprw(ji,jj) = gdepw_0(ji,jj,mbkt(ji,jj)+1) * ssmask(ji,jj) END DO END DO IF(nn_timing == 3) CALL timing_start('rst_put') CALL iom_rstput( 0, 0, inum4, 'hdept', zprt, ktype = jp_r4 ) CALL iom_rstput( 0, 0, inum4, 'hdepw', zprw, ktype = jp_r4 ) IF(nn_timing == 3) CALL timing_stop('rst_put') ENDIF ! IF(nn_timing == 3) CALL timing_start('rst_put') CALL iom_rstput( 0, 0, inum4, 'gdept_1d', gdept_1d ) ! ! reference z-coord. CALL iom_rstput( 0, 0, inum4, 'gdepw_1d', gdepw_1d ) CALL iom_rstput( 0, 0, inum4, 'e3t_1d' , e3t_1d ) CALL iom_rstput( 0, 0, inum4, 'e3w_1d' , e3w_1d ) IF(nn_timing == 3) CALL timing_stop('rst_put') ENDIF IF( ln_zco ) THEN ! ! z-coordinate - full steps IF(nn_timing == 3) CALL timing_start('rst_put') CALL iom_rstput( 0, 0, inum4, 'gdept_1d', gdept_1d ) ! ! depth CALL iom_rstput( 0, 0, inum4, 'gdepw_1d', gdepw_1d ) CALL iom_rstput( 0, 0, inum4, 'e3t_1d' , e3t_1d ) ! ! scale factors CALL iom_rstput( 0, 0, inum4, 'e3w_1d' , e3w_1d ) IF(nn_timing == 3) CALL timing_stop('rst_put') ENDIF ! ! ============================ ! ! close the files ! ! ============================ SELECT CASE ( MOD(nmsh, 3) ) CASE ( 1 ) CALL iom_close( inum0 ) CASE ( 2 ) CALL iom_close( inum1 ) CALL iom_close( inum2 ) CASE ( 0 ) CALL iom_close( inum2 ) CALL iom_close( inum3 ) CALL iom_close( inum4 ) END SELECT ! CALL wrk_dealloc( jpi, jpj, zprt, zprw ) CALL wrk_dealloc( jpi, jpj, jpk, zdepu, zdepv ) ! IF( nn_timing == 1 ) CALL timing_stop('dom_wri') ! END SUBROUTINE dom_wri SUBROUTINE dom_uniq( puniq, cdgrd ) !!---------------------------------------------------------------------- !! *** ROUTINE dom_uniq *** !! !! ** Purpose : identify unique point of a grid (TUVF) !! !! ** Method : 1) aplly lbc_lnk on an array with different values for each element !! 2) check which elements have been changed !!---------------------------------------------------------------------- ! CHARACTER(len=1) , INTENT(in ) :: cdgrd ! REAL(wp), DIMENSION(:,:), INTENT(inout) :: puniq ! ! REAL(wp) :: zshift ! shift value link to the process number INTEGER :: ji ! dummy loop indices LOGICAL, DIMENSION(SIZE(puniq,1),SIZE(puniq,2),1) :: lldbl ! store whether each point is unique or not REAL(wp), POINTER, DIMENSION(:,:) :: ztstref !!---------------------------------------------------------------------- ! IF( nn_timing == 1 ) CALL timing_start('dom_uniq') ! CALL wrk_alloc( jpi, jpj, ztstref ) ! ! build an array with different values for each element ! in mpp: make sure that these values are different even between process ! -> apply a shift value according to the process number zshift = jpi * jpj * ( narea - 1 ) ztstref(:,:) = RESHAPE( (/ (zshift + REAL(ji,wp), ji = 1, jpi*jpj) /), (/ jpi, jpj /) ) ! puniq(:,:) = ztstref(:,:) ! default definition CALL lbc_lnk( puniq, cdgrd, 1. ) ! apply boundary conditions lldbl(:,:,1) = puniq(:,:) == ztstref(:,:) ! check which values have been changed ! puniq(:,:) = 1. ! default definition ! fill only the inner part of the cpu with llbl converted into real puniq(nldi:nlei,nldj:nlej) = REAL( COUNT( lldbl(nldi:nlei,nldj:nlej,:), dim = 3 ) , wp ) ! CALL wrk_dealloc( jpi, jpj, ztstref ) ! IF( nn_timing == 1 ) CALL timing_stop('dom_uniq') ! END SUBROUTINE dom_uniq !!====================================================================== END MODULE domwri