CCC $Header: /home/opalod/NEMOCVSROOT/NEMO/TOP_SRC/SMS/p4zrem.F,v 1.8 2007/10/12 09:28:41 opalod Exp $ CCC TOP 1.0 , LOCEAN-IPSL (2005) C This software is governed by CeCILL licence see modipsl/doc/NEMO_CeCILL.txt C --------------------------------------------------------------------------- CDIR$ LIST SUBROUTINE p4zrem #if defined key_top && defined key_pisces CCC--------------------------------------------------------------------- CCC CCC ROUTINE p4zrem : PISCES MODEL CCC ***************************** CCC CCC PURPOSE : CCC --------- CCC Compute remineralization/scavenging of organic compounds CCC CC INPUT : CC ----- CC common CC all the common defined in opa CC CC CC OUTPUT : : no CC ------ CC CC EXTERNAL : CC -------- CC None CC CC MODIFICATIONS: CC -------------- CC original : 2004 - O. Aumont CC---------------------------------------------------------------------- CC parameters and commons CC ====================== CDIR$ NOLIST USE oce_trc USE trp_trc USE sms IMPLICIT NONE #include "domzgr_substitute.h90" CDIR$ LIST CC---------------------------------------------------------------------- CC local declarations CC ================== INTEGER ji, jj, jk REAL remip,remik,xlam1b REAL xkeq,xfeequi,siremin REAL zsatur,zsatur2,znusil,zdepbac(jpi,jpj,jpk) REAL zlamfac,zstep,fesatur(jpi,jpj,jpk) REAL ztempbac(jpi,jpj) C C Time step duration for the biology C zstep=rfact2/rjjss C C Computation of the mean phytoplankton concentration as C a crude estimate of the bacterial biomass C -------------------------------------------------- C DO jk=1,jpkm1 DO jj = 1, jpj DO ji = 1, jpi IF (fsdept(ji,jj,jk).lt.120.) THEN zdepbac(ji,jj,jk)=min(0.7*(trn(ji,jj,jk,jpzoo) & +2*trn(ji,jj,jk,jpmes)),4E-6) ztempbac(ji,jj)=zdepbac(ji,jj,jk) ELSE zdepbac(ji,jj,jk)=min(1.,120./fsdept(ji,jj,jk)) & *ztempbac(ji,jj) ENDIF END DO END DO END DO DO jk = 1,jpkm1 DO jj = 1,jpj DO ji = 1,jpi C C DENITRIFICATION FACTOR COMPUTED FROM O2 LEVELS C ---------------------------------------------- C nitrfac(ji,jj,jk)= & max(0.,0.4*(6.E-6-trn(ji,jj,jk,jpoxy))/(oxymin+ & trn(ji,jj,jk,jpoxy))) END DO END DO END DO nitrfac(:,:,:)=min(1.,nitrfac(:,:,:)) DO jk = 1,jpkm1 DO jj = 1,jpj DO ji = 1,jpi C C DOC ammonification. Depends on depth, phytoplankton biomass C and a limitation term which is supposed to be a parameterization C of the bacterial activity. C ---------------------------------------------------------------- C remik = xremik*zstep/1E-6*xlimbac(ji,jj,jk) & *zdepbac(ji,jj,jk) # if defined key_off_degrad & *facvol(ji,jj,jk) # endif remik=max(remik,5.5E-4*zstep) C C Ammonification in oxic waters with oxygen consumption C ----------------------------------------------------- C olimi(ji,jj,jk)=min((trn(ji,jj,jk,jpoxy)-rtrn)/o2ut, & remik*(1.-nitrfac(ji,jj,jk))*trn(ji,jj,jk,jpdoc)) C C Ammonification in suboxic waters with denitrification C ------------------------------------------------------- C denitr(ji,jj,jk)=min((trn(ji,jj,jk,jpno3)-rtrn)/rdenit, & remik*nitrfac(ji,jj,jk)*trn(ji,jj,jk,jpdoc)) END DO END DO END DO C olimi(:,:,:)=max(0.,olimi(:,:,:)) denitr(:,:,:)=max(0.,denitr(:,:,:)) C DO jk = 1,jpkm1 DO jj = 1,jpj DO ji = 1,jpi C C NH4 nitrification to NO3. Ceased for oxygen concentrations C below 2 umol/L. Inhibited at strong light C ---------------------------------------------------------- C onitr(ji,jj,jk)=nitrif*zstep*trn(ji,jj,jk,jpnh4)/(1. & +emoy(ji,jj,jk))*(1.-nitrfac(ji,jj,jk)) # if defined key_off_degrad & *facvol(ji,jj,jk) # endif END DO END DO END DO DO jk = 1,jpkm1 DO jj = 1,jpj DO ji = 1,jpi C C Bacterial uptake of iron. No iron is available in DOC. So C Bacteries are obliged to take up iron from the water. Some C studies (especially at Papa) have shown this uptake to be C significant C ---------------------------------------------------------- C xbactfer(ji,jj,jk)=15E-6*rfact2*4.*0.4*prmax(ji,jj,jk) & *(xlimphy(ji,jj,jk)*zdepbac(ji,jj,jk))**2 & /(xkgraz2+zdepbac(ji,jj,jk)) & *(0.5+sign(0.5,trn(ji,jj,jk,jpfer)-2E-11)) C END DO END DO END DO C DO jk = 1,jpkm1 DO jj = 1,jpj DO ji = 1,jpi C C POC disaggregation by turbulence and bacterial activity. C ------------------------------------------------------------- C remip=xremip*zstep*tgfunc(ji,jj,jk)*(1.-0.5*nitrfac(ji,jj,jk)) # if defined key_off_degrad & *facvol(ji,jj,jk) # endif C C POC disaggregation rate is reduced in anoxic zone as shown by C sediment traps data. In oxic area, the exponent of the martin's C law is around -0.87. In anoxic zone, it is around -0.35. This C means a disaggregation constant about 0.5 the value in oxic zones C ----------------------------------------------------------------- C orem(ji,jj,jk)=remip*trn(ji,jj,jk,jppoc) ofer(ji,jj,jk)=remip*trn(ji,jj,jk,jpsfe) #if ! defined key_kriest orem2(ji,jj,jk)=remip*trn(ji,jj,jk,jpgoc) ofer2(ji,jj,jk)=remip*trn(ji,jj,jk,jpbfe) #else orem2(ji,jj,jk)=remip*trn(ji,jj,jk,jpnum) #endif C END DO END DO END DO DO jk = 1,jpkm1 DO jj = 1,jpj DO ji = 1,jpi C C Remineralization rate of BSi depedant on T and saturation C --------------------------------------------------------- C zsatur=(sio3eq(ji,jj,jk)-trn(ji,jj,jk,jpsil))/ & (sio3eq(ji,jj,jk)+rtrn) zsatur=max(rtrn,zsatur) zsatur2=zsatur*(1.+tn(ji,jj,jk)/400.)**4 znusil=0.225*(1.+tn(ji,jj,jk)/15.)*zsatur+0.775*zsatur2**9 siremin=xsirem*zstep*znusil # if defined key_off_degrad & *facvol(ji,jj,jk) # endif C osil(ji,jj,jk)=siremin*trn(ji,jj,jk,jpdsi) END DO END DO END DO C fesatur(:,:,:)=0.6E-9 C DO jk = 1,jpkm1 DO jj = 1,jpj DO ji = 1,jpi C C scavenging rate of iron. this scavenging rate depends on the C load in particles on which they are adsorbed. The C parameterization has been taken from studies on Th C ------------------------------------------------------------ C xkeq=fekeq(ji,jj,jk) xfeequi=(-(1.+fesatur(ji,jj,jk)*xkeq-xkeq*trn(ji,jj,jk,jpfer))+ & sqrt((1.+fesatur(ji,jj,jk)*xkeq-xkeq*trn(ji,jj,jk,jpfer))**2 & +4.*trn(ji,jj,jk,jpfer)*xkeq))/(2.*xkeq) #if ! defined key_kriest xlam1b=3E-5+xlam1*(trn(ji,jj,jk,jppoc) & +trn(ji,jj,jk,jpgoc)+trn(ji,jj,jk,jpcal)+ & trn(ji,jj,jk,jpdsi))*1E6 #else xlam1b=3E-5+xlam1*(trn(ji,jj,jk,jppoc) & +trn(ji,jj,jk,jpcal)+trn(ji,jj,jk,jpdsi))*1E6 #endif xscave(ji,jj,jk)=xfeequi*xlam1b*zstep # if defined key_off_degrad & *facvol(ji,jj,jk) # endif C C Increased scavenging for very high iron concentrations C found near the coasts due to increased lithogenic particles C and let's say it unknown processes (precipitation, ...) C ----------------------------------------------------------- C zlamfac=max(0.,(gphit(ji,jj)+55.)/30.) zlamfac=min(1.,zlamfac) #if ! defined key_kriest xlam1b=(80.*(trn(ji,jj,jk,jpdoc)+35E-6)+698. & *trn(ji,jj,jk,jppoc)+1.05E4*trn(ji,jj,jk,jpgoc)) & *zdiss(ji,jj,jk)+1E-4*(1.-zlamfac)+xlam1*max(0., & (trn(ji,jj,jk,jpfer)*1E9-1.)) #else xlam1b=(80.*(trn(ji,jj,jk,jpdoc)+35E-6)+698. & *trn(ji,jj,jk,jppoc)) & *zdiss(ji,jj,jk)+1E-4*(1.-zlamfac)+xlam1*max(0., & (trn(ji,jj,jk,jpfer)*1E9-1.)) #endif xaggdfe(ji,jj,jk)=xlam1b*zstep*0.5*(trn(ji,jj,jk,jpfer) & -xfeequi) # if defined key_off_degrad & *facvol(ji,jj,jk) # endif C END DO END DO END DO C #endif RETURN END