MODULE traldf_iso_grif !!====================================================================== !! *** MODULE traldf_iso_grif *** !! Ocean tracers: horizontal component of the lateral tracer mixing trend !!====================================================================== !! History : 3.3 ! 2010-10 (G. Nurser, C. Harris, G. Madec) !! ! Griffies operator version adapted from traldf_iso.F90 !!---------------------------------------------------------------------- #if defined key_ldfslp || defined key_esopa !!---------------------------------------------------------------------- !! 'key_ldfslp' slope of the lateral diffusive direction !!---------------------------------------------------------------------- !! tra_ldf_iso_grif : update the tracer trend with the horizontal component !! of the Griffies iso-neutral laplacian operator !!---------------------------------------------------------------------- USE oce ! ocean dynamics and active tracers USE dom_oce ! ocean space and time domain USE phycst ! physical constants USE trc_oce ! share passive tracers/Ocean variables USE zdf_oce ! ocean vertical physics USE ldftra_oce ! ocean active tracers: lateral physics USE ldfslp ! iso-neutral slopes USE diaptr ! poleward transport diagnostics USE in_out_manager ! I/O manager USE iom ! I/O library USE lbclnk ! ocean lateral boundary conditions (or mpp link) USE lib_mpp ! MPP library IMPLICIT NONE PRIVATE PUBLIC tra_ldf_iso_grif ! routine called by traldf.F90 REAL(wp), PUBLIC, DIMENSION(:,:,:), ALLOCATABLE, SAVE :: psix_eiv, psiy_eiv !: eiv stream function (diag only) REAL(wp), PUBLIC, DIMENSION(:,:,:), ALLOCATABLE, SAVE :: ah_wslp2 !: aeiv*w-slope^2 REAL(wp), DIMENSION(:,:,:), ALLOCATABLE, SAVE :: zdkt ! atypic workspace !! * Substitutions # include "domzgr_substitute.h90" # include "ldftra_substitute.h90" # include "vectopt_loop_substitute.h90" # include "ldfeiv_substitute.h90" !!---------------------------------------------------------------------- !! NEMO/OPA 3.3 , NEMO Consortium (2010) !! $Id$ !! Software governed by the CeCILL licence (NEMOGCM/NEMO_CeCILL.txt) !!---------------------------------------------------------------------- CONTAINS SUBROUTINE tra_ldf_iso_grif( kt, cdtype, pgu, pgv, & & ptb, pta, kjpt, pahtb0 ) !!---------------------------------------------------------------------- !! *** ROUTINE tra_ldf_iso_grif *** !! !! ** Purpose : Compute the before horizontal tracer (t & s) diffusive !! trend for a laplacian tensor (ezxcept the dz[ dz[.] ] term) and !! add it to the general trend of tracer equation. !! !! ** Method : The horizontal component of the lateral diffusive trends !! is provided by a 2nd order operator rotated along neural or geopo- !! tential surfaces to which an eddy induced advection can be added !! It is computed using before fields (forward in time) and isopyc- !! nal or geopotential slopes computed in routine ldfslp. !! !! 1st part : masked horizontal derivative of T ( di[ t ] ) !! ======== with partial cell update if ln_zps=T. !! !! 2nd part : horizontal fluxes of the lateral mixing operator !! ======== !! zftu = (aht+ahtb0) e2u*e3u/e1u di[ tb ] !! - aht e2u*uslp dk[ mi(mk(tb)) ] !! zftv = (aht+ahtb0) e1v*e3v/e2v dj[ tb ] !! - aht e2u*vslp dk[ mj(mk(tb)) ] !! take the horizontal divergence of the fluxes: !! difft = 1/(e1t*e2t*e3t) { di-1[ zftu ] + dj-1[ zftv ] } !! Add this trend to the general trend (ta,sa): !! ta = ta + difft !! !! 3rd part: vertical trends of the lateral mixing operator !! ======== (excluding the vertical flux proportional to dk[t] ) !! vertical fluxes associated with the rotated lateral mixing: !! zftw =-aht { e2t*wslpi di[ mi(mk(tb)) ] !! + e1t*wslpj dj[ mj(mk(tb)) ] } !! take the horizontal divergence of the fluxes: !! difft = 1/(e1t*e2t*e3t) dk[ zftw ] !! Add this trend to the general trend (ta,sa): !! pta = pta + difft !! !! ** Action : Update pta arrays with the before rotated diffusion !!---------------------------------------------------------------------- USE wrk_nemo, ONLY: wrk_in_use, wrk_not_released USE oce , ONLY: zftu => ua , zftv => va ! (ua,va) used as 3D workspace USE wrk_nemo, ONLY: zdit => wrk_3d_1 , zdjt => wrk_3d_2 , ztfw => wrk_3d_3 ! 3D workspace USE wrk_nemo, ONLY: z2d => wrk_2d_1 ! 2D workspace ! INTEGER , INTENT(in ) :: kt ! ocean time-step index CHARACTER(len=3) , INTENT(in ) :: cdtype ! =TRA or TRC (tracer indicator) INTEGER , INTENT(in ) :: kjpt ! number of tracers REAL(wp), DIMENSION(jpi,jpj ,kjpt), INTENT(in ) :: pgu, pgv ! tracer gradient at pstep levels REAL(wp), DIMENSION(jpi,jpj,jpk,kjpt), INTENT(in ) :: ptb ! before and now tracer fields REAL(wp), DIMENSION(jpi,jpj,jpk,kjpt), INTENT(inout) :: pta ! tracer trend REAL(wp) , INTENT(in ) :: pahtb0 ! background diffusion coef ! INTEGER :: ji, jj, jk,jn ! dummy loop indices INTEGER :: ip,jp,kp ! dummy loop indices INTEGER :: ierr ! temporary integer REAL(wp) :: zmsku, zabe1, zcof1, zcoef3 ! local scalars REAL(wp) :: zmskv, zabe2, zcof2, zcoef4 ! - - REAL(wp) :: zcoef0, zbtr ! - - !REAL(wp), POINTER, DIMENSION(:,:,:) :: zdkt ! 2D+1 workspace ! REAL(wp) :: zslope_skew, zslope_iso, zslope2, zbu, zbv REAL(wp) :: ze1ur, zdxt, ze2vr, ze3wr, zdyt, zdzt REAL(wp) :: zah, zah_slp, zaei_slp #if defined key_diaar5 REAL(wp) :: zztmp ! local scalar #endif !!---------------------------------------------------------------------- IF( wrk_in_use(3, 1,2,3) .OR. wrk_in_use(2, 1) ) THEN CALL ctl_stop('tra_ldf_iso_grif: requested workspace arrays unavailable.') ; RETURN ENDIF ! ARP - line below uses 'bounds re-mapping' which is only defined in ! Fortran 2003 and up. We would be OK if code was written to use ! zdkt(:,:,1:2) instead as then wouldn't need to re-map bounds. ! As it is, we make zdkt a module array and allocate it in _alloc(). !zdkt(1:jpi,1:jpj,0:1) => wrk_3d_4(:,:,1:2) IF( kt == nit000 ) THEN IF(lwp) WRITE(numout,*) IF(lwp) WRITE(numout,*) 'tra_ldf_iso_grif : rotated laplacian diffusion operator on ', cdtype IF(lwp) WRITE(numout,*) ' WARNING: STILL UNDER TEST, NOT RECOMMENDED. USE AT YOUR OWN PERIL' IF(lwp) WRITE(numout,*) '~~~~~~~~~~~' ALLOCATE( ah_wslp2(jpi,jpj,jpk) , zdkt(jpi,jpj,0:1), STAT=ierr ) IF( lk_mpp ) CALL mpp_sum ( ierr ) IF( ierr > 0 ) CALL ctl_stop('STOP', 'tra_ldf_iso_grif: unable to allocate arrays') IF( ln_traldf_gdia ) THEN ALLOCATE( psix_eiv(jpi,jpj,jpk) , psiy_eiv(jpi,jpj,jpk) , STAT=ierr ) IF( lk_mpp ) CALL mpp_sum ( ierr ) IF( ierr > 0 ) CALL ctl_stop('STOP', 'tra_ldf_iso_grif: unable to allocate diagnostics') ENDIF ENDIF !!---------------------------------------------------------------------- !! 0 - calculate ah_wslp2, psix_eiv, psiy_eiv !!---------------------------------------------------------------------- !!gm Future development: consider using Ah defined at T-points and attached to the 4 t-point triads ah_wslp2(:,:,:) = 0._wp IF( ln_traldf_gdia ) THEN psix_eiv(:,:,:) = 0._wp psiy_eiv(:,:,:) = 0._wp ENDIF DO ip = 0, 1 DO kp = 0, 1 DO jk = 1, jpkm1 DO jj = 1, jpjm1 DO ji = 1, fs_jpim1 ze3wr = 1._wp / fse3w(ji+ip,jj,jk+kp) zbu = 0.25_wp * e1u(ji,jj) * e2u(ji,jj) * fse3u(ji,jj,jk) zah = fsahtu(ji,jj,jk) ! fsaht(ji+ip,jj,jk) zslope_skew = triadi_g(ji+ip,jj,jk,1-ip,kp) zslope2 = zslope_skew - ( fsdept(ji+1,jj,jk) - fsdept(ji ,jj ,jk) ) * ze1ur * umask(ji,jj,jk+kp) zslope2 = zslope2 *zslope2 ah_wslp2(ji+ip,jj,jk+kp) = ah_wslp2(ji+ip,jj,jk+kp) & & + zah * ( zbu * ze3wr / ( e1t(ji+ip,jj) * e2t(ji+ip,jj) ) ) * zslope2 IF( ln_traldf_gdia ) THEN zaei_slp = fsaeiw(ji+ip,jj,jk) * zslope_skew !fsaeit(ji+ip,jj,jk)*zslope_skew psix_eiv(ji,jj,jk+kp) = psix_eiv(ji,jj,jk+kp) + 0.25_wp * zaei_slp ENDIF END DO END DO END DO END DO END DO ! DO jp = 0, 1 DO kp = 0, 1 DO jk = 1, jpkm1 DO jj = 1, jpjm1 DO ji=1,fs_jpim1 ze3wr = 1.0_wp / fse3w(ji,jj+jp,jk+kp) zbv = 0.25_wp * e1v(ji,jj) * e2v(ji,jj) * fse3v(ji,jj,jk) zah = fsahtu(ji,jj,jk) !fsaht(ji,jj+jp,jk) zslope_skew = triadj_g(ji,jj+jp,jk,1-jp,kp) zslope2 = zslope_skew - ( fsdept(ji,jj+1,jk) - fsdept(ji,jj,jk) ) * ze2vr * vmask(ji,jj,jk+kp) zslope2 = zslope2 * zslope2 ah_wslp2(ji,jj+jp,jk+kp) = ah_wslp2(ji,jj+jp,jk+kp) & & + zah * ( zbv * ze3wr / ( e1t(ji,jj+jp) * e2t(ji,jj+jp) ) ) * zslope2 IF( ln_traldf_gdia ) THEN zaei_slp = fsaeiw(ji,jj+jp,jk) * zslope_skew !fsaeit(ji,jj+jp,jk)*zslope_skew psiy_eiv(ji,jj,jk+kp) = psiy_eiv(ji,jj,jk+kp) + 0.25_wp * zaei_slp ENDIF END DO END DO END DO END DO END DO ! ! ! =========== DO jn = 1, kjpt ! tracer loop ! ! =========== ! Zero fluxes for each tracer ztfw(:,:,:) = 0._wp zftu(:,:,:) = 0._wp zftv(:,:,:) = 0._wp ! DO jk = 1, jpkm1 !== before lateral T & S gradients at T-level jk ==! DO jj = 1, jpjm1 DO ji = 1, fs_jpim1 ! vector opt. zdit(ji,jj,jk) = ( ptb(ji+1,jj ,jk,jn) - ptb(ji,jj,jk,jn) ) * umask(ji,jj,jk) zdjt(ji,jj,jk) = ( ptb(ji ,jj+1,jk,jn) - ptb(ji,jj,jk,jn) ) * vmask(ji,jj,jk) END DO END DO END DO IF( ln_zps ) THEN ! partial steps: correction at the last level # if defined key_vectopt_loop DO jj = 1, 1 DO ji = 1, jpij-jpi ! vector opt. (forced unrolling) # else DO jj = 1, jpjm1 DO ji = 1, jpim1 # endif zdit(ji,jj,mbku(ji,jj)) = pgu(ji,jj,jn) zdjt(ji,jj,mbkv(ji,jj)) = pgv(ji,jj,jn) END DO END DO ENDIF !!---------------------------------------------------------------------- !! II - horizontal trend (full) !!---------------------------------------------------------------------- ! DO jk = 1, jpkm1 ! ! !== Vertical tracer gradient at level jk and jk+1 zdkt(:,:,1) = ( ptb(:,:,jk,jn) - ptb(:,:,jk+1,jn) ) * tmask(:,:,jk+1) ! ! ! surface boundary condition: zdkt(jk=1)=zdkt(jk=2) IF( jk == 1 ) THEN ; zdkt(:,:,0) = zdkt(:,:,1) ELSE ; zdkt(:,:,0) = ( ptb(:,:,jk-1,jn) - ptb(:,:,jk,jn) ) * tmask(:,:,jk) ENDIF IF( .NOT. l_triad_iso ) THEN triadi = triadi_g triadj = triadj_g ENDIF DO ip = 0, 1 !== Horizontal & vertical fluxes DO kp = 0, 1 DO jj = 1, jpjm1 DO ji = 1, fs_jpim1 ze1ur = 1._wp / e1u(ji,jj) zdxt = zdit(ji,jj,jk) * ze1ur ze3wr = 1._wp / fse3w(ji+ip,jj,jk+kp) zdzt = zdkt(ji+ip,jj,kp) * ze3wr zslope_skew = triadi_g(ji+ip,jj,jk,1-ip,kp) zslope_iso = triadi(ji+ip,jj,jk,1-ip,kp) zbu = 0.25_wp * e1u(ji,jj) * e2u(ji,jj) * fse3u(ji,jj,jk) zah = fsahtu(ji,jj,jk) !*umask(ji,jj,jk+kp) !fsaht(ji+ip,jj,jk) ===>> ???? zah_slp = zah * zslope_iso zaei_slp = fsaeiw(ji+ip,jj,jk) * zslope_skew !fsaeit(ji+ip,jj,jk)*zslope_skew zftu(ji,jj,jk) = zftu(ji,jj,jk) - ( zah * zdxt + (zah_slp - zaei_slp) * zdzt ) * zbu * ze1ur ztfw(ji+ip,jj,jk+kp) = ztfw(ji+ip,jj,jk+kp) - (zah_slp + zaei_slp) * zdxt * zbu * ze3wr END DO END DO END DO END DO DO jp = 0, 1 DO kp = 0, 1 DO jj = 1, jpjm1 DO ji = 1, fs_jpim1 ze2vr = 1._wp / e2v(ji,jj) zdyt = zdjt(ji,jj,jk) * ze2vr ze3wr = 1._wp / fse3w(ji,jj+jp,jk+kp) zdzt = zdkt(ji,jj+jp,kp) * ze3wr zslope_skew = triadj_g(ji,jj+jp,jk,1-jp,kp) zslope_iso = triadj(ji,jj+jp,jk,1-jp,kp) zbv = 0.25_wp * e1v(ji,jj) * e2v(ji,jj) * fse3v(ji,jj,jk) zah = fsahtv(ji,jj,jk) !*vmask(ji,jj,jk+kp) !fsaht(ji,jj+jp,jk) zah_slp = zah * zslope_iso zaei_slp = fsaeiw(ji,jj+jp,jk) * zslope_skew !fsaeit(ji,jj+jp,jk)*zslope_skew zftv(ji,jj,jk) = zftv(ji,jj,jk) - ( zah * zdyt + (zah_slp - zaei_slp) * zdzt ) * zbv * ze2vr ztfw(ji,jj+jp,jk+kp) = ztfw(ji,jj+jp,jk+kp) - (zah_slp + zaei_slp) * zdyt * zbv * ze3wr END DO END DO END DO END DO ! !== divergence and add to the general trend ==! DO jj = 2 , jpjm1 DO ji = fs_2, fs_jpim1 ! vector opt. zbtr = 1._wp / ( e1t(ji,jj) * e2t(ji,jj) * fse3t(ji,jj,jk) ) pta(ji,jj,jk,jn) = pta(ji,jj,jk,jn) + zbtr * ( zftu(ji-1,jj,jk) - zftu(ji,jj,jk) & & + zftv(ji,jj-1,jk) - zftv(ji,jj,jk) ) END DO END DO ! END DO ! DO jk = 1, jpkm1 !== Divergence of vertical fluxes added to the general tracer trend DO jj = 2, jpjm1 DO ji = fs_2, fs_jpim1 ! vector opt. pta(ji,jj,jk,jn) = pta(ji,jj,jk,jn) + ( ztfw(ji,jj,jk+1) - ztfw(ji,jj,jk) ) & & / ( e1t(ji,jj) * e2t(ji,jj) * fse3t(ji,jj,jk) ) END DO END DO END DO ! ! ! "Poleward" diffusive heat or salt transports (T-S case only) IF( cdtype == 'TRA' .AND. ln_diaptr .AND. ( MOD( kt, nn_fptr ) == 0 ) ) THEN IF( jn == jp_tem) htr_ldf(:) = ptr_vj( zftv(:,:,:) ) ! 3.3 names IF( jn == jp_sal) str_ldf(:) = ptr_vj( zftv(:,:,:) ) ENDIF #if defined key_diaar5 IF( cdtype == 'TRA' .AND. jn == jp_tem ) THEN z2d(:,:) = 0._wp zztmp = rau0 * rcp DO jk = 1, jpkm1 DO jj = 2, jpjm1 DO ji = fs_2, fs_jpim1 ! vector opt. z2d(ji,jj) = z2d(ji,jj) + zftu(ji,jj,jk) END DO END DO END DO z2d(:,:) = zztmp * z2d(:,:) CALL lbc_lnk( z2d, 'U', -1. ) CALL iom_put( "udiff_heattr", z2d ) ! heat transport in i-direction z2d(:,:) = 0._wp DO jk = 1, jpkm1 DO jj = 2, jpjm1 DO ji = fs_2, fs_jpim1 ! vector opt. z2d(ji,jj) = z2d(ji,jj) + zftv(ji,jj,jk) END DO END DO END DO z2d(:,:) = zztmp * z2d(:,:) CALL lbc_lnk( z2d, 'V', -1. ) CALL iom_put( "vdiff_heattr", z2d ) ! heat transport in i-direction END IF #endif ! END DO ! IF( wrk_not_released(3, 1,2,3,4) .OR. & wrk_not_released(2, 1) ) CALL ctl_stop('tra_ldf_iso_grif: failed to release workspace arrays') ! END SUBROUTINE tra_ldf_iso_grif #else !!---------------------------------------------------------------------- !! default option : Dummy code NO rotation of the diffusive tensor !!---------------------------------------------------------------------- CONTAINS SUBROUTINE tra_ldf_iso_grif( kt, cdtype, pgu, pgv, ptb, pta, kjpt, pahtb0 ) ! Empty routine CHARACTER(len=3) :: cdtype REAL, DIMENSION(:,:,:) :: pgu, pgv ! tracer gradient at pstep levels REAL, DIMENSION(:,:,:,:) :: ptb, pta WRITE(*,*) 'tra_ldf_iso_grif: You should not have seen this print! error?', kt, cdtype, & & pgu(1,1,1), pgv(1,1,1), ptb(1,1,1,1), pta(1,1,1,1), kjpt, pahtb0 END SUBROUTINE tra_ldf_iso_grif #endif !!============================================================================== END MODULE traldf_iso_grif