New URL for NEMO forge!   http://forge.nemo-ocean.eu

Since March 2022 along with NEMO 4.2 release, the code development moved to a self-hosted GitLab.
This present forge is now archived and remained online for history.
Chap_Conservation.tex in branches/UKMO/icebergs_restart_single_file/DOC/TexFiles/Chapters – NEMO

source: branches/UKMO/icebergs_restart_single_file/DOC/TexFiles/Chapters/Chap_Conservation.tex @ 6019

Last change on this file since 6019 was 6019, checked in by timgraham, 8 years ago

Reinstated svn keywords before upgrading to head of trunk

  • Property svn:keywords set to Id
File size: 17.6 KB
Line 
1
2% ================================================================
3% Invariant of the Equations
4% ================================================================
5\chapter{Invariants of the Primitive Equations}
6\label{Invariant}
7\minitoc
8
9The continuous equations of motion have many analytic properties. Many
10quantities (total mass, energy, enstrophy, etc.) are strictly conserved in
11the inviscid and unforced limit, while ocean physics conserve the total
12quantities on which they act (momentum, temperature, salinity) but dissipate
13their total variance (energy, enstrophy, etc.). Unfortunately, the finite
14difference form of these equations is not guaranteed to retain all these
15important properties. In constructing the finite differencing schemes, we
16wish to ensure that certain integral constraints will be maintained. In
17particular, it is desirable to construct the finite difference equations so
18that horizontal kinetic energy and/or potential enstrophy of horizontally
19non-divergent flow, and variance of temperature and salinity will be
20conserved in the absence of dissipative effects and forcing. \citet{Arakawa1966} 
21has first pointed out the advantage of this approach. He showed that if
22integral constraints on energy are maintained, the computation will be free
23of the troublesome "non linear" instability originally pointed out by
24\citet{Phillips1959}. A consistent formulation of the energetic properties is
25also extremely important in carrying out long-term numerical simulations for
26an oceanographic model. Such a formulation avoids systematic errors that
27accumulate with time \citep{Bryan1997}.
28
29The general philosophy of OPA which has led to the discrete formulation
30presented in {\S}II.2 and II.3 is to choose second order non-diffusive
31scheme for advective terms for both dynamical and tracer equations. At this
32level of complexity, the resulting schemes are dispersive schemes.
33Therefore, they require the addition of a diffusive operator to be stable.
34The alternative is to use diffusive schemes such as upstream or flux
35corrected schemes. This last option was rejected because we prefer a
36complete handling of the model diffusion, i.e. of the model physics rather
37than letting the advective scheme produces its own implicit diffusion
38without controlling the space and time structure of this implicit diffusion.
39Note that in some very specific cases as passive tracer studies, the
40positivity of the advective scheme is required. In that case, and in that
41case only, the advective scheme used for passive tracer is a flux correction
42scheme \citep{Marti1992, Levy1996, Levy1998}.
43
44% -------------------------------------------------------------------------------------------------------------
45%       Conservation Properties on Ocean Dynamics
46% -------------------------------------------------------------------------------------------------------------
47\section{Conservation Properties on Ocean Dynamics}
48\label{Invariant_dyn}
49
50The non linear term of the momentum equations has been split into a
51vorticity term, a gradient of horizontal kinetic energy and a vertical
52advection term. Three schemes are available for the former (see {\S}~II.2)
53according to the CPP variable defined (default option\textbf{ 
54}or \textbf{key{\_}vorenergy } or \textbf{key{\_}vorcombined
55} defined). They differ in their conservative
56properties (energy or enstrophy conserving scheme). The two latter terms
57preserve the total kinetic energy: the large scale kinetic energy is also
58preserved in practice. The remaining non-diffusive terms of the momentum
59equation (namely the hydrostatic and surface pressure gradient terms) also
60preserve the total kinetic energy and have no effect on the vorticity of the
61flow.
62
63\textbf{* relative, planetary and total vorticity term:}
64
65Let us define as either the relative, planetary and total potential
66vorticity, i.e. , , and , respectively. The continuous formulation of the
67vorticity term satisfies following integral constraints:
68\begin{equation} \label{Eq_vor_vorticity}
69\int_D {{\textbf {k}}\cdot \frac{1}{e_3 }\nabla \times \left( {\varsigma 
70\;{\rm {\bf k}}\times {\textbf {U}}_h } \right)\;dv} =0
71\end{equation}
72
73\begin{equation} \label{Eq_vor_enstrophy}
74if\quad \chi =0\quad \quad \int\limits_D {\varsigma \;{\textbf{k}}\cdot 
75\frac{1}{e_3 }\nabla \times \left( {\varsigma {\textbf{k}}\times {\textbf{U}}_h } \right)\;dv} =-\int\limits_D {\frac{1}{2}\varsigma ^2\,\chi \;dv} 
76=0
77\end{equation}
78
79\begin{equation} \label{Eq_vor_energy}
80\int_D {{\textbf{U}}_h \times \left( {\varsigma \;{\textbf{k}}\times {\textbf{U}}_h } \right)\;dv} =0
81\end{equation}
82where $dv = e_1\, e_2\, e_3\, di\, dj\, dk$ is the volume element.
83(II.4.1a) means that $\varsigma $ is conserved. (II.4.1b) is obtained by an
84integration by part. It means that $\varsigma^2$ is conserved for a horizontally
85non-divergent flow.
86(II.4.1c) is even satisfied locally since the vorticity term is orthogonal
87to the horizontal velocity. It means that the vorticity term has no
88contribution to the evolution of the total kinetic energy. (II.4.1a) is
89obviously always satisfied, but (II.4.1b) and (II.4.1c) cannot be satisfied
90simultaneously with a second order scheme. Using the symmetry or
91anti-symmetry properties of the operators (Eqs II.1.10 and 11), it can be
92shown that the scheme (II.2.11) satisfies (II.4.1b) but not (II.4.1c), while
93scheme (II.2.12) satisfies (II.4.1c) but not (II.4.1b) (see appendix C).
94Note that the enstrophy conserving scheme on total vorticity has been chosen
95as the standard discrete form of the vorticity term.
96
97\textbf{* Gradient of kinetic energy / vertical advection}
98
99In continuous formulation, the gradient of horizontal kinetic energy has no
100contribution to the evolution of the vorticity as the curl of a gradient is
101zero. This property is satisfied locally with the discrete form of both the
102gradient and the curl operator we have made (property (II.1.9)~). Another
103continuous property is that the change of horizontal kinetic energy due to
104vertical advection is exactly balanced by the change of horizontal kinetic
105energy due to the horizontal gradient of horizontal kinetic energy:
106
107\begin{equation} \label{Eq_keg_zad}
108\int_D {{\textbf{U}}_h \cdot \nabla _h \left( {1/2\;{\textbf{U}}_h ^2} \right)\;dv} =-\int_D {{\textbf{U}}_h \cdot \frac{w}{e_3 }\;\frac{\partial 
109{\textbf{U}}_h }{\partial k}\;dv}
110\end{equation}
111
112Using the discrete form given in {\S}II.2-a and the symmetry or
113anti-symmetry properties of the mean and difference operators, \eqref{Eq_keg_zad} is
114demonstrated in the Appendix C. The main point here is that satisfying
115\eqref{Eq_keg_zad} links the choice of the discrete forms of the vertical advection
116and of the horizontal gradient of horizontal kinetic energy. Choosing one
117imposes the other. The discrete form of the vertical advection given in
118{\S}II.2-a is a direct consequence of formulating the horizontal kinetic
119energy as $1/2 \left( \overline{u^2}^i + \overline{v^2}^j \right) $ in the gradient term.
120
121\textbf{* hydrostatic pressure gradient term}
122
123In continuous formulation, a pressure gradient has no contribution to the
124evolution of the vorticity as the curl of a gradient is zero. This
125properties is satisfied locally with the choice of discretization we have
126made (property (II.1.9)~). In addition, when the equation of state is linear
127(i.e. when an advective-diffusive equation for density can be derived from
128those of temperature and salinity) the change of horizontal kinetic energy
129due to the work of pressure forces is balanced by the change of potential
130energy due to buoyancy forces:
131
132\begin{equation} \label{Eq_hpg_pe}
133\int_D {-\frac{1}{\rho _o }\left. {\nabla p^h} \right|_z \cdot {\textbf {U}}_h \;dv} \;=\;\int_D {\nabla .\left( {\rho \,{\textbf{U}}} \right)\;g\;z\;\;dv}
134\end{equation}
135
136Using the discrete form given in {\S}~II.2-a and the symmetry or
137anti-symmetry properties of the mean and difference operators, (II.4.3) is
138demonstrated in the Appendix C. The main point here is that satisfying
139(II.4.3) strongly constraints the discrete expression of the depth of
140$T$-points and of the term added to the pressure gradient in $s-$coordinates: the
141depth of a $T$-point, $z_T$, is defined as the sum the vertical scale
142factors at $w$-points starting from the surface.
143
144\textbf{* surface pressure gradient term}
145
146In continuous formulation, the surface pressure gradient has no contribution
147to the evolution of vorticity. This properties is trivially satisfied
148locally as (II.2.3) (the equation verified by $\psi$ has been
149derived from the discrete formulation of the momentum equations, vertical
150sum and curl. Nevertheless, the $\psi$-equation is solved numerically by an
151iterative solver (see {\S}~III.5), thus the property is only satisfied with
152the accuracy required on the solver. In addition, with the rigid-lid
153approximation, the change of horizontal kinetic energy due to the work of
154surface pressure forces is exactly zero:
155\begin{equation} \label{Eq_spg}
156\int_D {-\frac{1}{\rho _o }\nabla _h } \left( {p_s } \right)\cdot {\textbf{U}}_h \;dv=0
157\end{equation}
158
159(II.4.4) is satisfied in discrete form only if the discrete barotropic
160streamfunction time evolution equation is given by (II.2.3) (see appendix
161C). This shows that (II.2.3) is the only way to compute the streamfunction,
162otherwise there is no guarantee that the surface pressure force work
163vanishes.
164
165% -------------------------------------------------------------------------------------------------------------
166%       Conservation Properties on Ocean Thermodynamics
167% -------------------------------------------------------------------------------------------------------------
168\section{Conservation Properties on Ocean Thermodynamics}
169\label{Invariant_tra}
170
171In continuous formulation, the advective terms of the tracer equations
172conserve the tracer content and the quadratic form of the tracer, i.e.
173\begin{equation} \label{Eq_tra_tra2}
174\int_D {\nabla .\left( {T\;{\textbf{U}}} \right)\;dv} =0
175\;\text{and}
176\int_D {T\;\nabla .\left( {T\;{\textbf{U}}} \right)\;dv} =0
177\end{equation}
178
179The numerical scheme used ({\S}II.2-b) (equations in flux form, second order
180centred finite differences) satisfies (II.4.5) (see appendix C). Note that
181in both continuous and discrete formulations, there is generally no strict
182conservation of mass, since the equation of state is non linear with respect
183to $T$ and $S$. In practice, the mass is conserved with a very good accuracy.
184
185% -------------------------------------------------------------------------------------------------------------
186%       Conservation Properties on Momentum Physics
187% -------------------------------------------------------------------------------------------------------------
188\subsection{Conservation Properties on Momentum Physics}
189\label{Invariant_dyn_physics}
190
191\textbf{* lateral momentum diffusion term}
192
193The continuous formulation of the horizontal diffusion of momentum satisfies
194the following integral constraints~:
195\begin{equation} \label{Eq_dynldf_dyn}
196\int\limits_D {\frac{1}{e_3 }{\rm {\bf k}}\cdot \nabla \times \left[ {\nabla 
197_h \left( {A^{lm}\;\chi } \right)-\nabla _h \times \left( {A^{lm}\;\zeta 
198\;{\rm {\bf k}}} \right)} \right]\;dv} =0
199\end{equation}
200
201\begin{equation} \label{Eq_dynldf_div}
202\int\limits_D {\nabla _h \cdot \left[ {\nabla _h \left( {A^{lm}\;\chi } 
203\right)-\nabla _h \times \left( {A^{lm}\;\zeta \;{\rm {\bf k}}} \right)} 
204\right]\;dv} =0
205\end{equation}
206
207\begin{equation} \label{Eq_dynldf_curl}
208\int_D {{\rm {\bf U}}_h \cdot \left[ {\nabla _h \left( {A^{lm}\;\chi } 
209\right)-\nabla _h \times \left( {A^{lm}\;\zeta \;{\rm {\bf k}}} \right)} 
210\right]\;dv} \leqslant 0
211\end{equation}
212
213\begin{equation} \label{Eq_dynldf_curl2}
214\mbox{if}\quad A^{lm}=cste\quad \quad \int_D {\zeta \;{\rm {\bf k}}\cdot 
215\nabla \times \left[ {\nabla _h \left( {A^{lm}\;\chi } \right)-\nabla _h
216\times \left( {A^{lm}\;\zeta \;{\rm {\bf k}}} \right)} \right]\;dv} 
217\leqslant 0
218\end{equation}
219
220\begin{equation} \label{Eq_dynldf_div2}
221\mbox{if}\quad A^{lm}=cste\quad \quad \int_D {\chi \;\nabla _h \cdot \left[
222{\nabla _h \left( {A^{lm}\;\chi } \right)-\nabla _h \times \left(
223{A^{lm}\;\zeta \;{\rm {\bf k}}} \right)} \right]\;dv} \leqslant 0
224\end{equation}
225
226
227(II.4.6a) and (II.4.6b) means that the horizontal diffusion of momentum
228conserve both the potential vorticity and the divergence of the flow, while
229Eqs (II.4.6c) to (II.4.6e) mean that it dissipates the energy, the enstrophy
230and the square of the divergence. The two latter properties are only
231satisfied when the eddy coefficients are horizontally uniform.
232
233Using (II.1.8) and (II.1.9), and the symmetry or anti-symmetry properties of
234the mean and difference operators, it is shown that the discrete form of the
235lateral momentum diffusion given in {\S}II.2-c satisfies all the integral
236constraints (II.4.6) (see appendix C). In particular, when the eddy
237coefficients are horizontally uniform, a complete separation of vorticity
238and horizontal divergence fields is ensured, so that diffusion (dissipation)
239of vorticity (enstrophy) does not generate horizontal divergence (variance
240of the horizontal divergence) and \textit{vice versa}. When the vertical curl of the horizontal
241diffusion of momentum (discrete sense) is taken, the term associated to the
242horizontal gradient of the divergence is zero locally. When the horizontal
243divergence of the horizontal diffusion of momentum (discrete sense) is
244taken, the term associated to the vertical curl of the vorticity is zero
245locally. The resulting term conserves $\chi$ and dissipates
246$\chi^2$ when the
247eddy coefficient is horizontally uniform.
248
249\textbf{* vertical momentum diffusion term}
250
251As for the lateral momentum physics, the continuous form of the vertical
252diffusion of momentum satisfies following integral constraints~:
253
254conservation of momentum, dissipation of horizontal kinetic energy
255
256\begin{equation} \label{Eq_dynzdf_dyn}
257\begin{aligned}
258& \int_D {\frac{1}{e_3 }}  \frac{\partial }{\partial k}\left( \frac{A^{vm}}{e_3 }\frac{\partial {\textbf{U}}_h }{\partial k} \right) \;dv = \overrightarrow{\textbf{0}} \\ 
259& \int_D \textbf{U}_h \cdot \frac{1}{e_3} \frac{\partial}{\partial k} \left( {\frac{A^{vm}}{e_3 }}{\frac{\partial \textbf{U}_h }{\partial k}} \right) \;dv \leq 0 \\ 
260 \end{aligned} 
261 \end{equation}
262conservation of vorticity, dissipation of enstrophy
263\begin{equation} \label{Eq_dynzdf_vor}
264\begin{aligned}
265& \int_D {\frac{1}{e_3 }{\rm {\bf k}}\cdot \nabla \times \left( {\frac{1}{e_3
266}\frac{\partial }{\partial k}\left( {\frac{A^{vm}}{e_3 }\frac{\partial {\rm 
267{\bf U}}_h }{\partial k}} \right)} \right)\;dv} =0 \\ 
268& \int_D {\zeta \,{\rm {\bf k}}\cdot \nabla \times \left( {\frac{1}{e_3
269}\frac{\partial }{\partial k}\left( {\frac{A^{vm}}{e_3 }\frac{\partial {\rm 
270{\bf U}}_h }{\partial k}} \right)} \right)\;dv} \leq 0 \\ 
271\end{aligned}
272\end{equation}
273conservation of horizontal divergence, dissipation of square of the
274horizontal divergence
275\begin{equation} \label{Eq_dynzdf_div}
276\begin{aligned}
277 &\int_D {\nabla \cdot \left( {\frac{1}{e_3 }\frac{\partial }{\partial 
278k}\left( {\frac{A^{vm}}{e_3 }\frac{\partial {\rm {\bf U}}_h }{\partial k}} 
279\right)} \right)\;dv} =0 \\ 
280& \int_D {\chi \;\nabla \cdot \left( {\frac{1}{e_3 }\frac{\partial }{\partial 
281k}\left( {\frac{A^{vm}}{e_3 }\frac{\partial {\rm {\bf U}}_h }{\partial k}} 
282\right)} \right)\;dv} \leq 0 \\ 
283\end{aligned}
284\end{equation}
285
286In discrete form, all these properties are satisfied in $z$-coordinate (see
287Appendix C). In $s$-coordinates, only first order properties can be
288demonstrated, i.e. the vertical momentum physics conserve momentum,
289potential vorticity, and horizontal divergence.
290
291% -------------------------------------------------------------------------------------------------------------
292%       Conservation Properties on Tracer Physics
293% -------------------------------------------------------------------------------------------------------------
294\subsection{Conservation Properties on Tracer Physics}
295\label{Invariant_tra_physics}
296
297The numerical schemes used for tracer subgridscale physics are written in
298such a way that the heat and salt contents are conserved (equations in flux
299form, second order centred finite differences). As a form flux is used to
300compute the temperature and salinity, the quadratic form of these quantities
301(i.e. their variance) globally tends to diminish. As for the advective term,
302there is generally no strict conservation of mass even if, in practice, the
303mass is conserved with a very good accuracy.
304
305\textbf{* lateral physics: }conservation of tracer, dissipation of tracer
306variance, i.e.
307
308\begin{equation} \label{Eq_traldf_t_t2}
309\begin{aligned}
310&\int_D \nabla\, \cdot\, \left( A^{lT} \,\Re \,\nabla \,T \right)\;dv = 0 \\ 
311&\int_D \,T\, \nabla\, \cdot\, \left( A^{lT} \,\Re \,\nabla \,T \right)\;dv \leq 0 \\ 
312\end{aligned}
313\end{equation}
314
315\textbf{* vertical physics: }conservation of tracer, dissipation of tracer
316variance, i.e.
317
318\begin{equation} \label{Eq_trazdf_t_t2}
319\begin{aligned}
320& \int_D \frac{1}{e_3 } \frac{\partial }{\partial k}\left( \frac{A^{vT}}{e_3 }  \frac{\partial T}{\partial k}  \right)\;dv = 0 \\ 
321& \int_D \,T \frac{1}{e_3 } \frac{\partial }{\partial k}\left( \frac{A^{vT}}{e_3 }  \frac{\partial T}{\partial k}  \right)\;dv \leq 0 \\ 
322\end{aligned}
323\end{equation}
324
325Using the symmetry or anti-symmetry properties of the mean and difference
326operators, it is shown that the discrete form of tracer physics given in
327{\S}~II.2-c satisfies all the integral constraints (II.4.8) and (II.4.9)
328except the dissipation of the square of the tracer when non-geopotential
329diffusion is used (see appendix C). A discrete form of the lateral tracer
330physics can be derived which satisfies these last properties. Nevertheless,
331it requires a horizontal averaging of the vertical component of the lateral
332physics that prevents the use of implicit resolution in the vertical. It has
333not been implemented.
334
Note: See TracBrowser for help on using the repository browser.