New URL for NEMO forge!   http://forge.nemo-ocean.eu

Since March 2022 along with NEMO 4.2 release, the code development moved to a self-hosted GitLab.
This present forge is now archived and remained online for history.
Chap_TRA.tex in branches/nemo_v3_3_beta/DOC/TexFiles/Chapters – NEMO

source: branches/nemo_v3_3_beta/DOC/TexFiles/Chapters/Chap_TRA.tex @ 2349

Last change on this file since 2349 was 2349, checked in by gm, 13 years ago

v3.3beta: #658 phasing of the doc - key check + many minor changes

  • Property svn:executable set to *
File size: 80.2 KB
Line 
1% ================================================================
2% Chapter 1 Ñ Ocean Tracers (TRA)
3% ================================================================
4\chapter{Ocean Tracers (TRA)}
5\label{TRA}
6\minitoc
7
8% missing/update
9% traqsr: need to coordinate with SBC module
10
11%STEVEN :  is the use of the word "positive" to describe a scheme enough, or should it be "positive definite"? I added a comment to this effect on some instances of this below
12
13%\newpage
14\vspace{2.cm}
15%$\ $\newline    % force a new ligne
16
17Using the representation described in Chap.~\ref{DOM}, several semi-discrete
18space forms of the tracer equations are available depending on the vertical
19coordinate used and on the physics used. In all the equations presented
20here, the masking has been omitted for simplicity. One must be aware that
21all the quantities are masked fields and that each time a mean or difference
22operator is used, the resulting field is multiplied by a mask.
23
24The two active tracers are potential temperature and salinity. Their prognostic
25equations can be summarized as follows:
26\begin{equation*}
27\text{NXT} = \text{ADV}+\text{LDF}+\text{ZDF}+\text{SBC}
28                   \ (+\text{QSR})\ (+\text{BBC})\ (+\text{BBL})\ (+\text{DMP})
29\end{equation*}
30
31NXT stands for next, referring to the time-stepping. From left to right, the terms
32on the rhs of the tracer equations are the advection (ADV), the lateral diffusion
33(LDF), the vertical diffusion (ZDF), the contributions from the external forcings
34(SBC: Surface Boundary Condition, QSR: penetrative Solar Radiation, and BBC:
35Bottom Boundary Condition), the contribution from the bottom boundary Layer
36(BBL) parametrisation, and an internal damping (DMP) term. The terms QSR,
37BBC, BBL and DMP are optional. The external forcings and parameterisations
38require complex inputs and complex calculations (e.g. bulk formulae, estimation
39of mixing coefficients) that are carried out in the SBC, LDF and ZDF modules and
40described in chapters \S\ref{SBC}, \S\ref{LDF} and  \S\ref{ZDF}, respectively.
41Note that \mdl{tranpc}, the non-penetrative convection module,  although
42(temporarily) located in the NEMO/OPA/TRA directory, is described with the
43model vertical physics (ZDF).
44%%%
45\gmcomment{change the position of eosbn2 in the reference code}
46%%%
47
48In the present chapter we also describe the diagnostic equations used to compute
49the sea-water properties (density, Brunt-Vais\"{a}l\"{a} frequency, specific heat and
50freezing point with associated modules \mdl{eosbn2} and \mdl{phycst}).
51
52The different options available to the user are managed by namelist logicals or
53CPP keys. For each equation term \textit{ttt}, the namelist logicals are \textit{ln\_trattt\_xxx},
54where \textit{xxx} is a 3 or 4 letter acronym corresponding to each optional scheme.
55The CPP key (when it exists) is \textbf{key\_trattt}. The equivalent code can be
56found in the \textit{trattt} or \textit{trattt\_xxx} module, in the NEMO/OPA/TRA directory.
57
58The user has the option of extracting each tendency term on the rhs of the tracer
59equation for output (\key{trdtra} is defined), as described in Chap.~\ref{MISC}.
60
61$\ $\newline    % force a new ligne
62% ================================================================
63% Tracer Advection
64% ================================================================
65\section  [Tracer Advection (\textit{traadv})]
66      {Tracer Advection (\mdl{traadv})}
67\label{TRA_adv}
68%------------------------------------------namtra_adv-----------------------------------------------------
69\namdisplay{namtra_adv}
70%-------------------------------------------------------------------------------------------------------------
71
72The advection tendency of a tracer in flux form is the divergence of the advective
73fluxes. Its discrete expression is given by :
74\begin{equation} \label{Eq_tra_adv}
75ADV_\tau =-\frac{1}{b_t} \left(
76\;\delta _i \left[ e_{2u}\,e_{3u} \;  u\; \tau _u  \right]
77+\delta _j \left[ e_{1v}\,e_{3v}  \;  v\; \tau _v  \right] \; \right)
78-\frac{1}{e_{3t}} \;\delta _k \left[ w\; \tau _w \right]
79\end{equation}
80where $\tau$ is either T or S, and $b_t= e_{1t}\,e_{2t}\,e_{3t}$ is the volume of $T$-cells.
81The flux form in \eqref{Eq_tra_adv} 
82implicitly requires the use of the continuity equation. Indeed, it is obtained
83by using the following equality : $\nabla \cdot \left( \vect{U}\,T \right)=\vect{U} \cdot \nabla T$ 
84which results from the use of the continuity equation, $\nabla \cdot \vect{U}=0$ or
85$ \partial _t e_3 + e_3\;\nabla \cdot \vect{U}=0$ in constant volume or variable volume case, respectively.
86Therefore it is of paramount importance to design the discrete analogue of the
87advection tendency so that it is consistent with the continuity equation in order to
88enforce the conservation properties of the continuous equations. In other words,
89by replacing $\tau$ by the number 1 in (\ref{Eq_tra_adv}) we recover the discrete form of
90the continuity equation which is used to calculate the vertical velocity.
91%>>>>>>>>>>>>>>>>>>>>>>>>>>>>
92\begin{figure}[!t] \label{Fig_adv_scheme}  \begin{center}
93\includegraphics[width=0.9\textwidth]{./TexFiles/Figures/Fig_adv_scheme.pdf}
94\caption{Schematic representation of some ways used to evaluate the tracer value
95at $u$-point and the amount of tracer exchanged between two neighbouring grid
96points. Upsteam biased scheme (ups): the upstream value is used and the black
97area is exchanged. Piecewise parabolic method (ppm): a parabolic interpolation
98is used and the black and dark grey areas are exchanged. Monotonic upstream
99scheme for conservative laws (muscl):  a parabolic interpolation is used and black,
100dark grey and grey areas are exchanged. Second order scheme (cen2): the mean
101value is used and black, dark grey, grey and light grey areas are exchanged. Note
102that this illustration does not include the flux limiter used in ppm and muscl schemes.}
103\end{center}   \end{figure}
104%>>>>>>>>>>>>>>>>>>>>>>>>>>>>
105
106The key difference between the advection schemes available in \NEMO is the choice
107made in space and time interpolation to define the value of the tracer at the
108velocity points (Fig.~\ref{Fig_adv_scheme}).
109
110Along solid lateral and bottom boundaries a zero tracer flux is automatically
111specified, since the normal velocity is zero there. At the sea surface the
112boundary condition depends on the type of sea surface chosen:
113\begin{description}
114\item [linear free surface:] the first level thickness is constant in time:
115the vertical boundary condition is applied at the fixed surface $z=0$ 
116rather than on the moving surface $z=\eta$. There is a non-zero advective
117flux which is set for all advection schemes as
118$\left. {\tau _w } \right|_{k=1/2} =T_{k=1} $, $i.e.$ 
119the product of surface velocity (at $z=0$) by the first level tracer value.
120\item [non-linear free surface:] (\key{vvl} is defined)
121convergence/divergence in the first ocean level moves the free surface
122up/down. There is no tracer advection through it so that the advective
123fluxes through the surface are also zero
124\end{description}
125In all cases, this boundary condition retains local conservation of tracer.
126Global conservation is obtained in both rigid-lid and non-linear free surface
127cases, but not in the linear free surface case. Nevertheless, in the latter
128case, it is achieved to a good approximation since the non-conservative
129term is the product of the time derivative of the tracer and the free surface
130height, two quantities that are not correlated (see \S\ref{PE_free_surface},
131and also \citet{Roullet_Madec_JGR00,Griffies_al_MWR01,Campin2004}).
132
133The velocity field that appears in (\ref{Eq_tra_adv}) and (\ref{Eq_tra_adv_zco})
134is the centred (\textit{now}) \textit{eulerian} ocean velocity (see Chap.~\ref{DYN}).
135When eddy induced velocity (\textit{eiv}) parameterisation is used it is the \textit{now} 
136\textit{effective} velocity ($i.e.$ the sum of the eulerian and eiv velocities) which is used.
137
138The choice of an advection scheme is made in the \textit{nam\_traadv} namelist, by
139setting to \textit{true} one and only one of the logicals \textit{ln\_traadv\_xxx}. The
140corresponding code can be found in the \textit{traadv\_xxx.F90} module, where
141\textit{xxx} is a 3 or 4 letter acronym corresponding to each scheme. Details
142of the advection schemes are given below. The choice of an advection scheme
143is a complex matter which depends on the model physics, model resolution,
144type of tracer, as well as the issue of numerical cost.
145
146Note that
147(1) cen2, cen4 and TVD schemes require an explicit diffusion
148operator while the other schemes are diffusive enough so that they do not
149require additional diffusion ;
150(2) cen2, cen4, MUSCL2, and UBS are not \textit{positive} schemes
151\footnote{negative values can appear in an initially strictly positive tracer field
152which is advected}
153, implying that false extrema are permitted. Their use is not recommended on passive tracers ;
154(3) It is recommended that the same advection-diffusion scheme is
155used on both active and passive tracers. Indeed, if a source or sink of a
156passive tracer depends on an active one, the difference of treatment of
157active and passive tracers can create very nice-looking frontal structures
158that are pure numerical artefacts. Nevertheless, most of our users set a different
159treatment on passive and active tracers, that's the reason why this possibility
160is offered. We strongly suggest them to perform a sensitivity experiment
161using a same treatment to assess the robustness of their results.
162
163% -------------------------------------------------------------------------------------------------------------
164%        2nd order centred scheme 
165% -------------------------------------------------------------------------------------------------------------
166\subsection   [$2^{nd}$ order centred scheme (cen2) (\np{ln\_traadv\_cen2})]
167         {$2^{nd}$ order centred scheme (cen2) (\np{ln\_traadv\_cen2}=true)}
168\label{TRA_adv_cen2}
169
170In the centred second order formulation, the tracer at velocity points is
171evaluated as the mean of the two neighbouring $T$-point values.
172For example, in the $i$-direction :
173\begin{equation} \label{Eq_tra_adv_cen2}
174\tau _u^{cen2} =\overline T ^{i+1/2}
175\end{equation}
176
177The scheme is non diffusive ($i.e.$ it conserves the tracer variance, $\tau^2)$ 
178but dispersive ($i.e.$ it may create false extrema). It is therefore notoriously
179noisy and must be used in conjunction with an explicit diffusion operator to
180produce a sensible solution. The associated time-stepping is performed using
181a leapfrog scheme in conjunction with an Asselin time-filter, so $T$ in
182(\ref{Eq_tra_adv_cen2}) is the \textit{now} tracer value. The centered second
183order advection is computed in the \mdl{traadv\_cen2} module. In this module,
184it is advantageous to combine the \textit{cen2} scheme with an upstream scheme
185in specific areas which require a strong diffusion in order to avoid the generation
186of false extrema. These areas are the vicinity of large river mouths, some straits
187with coarse resolution, and the vicinity of ice cover area ($i.e.$ when the ocean
188temperature is close to the freezing point).
189This combined scheme has been included for specific grid points in the ORCA2
190and ORCA4 configurations only. This is an obsolescent feature as the recommended
191advection scheme for the ORCA configuration is TVD (see  \S\ref{TRA_adv_tvd}).
192
193Note that using the cen2 scheme, the overall tracer advection is of second
194order accuracy since both (\ref{Eq_tra_adv}) and (\ref{Eq_tra_adv_cen2})
195have this order of accuracy. \gmcomment{Note also that ... blah, blah}
196
197% -------------------------------------------------------------------------------------------------------------
198%        4nd order centred scheme 
199% -------------------------------------------------------------------------------------------------------------
200\subsection   [$4^{nd}$ order centred scheme (cen4) (\np{ln\_traadv\_cen4})]
201           {$4^{nd}$ order centred scheme (cen4) (\np{ln\_traadv\_cen4}=true)}
202\label{TRA_adv_cen4}
203
204In the $4^{th}$ order formulation (to be implemented), tracer values are
205evaluated at velocity points as a $4^{th}$ order interpolation, and thus depend on
206the four neighbouring $T$-points. For example, in the $i$-direction:
207\begin{equation} \label{Eq_tra_adv_cen4}
208\tau _u^{cen4} 
209=\overline{   T - \frac{1}{6}\,\delta _i \left[ \delta_{i+1/2}[T] \,\right]   }^{\,i+1/2}
210\end{equation}
211
212Strictly speaking, the cen4 scheme is not a $4^{th}$ order advection scheme
213but a $4^{th}$ order evaluation of advective fluxes, since the divergence of
214advective fluxes \eqref{Eq_tra_adv} is kept at $2^{nd}$ order. The phrase ``$4^{th}$ 
215order scheme'' used in oceanographic literature is usually associated
216with the scheme presented here. Introducing a \textit{true} $4^{th}$ order advection
217scheme is feasible but, for consistency reasons, it requires changes in the
218discretisation of the tracer advection together with changes in both the
219continuity equation and the momentum advection terms. 
220
221A direct consequence of the pseudo-fourth order nature of the scheme is that
222it is not non-diffusive, i.e. the global variance of a tracer is not preserved using
223\textit{cen4}. Furthermore, it must be used in conjunction with an explicit
224diffusion operator to produce a sensible solution. The time-stepping is also
225performed using a leapfrog scheme in conjunction with an Asselin time-filter,
226so $T$ in (\ref{Eq_tra_adv_cen4}) is the \textit{now} tracer.
227
228At a $T$-grid cell adjacent to a boundary (coastline, bottom and surface), an
229additional hypothesis must be made to evaluate $\tau _u^{cen4}$. This
230hypothesis usually reduces the order of the scheme. Here we choose to set
231the gradient of $T$ across the boundary to zero. Alternative conditions can be
232specified, such as a reduction to a second order scheme for these near boundary
233grid points.
234
235% -------------------------------------------------------------------------------------------------------------
236%        TVD scheme 
237% -------------------------------------------------------------------------------------------------------------
238\subsection   [Total Variance Dissipation scheme (TVD) (\np{ln\_traadv\_tvd})]
239         {Total Variance Dissipation scheme (TVD) (\np{ln\_traadv\_tvd}=true)}
240\label{TRA_adv_tvd}
241
242In the Total Variance Dissipation (TVD) formulation, the tracer at velocity
243points is evaluated using a combination of an upstream and a centred scheme.
244For example, in the $i$-direction :
245\begin{equation} \label{Eq_tra_adv_tvd}
246\begin{split}
247\tau _u^{ups}&= \begin{cases}
248               T_{i+1}  & \text{if $\ u_{i+1/2} <     0$} \hfill \\
249               T_i         & \text{if $\ u_{i+1/2} \geq 0$} \hfill \\
250              \end{cases}     \\
251\\
252\tau _u^{tvd}&=\tau _u^{ups} +c_u \;\left( {\tau _u^{cen2} -\tau _u^{ups} } \right)
253\end{split}
254\end{equation}
255where $c_u$ is a flux limiter function taking values between 0 and 1.
256There exist many ways to define $c_u$, each corresponding to a different
257total variance decreasing scheme. The one chosen in \NEMO is described in
258\citet{Zalesak_JCP79}. $c_u$ only departs from $1$ when the advective term
259produces a local extremum in the tracer field. The resulting scheme is quite
260expensive but \emph{positive}. It can be used on both active and passive tracers.
261This scheme is tested and compared with MUSCL and the MPDATA scheme in
262\citet{Levy_al_GRL01}; note that in this paper it is referred to as "FCT" (Flux corrected
263transport) rather than TVD. The TVD scheme is implemented in the \mdl{traadv\_tvd} module.
264
265For stability reasons (see \S\ref{DOM_nxt}),
266$\tau _u^{cen2}$ is evaluated  in (\ref{Eq_tra_adv_tvd}) using the \textit{now} tracer while $\tau _u^{ups}$ 
267is evaluated using the \textit{before} tracer. In other words, the advective part of
268the scheme is time stepped with a leap-frog scheme while a forward scheme is
269used for the diffusive part.
270
271% -------------------------------------------------------------------------------------------------------------
272%        MUSCL scheme 
273% -------------------------------------------------------------------------------------------------------------
274\subsection[MUSCL scheme  (\np{ln\_traadv\_muscl})]
275   {Monotone Upstream Scheme for Conservative Laws (MUSCL) (\np{ln\_traadv\_muscl}=T)}
276\label{TRA_adv_muscl}
277
278The Monotone Upstream Scheme for Conservative Laws (MUSCL) has been
279implemented by \citet{Levy_al_GRL01}. In its formulation, the tracer at velocity points
280is evaluated assuming a linear tracer variation between two $T$-points
281(Fig.\ref{Fig_adv_scheme}). For example, in the $i$-direction :
282\begin{equation} \label{Eq_tra_adv_muscl}
283   \tau _u^{mus} = \left\{      \begin{aligned}
284         &\tau _&+ \frac{1}{2} \;\left( 1-\frac{u_{i+1/2} \;\rdt}{e_{1u}} \right)
285         &\ \widetilde{\partial _i \tau}  & \quad \text{if }\;u_{i+1/2} \geqslant 0      \\
286         &\tau _{i+1/2} &+\frac{1}{2}\;\left( 1+\frac{u_{i+1/2} \;\rdt}{e_{1u} } \right)
287         &\ \widetilde{\partial_{i+1/2} \tau } & \text{if }\;u_{i+1/2} <0
288   \end{aligned}    \right.
289\end{equation}
290where $\widetilde{\partial _i \tau}$ is the slope of the tracer on which a limitation
291is imposed to ensure the \textit{positive} character of the scheme.
292
293The time stepping is performed using a forward scheme, that is the \textit{before} 
294tracer field is used to evaluate $\tau _u^{mus}$.
295
296For an ocean grid point adjacent to land and where the ocean velocity is
297directed toward land, two choices are available: an upstream flux
298(\np{ln\_traadv\_muscl}=true) or a second order flux
299(\np{ln\_traadv\_muscl2}=true). Note that the latter choice does not ensure
300the \textit{positive} character of the scheme. Only the former can be used
301on both active and passive tracers. The two MUSCL schemes are implemented
302in the \mdl{traadv\_tvd} and \mdl{traadv\_tvd2} modules.
303
304% -------------------------------------------------------------------------------------------------------------
305%        UBS scheme 
306% -------------------------------------------------------------------------------------------------------------
307\subsection   [Upstream-Biased Scheme (UBS) (\np{ln\_traadv\_ubs})]
308         {Upstream-Biased Scheme (UBS) (\np{ln\_traadv\_ubs}=true)}
309\label{TRA_adv_ubs}
310
311The UBS advection scheme is an upstream-biased third order scheme based on
312an upstream-biased parabolic interpolation. It is also known as the Cell
313Averaged QUICK scheme (Quadratic Upstream Interpolation for Convective
314Kinematics). For example, in the $i$-direction :
315\begin{equation} \label{Eq_tra_adv_ubs}
316   \tau _u^{ubs} =\overline T ^{i+1/2}-\;\frac{1}{6} \left\{     
317   \begin{aligned}
318         &\tau"_i          & \quad \text{if }\ u_{i+1/2} \geqslant 0      \\
319         &\tau"_{i+1}   & \quad \text{if }\ u_{i+1/2}       <       0
320   \end{aligned}    \right.
321\end{equation}
322where $\tau "_i =\delta _i \left[ {\delta _{i+1/2} \left[ \tau \right]} \right]$.
323
324This results in a dissipatively dominant (i.e. hyper-diffusive) truncation
325error \citep{Shchepetkin_McWilliams_OM05}. The overall performance of the advection
326scheme is similar to that reported in \cite{Farrow1995}.
327It is a relatively good compromise between accuracy and smoothness.
328It is not a \emph{positive} scheme, meaning that false extrema are permitted,
329but the amplitude of such are significantly reduced over the centred second
330order method. Nevertheless it is not recommended that it should be applied
331to a passive tracer that requires positivity.
332
333The intrinsic diffusion of UBS makes its use risky in the vertical direction
334where the control of artificial diapycnal fluxes is of paramount importance.
335Therefore the vertical flux is evaluated using the TVD scheme when
336\np{ln\_traadv\_ubs}=true.
337
338For stability reasons  (see \S\ref{DOM_nxt}),
339the first term  in \eqref{Eq_tra_adv_ubs} (which corresponds to a second order centred scheme)
340is evaluated using the \textit{now} tracer (centred in time) while the
341second term (which is the diffusive part of the scheme), is
342evaluated using the \textit{before} tracer (forward in time).
343This choice is discussed by \citet{Webb_al_JAOT98} in the context of the
344QUICK advection scheme. UBS and QUICK schemes only differ
345by one coefficient. Replacing 1/6 with 1/8 in \eqref{Eq_tra_adv_ubs} 
346leads to the QUICK advection scheme \citep{Webb_al_JAOT98}.
347This option is not available through a namelist parameter, since the
3481/6 coefficient is hard coded. Nevertheless it is quite easy to make the
349substitution in the \mdl{traadv\_ubs} module and obtain a QUICK scheme.
350
351Four different options are possible for the vertical
352component used in the UBS scheme. $\tau _w^{ubs}$ can be evaluated
353using either \textit{(a)} a centred $2^{nd}$ order scheme, or  \textit{(b)} 
354a TVD scheme, or  \textit{(c)} an interpolation based on conservative
355parabolic splines following the \citet{Shchepetkin_McWilliams_OM05} 
356implementation of UBS in ROMS, or  \textit{(d)} a UBS. The $3^{rd}$ case
357has dispersion properties similar to an eighth-order accurate conventional scheme.
358The current reference version uses method b)
359
360Note that :
361
362(1) When a high vertical resolution $O(1m)$ is used, the model stability can
363be controlled by vertical advection (not vertical diffusion which is usually
364solved using an implicit scheme). Computer time can be saved by using a
365time-splitting technique on vertical advection. Such a technique has been
366implemented and validated in ORCA05 with 301 levels. It is not available
367in the current reference version.
368
369(2) It is straightforward to rewrite \eqref{Eq_tra_adv_ubs} as follows:
370\begin{equation} \label{Eq_traadv_ubs2}
371\tau _u^{ubs} = \tau _u^{cen4} + \frac{1}{12} \left\{ 
372   \begin{aligned}
373   & + \tau"_i       & \quad \text{if }\ u_{i+1/2} \geqslant 0 \\
374   &  - \tau"_{i+1}     & \quad \text{if }\ u_{i+1/2}       <       0
375   \end{aligned}    \right.
376\end{equation}
377or equivalently
378\begin{equation} \label{Eq_traadv_ubs2b}
379u_{i+1/2} \ \tau _u^{ubs} 
380=u_{i+1/2} \ \overline{ T - \frac{1}{6}\,\delta _i\left[ \delta_{i+1/2}[T] \,\right] }^{\,i+1/2}
381- \frac{1}{2} |u|_{i+1/2} \;\frac{1}{6} \;\delta_{i+1/2}[\tau"_i]
382\end{equation}
383
384\eqref{Eq_traadv_ubs2} has several advantages. Firstly, it clearly reveals
385that the UBS scheme is based on the fourth order scheme to which an
386upstream-biased diffusion term is added. Secondly, this emphasises that the
387$4^{th}$ order part (as well as the $2^{nd}$ order part as stated above) has
388to be evaluated at the \emph{now} time step using \eqref{Eq_tra_adv_ubs}.
389Thirdly, the diffusion term is in fact a biharmonic operator with an eddy
390coefficient which is simply proportional to the velocity:
391 $A_u^{lm}= - \frac{1}{12}\,{e_{1u}}^3\,|u|$. Note that NEMO v3.3 still uses
392 \eqref{Eq_tra_adv_ubs}, not \eqref{Eq_traadv_ubs2}.
393 %%%
394 \gmcomment{the change in UBS scheme has to be done}
395 %%%
396
397% -------------------------------------------------------------------------------------------------------------
398%        QCK scheme 
399% -------------------------------------------------------------------------------------------------------------
400\subsection   [QUICKEST scheme (QCK) (\np{ln\_traadv\_qck})]
401         {QUICKEST scheme (QCK) (\np{ln\_traadv\_qck}=true)}
402\label{TRA_adv_qck}
403
404The Quadratic Upstream Interpolation for Convective Kinematics with
405Estimated Streaming Terms (QUICKEST) scheme proposed by \citet{Leonard1979} 
406is the third order Godunov scheme. It is associated with the ULTIMATE QUICKEST
407limiter \citep{Leonard1991}. It has been implemented in NEMO by G. Reffray
408(MERCATOR-ocean) and can be found in the \mdl{traadv\_qck} module.
409The resulting scheme is quite expensive but \emph{positive}.
410It can be used on both active and passive tracers.
411However, the intrinsic diffusion of QCK makes its use risky in the vertical
412direction where the control of artificial diapycnal fluxes is of paramount importance.
413Therefore the vertical flux is evaluated using the CEN2 scheme.
414This no longer guarantees the positivity of the scheme. The use of TVD in the vertical
415direction (as for the UBS case) should be implemented to restore this property.
416
417
418% -------------------------------------------------------------------------------------------------------------
419%        PPM scheme 
420% -------------------------------------------------------------------------------------------------------------
421\subsection   [Piecewise Parabolic Method (PPM) (\np{ln\_traadv\_ppm})]
422         {Piecewise Parabolic Method (PPM) (\np{ln\_traadv\_ppm}=true)}
423\label{TRA_adv_ppm}
424
425The Piecewise Parabolic Method (PPM) proposed by Colella and Woodward (1984)
426\sgacomment{reference?}
427is based on a quadradic piecewise construction. Like the QCK scheme, it is associated
428with the ULTIMATE QUICKEST limiter \citep{Leonard1991}. It has been implemented
429in \NEMO by G. Reffray (MERCATOR-ocean) but is not yet offered in the reference
430version 3.3.
431
432% ================================================================
433% Tracer Lateral Diffusion
434% ================================================================
435\section  [Tracer Lateral Diffusion (\textit{traldf})]
436      {Tracer Lateral Diffusion (\mdl{traldf})}
437\label{TRA_ldf}
438%-----------------------------------------nam_traldf------------------------------------------------------
439\namdisplay{namtra_ldf}
440%-------------------------------------------------------------------------------------------------------------
441 
442The options available for lateral diffusion are a laplacian (rotated or not)
443or a biharmonic operator, the latter being more scale-selective (more
444diffusive at small scales). The specification of eddy diffusivity
445coefficients (either constant or variable in space and time) as well as the
446computation of the slope along which the operators act, are performed in the
447\mdl{ldftra} and \mdl{ldfslp} modules, respectively. This is described in Chap.~\ref{LDF}.
448The lateral diffusion of tracers is evaluated using a forward scheme,
449$i.e.$ the tracers appearing in its expression are the \textit{before} tracers in time,
450except for the pure vertical component that appears when a rotation tensor
451is used. This latter term is solved implicitly together with the
452vertical diffusion term (see \S\ref{DOM_nxt}).
453
454% -------------------------------------------------------------------------------------------------------------
455%        Iso-level laplacian operator
456% -------------------------------------------------------------------------------------------------------------
457\subsection   [Iso-level laplacian operator (lap) (\np{ln\_traldf\_lap})]
458         {Iso-level laplacian operator (lap) (\np{ln\_traldf\_lap}=true) }
459\label{TRA_ldf_lap}
460
461A laplacian diffusion operator ($i.e.$ a harmonic operator) acting along the model
462surfaces is given by:
463\begin{equation} \label{Eq_tra_ldf_lap}
464D_T^{lT} =\frac{1}{b_tT} \left( \;
465   \delta _{i}\left[ A_u^{lT} \; \frac{e_{2u}\,e_{3u}}{e_{1u}} \;\delta _{i+1/2} [T] \right]
466+ \delta _{j}\left[ A_v^{lT} \;  \frac{e_{1v}\,e_{3v}}{e_{2v}} \;\delta _{j+1/2} [T] \right\;\right)
467\end{equation}
468where  $b_t$=$e_{1t}\,e_{2t}\,e_{3t}$  is the volume of $T$-cells.
469It is implemented in the \mdl{traadv\_lap} module.
470
471This lateral operator is computed in \mdl{traldf\_lap}. It is a \emph{horizontal} 
472operator ($i.e.$ acting along geopotential surfaces) in the $z$-coordinate with
473or without partial steps, but is simply an iso-level operator in the $s$-coordinate.
474It is thus used when, in addition to \np{ln\_traldf\_lap}=true, we have
475\np{ln\_traldf\_level}=true or \np{ln\_traldf\_hor}=\np{ln\_zco}=true.
476In both cases, it significantly contributes to diapycnal mixing.
477It is therefore not recommended.
478
479Note that in the partial step $z$-coordinate (\np{ln\_zps}=true), tracers in horizontally
480adjacent cells are located at different depths in the vicinity of the bottom.
481In this case, horizontal derivatives in (\ref{Eq_tra_ldf_lap}) at the bottom level
482require a specific treatment. They are calculated in the \mdl{zpshde} module,
483described in \S\ref{TRA_zpshde}.
484
485% -------------------------------------------------------------------------------------------------------------
486%        Rotated laplacian operator
487% -------------------------------------------------------------------------------------------------------------
488\subsection   [Rotated laplacian operator (iso) (\np{ln\_traldf\_lap})]
489         {Rotated laplacian operator (iso) (\np{ln\_traldf\_lap}=true)}
490\label{TRA_ldf_iso}
491
492The general form of the second order lateral tracer subgrid scale physics
493(\ref{Eq_PE_zdf}) takes the following semi-discrete space form in $z$- and
494$s$-coordinates:
495\begin{equation} \label{Eq_tra_ldf_iso}
496\begin{split}
497 D_T^{lT} = \frac{1}{b_t}   & \left\{   \,\;\delta_i \left[   A_u^{lT}  \left(
498     \frac{e_{2u}\,e_{3u}}{e_{1u}} \,\delta_{i+1/2}[T]
499   - e_{2u}\;r_{1u} \,\overline{\overline{ \delta_{k+1/2}[T] }}^{\,i+1/2,k}
500                                                     \right)   \right]   \right.    \\ 
501&             +\delta_j \left[ A_v^{lT} \left(
502          \frac{e_{1v}\,e_{3v}}{e_{2v}}  \,\delta_{j+1/2} [T]
503        - e_{1v}\,r_{2v} \,\overline{\overline{ \delta_{k+1/2} [T] }}^{\,j+1/2,k} 
504                                                    \right)   \right]                 \\ 
505& +\delta_k \left[ A_w^{lT} \left(
506       -\;e_{2w}\,r_{1w} \,\overline{\overline{ \delta_{i+1/2} [T] }}^{\,i,k+1/2}
507                                                    \right.   \right.                 \\ 
508& \qquad \qquad \quad 
509        - e_{1w}\,r_{2w} \,\overline{\overline{ \delta_{j+1/2} [T] }}^{\,j,k+1/2}     \\
510& \left. {\left. {   \qquad \qquad \ \ \ \left. {
511        +\;\frac{e_{1w}\,e_{2w}}{e_{3w}} \,\left( r_{1w}^2 + r_{2w}^2 \right)
512           \,\delta_{k+1/2} [T] } \right) } \right] \quad } \right\} 
513 \end{split}
514 \end{equation}
515where $b_t$=$e_{1t}\,e_{2t}\,e_{3t}$  is the volume of $T$-cells,
516$r_1$ and $r_2$ are the slopes between the surface of computation
517($z$- or $s$-surfaces) and the surface along which the diffusion operator
518acts ($i.e.$ horizontal or iso-neutral surfaces).  It is thus used when,
519in addition to \np{ln\_traldf\_lap}= true, we have \np{ln\_traldf\_iso}=true,
520or both \np{ln\_traldf\_hor}=true and \np{ln\_zco}=true. The way these
521slopes are evaluated is given in \S\ref{LDF_slp}. At the surface, bottom
522and lateral boundaries, the turbulent fluxes of heat and salt are set to zero
523using the mask technique (see \S\ref{LBC_coast}).
524
525The operator in \eqref{Eq_tra_ldf_iso} involves both lateral and vertical
526derivatives. For numerical stability, the vertical second derivative must
527be solved using the same implicit time scheme as that used in the vertical
528physics (see \S\ref{TRA_zdf}). For computer efficiency reasons, this term
529is not computed in the \mdl{traldf\_iso} module, but in the \mdl{trazdf} module
530where, if iso-neutral mixing is used, the vertical mixing coefficient is simply
531increased by $\frac{e_{1w}\,e_{2w} }{e_{3w} }\ \left( {r_{1w} ^2+r_{2w} ^2} \right)$.
532
533This formulation conserves the tracer but does not ensure the decrease
534of the tracer variance. Nevertheless the treatment performed on the slopes
535(see \S\ref{LDF}) allows the model to run safely without any additional
536background horizontal diffusion \citep{Guilyardi_al_CD01}. An alternative scheme
537developed by \cite{Griffies_al_JPO98} which preserves both tracer and its variance
538is also available in \NEMO (\np{ln\_traldf\_grif}=true). A complete description of
539the algorithm is given in App.\ref{Apdx_Griffies}.
540
541Note that in the partial step $z$-coordinate (\np{ln\_zps}=true), the horizontal
542derivatives at the bottom level in \eqref{Eq_tra_ldf_iso} require a specific
543treatment. They are calculated in module zpshde, described in \S\ref{TRA_zpshde}.
544
545% -------------------------------------------------------------------------------------------------------------
546%        Iso-level bilaplacian operator
547% -------------------------------------------------------------------------------------------------------------
548\subsection   [Iso-level bilaplacian operator (bilap) (\np{ln\_traldf\_bilap})]
549         {Iso-level bilaplacian operator (bilap) (\np{ln\_traldf\_bilap}=true)}
550\label{TRA_ldf_bilap}
551
552The lateral fourth order bilaplacian operator on tracers is obtained by
553applying (\ref{Eq_tra_ldf_lap}) twice. The operator requires an additional assumption
554on boundary conditions: both first and third derivative terms normal to the
555coast are set to zero. It is used when, in addition to \np{ln\_traldf\_bilap}=true,
556we have \np{ln\_traldf\_level}=true, or both \np{ln\_traldf\_hor}=true and
557\np{ln\_zco}=false. In both cases, it can contribute diapycnal mixing,
558although less than in the laplacian case. It is therefore not recommended.
559
560Note that in the code, the bilaplacian routine does not call the laplacian
561routine twice but is rather a separate routine that can be found in the
562\mdl{traldf\_bilap} module. This is due to the fact that we introduce the
563eddy diffusivity coefficient, A, in the operator as:
564$\nabla \cdot \nabla \left( {A\nabla \cdot \nabla T} \right)$,
565instead of
566$-\nabla \cdot a\nabla \left( {\nabla \cdot a\nabla T} \right)$ 
567where $a=\sqrt{|A|}$ and $A<0$. This was a mistake: both formulations
568ensure the total variance decrease, but the former requires a larger
569number of code-lines.
570
571% -------------------------------------------------------------------------------------------------------------
572%        Rotated bilaplacian operator
573% -------------------------------------------------------------------------------------------------------------
574\subsection   [Rotated bilaplacian operator (bilapg) (\np{ln\_traldf\_bilap})]
575         {Rotated bilaplacian operator (bilapg) (\np{ln\_traldf\_bilap}=true)}
576\label{TRA_ldf_bilapg}
577
578The lateral fourth order operator formulation on tracers is obtained by
579applying (\ref{Eq_tra_ldf_iso}) twice. It requires an additional assumption
580on boundary conditions: first and third derivative terms normal to the
581coast, normal to the bottom and normal to the surface are set to zero. It can be found in the
582\mdl{traldf\_bilapg}.
583
584It is used when, in addition to \np{ln\_traldf\_bilap}=true, we have
585\np{ln\_traldf\_iso}= .true, or both \np{ln\_traldf\_hor}=true and \np{ln\_zco}=true.
586This rotated bilaplacian operator has never been seriously
587tested. There are no guarantees that it is either free of bugs or correctly formulated.
588Moreover, the stability range of such an operator will be probably quite
589narrow, requiring a significantly smaller time-step than the one used with an
590unrotated operator.
591
592% ================================================================
593% Tracer Vertical Diffusion
594% ================================================================
595\section  [Tracer Vertical Diffusion (\textit{trazdf})]
596      {Tracer Vertical Diffusion (\mdl{trazdf})}
597\label{TRA_zdf}
598%--------------------------------------------namzdf---------------------------------------------------------
599\namdisplay{namzdf}
600%--------------------------------------------------------------------------------------------------------------
601
602The formulation of the vertical subgrid scale tracer physics is the same
603for all the vertical coordinates, and is based on a laplacian operator.
604The vertical diffusion operator given by (\ref{Eq_PE_zdf}) takes the
605following semi-discrete space form:
606\begin{equation} \label{Eq_tra_zdf}
607\begin{split}
608D^{vT}_T &= \frac{1}{e_{3t}} \; \delta_k \left[ \;\frac{A^{vT}_w}{e_{3w}}  \delta_{k+1/2}[T] \;\right]
609\\
610D^{vS}_T &= \frac{1}{e_{3t}} \; \delta_k \left[ \;\frac{A^{vS}_w}{e_{3w}}  \delta_{k+1/2}[S] \;\right]
611\end{split}
612\end{equation}
613where $A_w^{vT}$ and $A_w^{vS}$ are the vertical eddy diffusivity
614coefficients on temperature and salinity, respectively. Generally,
615$A_w^{vT}=A_w^{vS}$ except when double diffusive mixing is
616parameterised ($i.e.$ \key{zdfddm} is defined). The way these coefficients
617are evaluated is given in \S\ref{ZDF} (ZDF). Furthermore, when
618iso-neutral mixing is used, both mixing coefficients are increased
619by $\frac{e_{1w}\,e_{2w} }{e_{3w} }\ \left( {r_{1w} ^2+r_{2w} ^2} \right)$ 
620to account for the vertical second derivative of \eqref{Eq_tra_ldf_iso}.
621
622At the surface and bottom boundaries, the turbulent fluxes of
623heat and salt must be specified. At the surface they are prescribed
624from the surface forcing and added in a dedicated routine (see \S\ref{TRA_sbc}),
625whilst at the bottom they are set to zero for heat and salt unless
626a geothermal flux forcing is prescribed as a bottom boundary
627condition (see \S\ref{TRA_bbc}).
628
629The large eddy coefficient found in the mixed layer together with high
630vertical resolution implies that in the case of explicit time stepping
631(\np{ln\_zdfexp}=true) there would be too restrictive a constraint on
632the time step. Therefore, the default implicit time stepping is preferred
633for the vertical diffusion since it overcomes the stability constraint.
634A forward time differencing scheme (\np{ln\_zdfexp}=true) using a time
635splitting technique (\np{nn\_zdfexp} $> 1$) is provided as an alternative.
636Namelist variables \np{ln\_zdfexp} and \np{nn\_zdfexp} apply to both
637tracers and dynamics.
638
639% ================================================================
640% External Forcing
641% ================================================================
642\section{External Forcing}
643\label{TRA_sbc_qsr_bbc}
644
645% -------------------------------------------------------------------------------------------------------------
646%        surface boundary condition
647% -------------------------------------------------------------------------------------------------------------
648\subsection   [Surface boundary condition (\textit{trasbc})]
649         {Surface boundary condition (\mdl{trasbc})}
650\label{TRA_sbc}
651
652The surface boundary condition for tracers is implemented in a separate
653module (\mdl{trasbc}) instead of entering as a boundary condition on the vertical
654diffusion operator (as in the case of momentum). This has been found to
655enhance readability of the code. The two formulations are completely
656equivalent; the forcing terms in trasbc are the surface fluxes divided by
657the thickness of the top model layer.
658
659Due to interactions and mass exchange of water ($F_{mass}$) with other Earth system components ($i.e.$ atmosphere, sea-ice, land),
660the change in the heat and salt content of the surface layer of the ocean is due both
661to the heat and salt fluxes crossing the sea surface (not linked with $F_{mass}$)
662 and to the heat and salt content of the mass exchange.
663\sgacomment{ the following does not apply to the release to which this documentation is
664attached and so should not be included ....
665In a forthcoming release, these two parts, computed in the surface module (SBC), will be included directly
666in $Q_{ns}$, the surface heat flux and $F_{salt}$, the surface salt flux.
667The specification of these fluxes is further detailed in the SBC chapter (see \S\ref{SBC}).
668This change will provide a forcing formulation which is the same for any tracer (including temperature and salinity).
669 
670In the current version, the situation is a little bit more complicated. }
671
672The surface module (\mdl{sbcmod}, see \S\ref{SBC}) provides the following
673forcing fields (used on tracers):
674
675$\bullet$ $Q_{ns}$, the non-solar part of the net surface heat flux that crosses the sea surface
676(i.e. the difference between the total surface heat flux and the fraction of the short wave flux that
677penetrates into the water column, see \S\ref{TRA_qsr})
678
679$\bullet$ \textit{emp}, the mass flux exchanged with the atmosphere (evaporation minus precipitation)
680
681$\bullet$ $\textit{emp}_S$, an equivalent mass flux taking into account the effect of ice-ocean mass exchange
682
683$\bullet$ \textit{rnf}, the mass flux associated with runoff (see \S\ref{SBC_rnf} for further detail of how it acts on temperature and salinity tendencies)
684
685The $\textit{emp}_S$ field is not simply the budget of evaporation-precipitation+freezing-melting because
686the sea-ice is not currently embedded in the ocean but levitates above it. There is no mass
687exchanged between the sea-ice and the ocean. Instead we only take into account the salt
688flux associated with the non-zero salinity of sea-ice, and the concentration/dilution effect
689due to the freezing/melting (F/M) process. These two parts of the forcing are then converted into
690an equivalent mass flux given by $\textit{emp}_S - \textit{emp}$. As a result of this mess,
691the surface boundary condition on temperature and salinity is applied as follows:
692
693In the nonlinear free surface case (\key{vvl} is defined):
694\begin{equation} \label{Eq_tra_sbc}
695\begin{aligned}
696 &F^T = \frac{ 1 }{\rho _o \;C_p \,\left. e_{3t} \right|_{k=1} }   
697           &\overline{ \left( Q_{ns} - \textit{emp}\;C_p\,\left. T \right|_{k=1} \right) }^& \\ 
698%
699& F^S =\frac{ 1 }{\rho _o \,\left. e_{3t} \right|_{k=1} } 
700           &\overline{ \left( (\textit{emp}_S - \textit{emp})\;\left. S \right|_{k=1}  \right) }^t   & \\   
701 \end{aligned}
702\end{equation} 
703
704In the linear free surface case (\key{vvl} not defined):
705\begin{equation} \label{Eq_tra_sbc_lin}
706\begin{aligned}
707 &F^T = \frac{ 1 }{\rho _o \;C_p \,\left. e_{3t} \right|_{k=1} }  &\overline{ Q_{ns} }^& \\ 
708%
709& F^S =\frac{ 1 }{\rho _o \,\left. e_{3t} \right|_{k=1} } 
710           &\overline{ \left( \textit{emp}_S\;\left. S \right|_{k=1}  \right) }^t   & \\   
711 \end{aligned}
712\end{equation} 
713where $\overline{x }^t$ means that $x$ is averaged over two consecutive time steps
714($t-\rdt/2$ and $t+\rdt/2$). Such time averaging prevents the
715divergence of odd and even time step (see \S\ref{STP}).
716
717The two set of equations, \eqref{Eq_tra_sbc} and \eqref{Eq_tra_sbc_lin}, are obtained
718by assuming that the temperature of precipitation and evaporation are equal to
719the ocean surface temperature and that their salinity is zero. Therefore, the heat content
720of the \textit{emp} budget must be added to the temperature equation in the variable volume case,
721while it does not appear in the constant volume case. Similarly, the \textit{emp} budget affects
722the ocean surface salinity in the constant volume case (through the concentration dilution effect)
723while it does not appears explicitly in the variable volume case since salinity change will be
724induced by volume change. In both constant and variable volume cases, surface salinity
725will change with ice-ocean salt flux and F/M flux (both contained in $\textit{emp}_S - \textit{emp}$) without mass exchanges.
726
727Note that the concentration/dilution effect due to F/M is computed using
728a constant ice salinity as well as a constant ocean salinity.
729This approximation suppresses the correlation between \textit{SSS} 
730and F/M flux, allowing the ice-ocean salt exchanges to be conservative.
731Indeed, if this approximation is not made, even if the F/M budget is zero
732on average over the whole ocean domain and over the seasonal cycle,
733the associated salt flux is not zero, since sea-surface salinity and F/M flux are
734intrinsically correlated (high \textit{SSS} are found where freezing is
735strong whilst low \textit{SSS} is usually associated with high melting areas).
736
737Even using this approximation, an exact conservation of heat and salt content
738is only achieved in the variable volume case. In the constant volume case,
739there is a small imbalance associated with the product $(\partial_t\eta - \textit{emp}) * \textit{SSS}$.
740Nevertheless, the salt content variation is quite small and will not induce
741a long term drift as there is no physical reason for $(\partial_t\eta - \textit{emp})$ 
742and \textit{SSS} to be correlated \citep{Roullet_Madec_JGR00}.
743Note that, while quite small, the imbalance in the constant volume case is larger
744than the imbalance associated with the Asselin time filter \citep{Leclair_Madec_OM09}.
745This is the reason why the modified filter is not applied in the constant volume case.
746
747% -------------------------------------------------------------------------------------------------------------
748%        Solar Radiation Penetration
749% -------------------------------------------------------------------------------------------------------------
750\subsection   [Solar Radiation Penetration (\textit{traqsr})]
751         {Solar Radiation Penetration (\mdl{traqsr})}
752\label{TRA_qsr}
753%--------------------------------------------namqsr--------------------------------------------------------
754\namdisplay{namtra_qsr}
755%--------------------------------------------------------------------------------------------------------------
756
757When the penetrative solar radiation option is used (\np{ln\_flxqsr}=true),
758the solar radiation penetrates the top few tens of meters of the ocean. If it is not used
759(\np{ln\_flxqsr}=false) all the heat flux is absorbed in the first ocean level.
760Thus, in the former case a term is added to the time evolution equation of
761temperature \eqref{Eq_PE_tra_T} and the surface boundary condition is
762modified to take into account only the non-penetrative part of the surface
763heat flux:
764\begin{equation} \label{Eq_PE_qsr}
765\begin{split}
766\frac{\partial T}{\partial t} &= {\ldots} + \frac{1}{\rho_o\, C_p \,e_3} \; \frac{\partial I}{\partial k}   \\
767Q_{ns} &= Q_\text{Total} - Q_{sr}
768\end{split}
769\end{equation}
770where $Q_{sr}$ is the penetrative part of the surface heat flux ($i.e.$ the shortwave radiation)
771and $I$ is the downward irradiance ($\left. I \right|_{z=\eta}=Q_{sr}$).
772The additional term in \eqref{Eq_PE_qsr} is discretized as follows:
773\begin{equation} \label{Eq_tra_qsr}
774\frac{1}{\rho_o\, C_p \,e_3} \; \frac{\partial I}{\partial k} \equiv \frac{1}{\rho_o\, C_p\, e_{3t}} \delta_k \left[ I_w \right]
775\end{equation}
776
777The shortwave radiation,  $Q_{sr}$, consists of energy distributed across a wide spectral range.
778The ocean is strongly absorbing for wavelengths longer than 700~nm and these
779wavelengths contribute to heating the upper few tens of centimetres. The fraction of $Q_{sr}$ 
780that resides in these almost non-penetrative wavebands, $R$, is $\sim 58\%$ (specified
781through namelist parameter \np{rn\_abs}).  It is assumed to penetrate the ocean
782with a decreasing exponential profile, with an e-folding depth scale, $\xi_0$,
783of a few tens of centimetres (typically $\xi_0=0.35~m$ set as \np{rn\_si0} in the namtra\_qsr namelist).
784For shorter wavelengths (400-700~nm), the ocean is more transparent, and solar energy
785propagates to larger depths where it contributes to
786local heating.
787The way this second part of the solar energy penetrates into the ocean depends on
788which formulation is chosen. In the simple 2-waveband light penetration scheme  (\np{ln\_qsr\_2bd}=true)
789a chlorophyll-independent monochromatic formulation is chosen for the shorter wavelengths,
790leading to the following expression  \citep{Paulson1977}:
791\begin{equation} \label{Eq_traqsr_iradiance}
792I(z) = Q_{sr} \left[Re^{-z / \xi_0} + \left( 1-R\right) e^{-z / \xi_1} \right]
793\end{equation}
794where $\xi_1$ is the second extinction length scale associated with the shorter wavelengths. 
795It is usually chosen to be 23~m by setting the \np{rn\_si0} namelist parameter.
796The set of default values ($\xi_0$, $\xi_1$, $R$) corresponds to a Type I water in
797Jerlov's (1968) classification (oligotrophic waters).
798
799Such assumptions have been shown to provide a very crude and simplistic
800representation of observed light penetration profiles (\cite{Morel_JGR88}, see also
801Fig.\ref{Fig_traqsr_irradiance}). Light absorption in the ocean depends on
802particle concentration and is spectrally selective. \cite{Morel_JGR88} has shown
803that an accurate representation of light penetration can be provided by a 61 waveband
804formulation. Unfortunately, such a model is very computationally expensive.
805Thus, \cite{Lengaigne_al_CD07} have constructed a simplified version of this
806formulation in which visible light is split into three wavebands: blue (400-500 nm),
807green (500-600 nm) and red (600-700nm). For each wave-band, the chlorophyll-dependent
808attenuation coefficient is fitted to the coefficients computed from the full spectral model
809of \cite{Morel_JGR88} (as modified by \cite{Morel_Maritorena_JGR01}), assuming
810the same power-law relationship. As shown in Fig.\ref{Fig_traqsr_irradiance},
811this formulation, called RGB (Red-Green-Blue), reproduces quite closely
812the light penetration profiles predicted by the full spectal model, but with much greater
813computational efficiency. The 2-bands formulation does not reproduce the full model very well.
814
815The RGB formulation is used when \np{ln\_qsr\_rgb}=true. The RGB attenuation coefficients
816($i.e.$ the inverses of the extinction length scales) are tabulated over 61 nonuniform
817chlorophyll classes ranging from 0.01 to 10 g.Chl/L (see the routine \rou{trc\_oce\_rgb} 
818in \mdl{trc\_oce} module). Three types of chlorophyll can be chosen in the RGB formulation:
819(1) a constant 0.05 g.Chl/L value everywhere (\np{nn\_chdta}=0) ; (2) an observed
820time varying chlorophyll (\np{nn\_chdta}=1) ; (3) simulated time varying chlorophyll
821by TOP biogeochemical model (\np{ln\_qsr\_bio}=true). In the latter case, the RGB
822formulation is used to calculate both the phytoplankton light limitation in PISCES
823or LOBSTER and the oceanic heating rate.
824
825The trend in \eqref{Eq_tra_qsr} associated with the penetration of the solar radiation
826is added to the temperature trend, and the surface heat flux is modified in routine \mdl{traqsr}.
827
828When the $z$-coordinate is preferred to the $s$-coordinate, the depth of $w-$levels does
829not significantly vary with location. The level at which the light has been totally
830absorbed ($i.e.$ it is less than the computer precision) is computed once,
831and the trend associated with the penetration of the solar radiation is only added down to that level.
832Finally, note that when the ocean is shallow ($<$ 200~m), part of the
833solar radiation can reach the ocean floor. In this case, we have
834chosen that all remaining radiation is absorbed in the last ocean
835level ($i.e.$ $I$ is masked).
836
837%>>>>>>>>>>>>>>>>>>>>>>>>>>>>
838\begin{figure}[!t] \label{Fig_traqsr_irradiance}  \begin{center}
839\includegraphics[width=1.0\textwidth]{./TexFiles/Figures/Fig_TRA_Irradiance.pdf}
840\caption{Penetration profile of the downward solar irradiance
841calculated by four models. Two waveband chlorophyll-independent formulation (blue),
842a chlorophyll-dependent monochromatic formulation (green), 4 waveband RGB formulation (red),
84361 waveband Morel (1988) formulation (black) for a chlorophyll concentration of
844(a) Chl=0.05 mg/m$^3$ and (b) Chl=0.5 mg/m$^3$. From \citet{Lengaigne_al_CD07}.}
845\end{center}   \end{figure}
846%>>>>>>>>>>>>>>>>>>>>>>>>>>>>
847
848% -------------------------------------------------------------------------------------------------------------
849%        Bottom Boundary Condition
850% -------------------------------------------------------------------------------------------------------------
851\subsection   [Bottom Boundary Condition (\textit{trabbc})]
852         {Bottom Boundary Condition (\mdl{trabbc})}
853\label{TRA_bbc}
854%--------------------------------------------nambbc--------------------------------------------------------
855\namdisplay{namtra_bbc}
856%--------------------------------------------------------------------------------------------------------------
857%>>>>>>>>>>>>>>>>>>>>>>>>>>>>
858\begin{figure}[!t] \label{Fig_geothermal}  \begin{center}
859\includegraphics[width=1.0\textwidth]{./TexFiles/Figures/Fig_TRA_geoth.pdf}
860\caption{Geothermal Heat flux (in $mW.m^{-2}$) used by \cite{Emile-Geay_Madec_OS09}.
861It is inferred from the age of the sea floor and the formulae of \citet{Stein_Stein_Nat92}.}
862\end{center}   \end{figure}
863%>>>>>>>>>>>>>>>>>>>>>>>>>>>>
864
865Usually it is assumed that there is no exchange of heat or salt through
866the ocean bottom, $i.e.$ a no flux boundary condition is applied on active
867tracers at the bottom. This is the default option in \NEMO, and it is
868implemented using the masking technique. However, there is a
869non-zero heat flux across the seafloor that is associated with solid
870earth cooling. This flux is weak compared to surface fluxes (a mean
871global value of $\sim0.1\;W/m^2$ \citep{Stein_Stein_Nat92}), but it warms
872systematically the ocean and acts on the densest water masses.
873Taking this flux into account in a global ocean model increases
874the deepest overturning cell ($i.e.$ the one associated with the Antarctic
875Bottom Water) by a few Sverdrups  \citep{Emile-Geay_Madec_OS09}.
876
877The presence of geothermal heating is controlled by setting the namelist
878parameter  \np{ln\_trabbc} to true. Then, when \np{nn\_geoflx} is set to 1,
879a constant geothermal heating is introduced whose value is given by the
880\np{nn\_geoflx\_cst}, which is also a namelist parameter.
881When  \np{nn\_geoflx} is set to 2, a spatially varying geothermal heat flux is
882introduced which is provided in the \ifile{geothermal\_heating} NetCDF file
883(Fig.\ref{Fig_geothermal}) \citep{Emile-Geay_Madec_OS09}.
884
885% ================================================================
886% Bottom Boundary Layer
887% ================================================================
888\section  [Bottom Boundary Layer (\mdl{trabbl} - \key{trabbl})]
889      {Bottom Boundary Layer (\mdl{trabbl} - \key{trabbl})}
890\label{TRA_bbl}
891%--------------------------------------------nambbl---------------------------------------------------------
892\namdisplay{nambbl}
893%--------------------------------------------------------------------------------------------------------------
894
895In a $z$-coordinate configuration, the bottom topography is represented by a
896series of discrete steps. This is not adequate to represent gravity driven
897downslope flows. Such flows arise either downstream of sills such as the Strait of
898Gibraltar or Denmark Strait, where dense water formed in marginal seas flows
899into a basin filled with less dense water, or along the continental slope when dense
900water masses are formed on a continental shelf. The amount of entrainment
901that occurs in these gravity plumes is critical in determining the density
902and volume flux of the densest waters of the ocean, such as Antarctic Bottom Water,
903or North Atlantic Deep Water. $z$-coordinate models tend to overestimate the
904entrainment, because the gravity flow is mixed vertically by convection
905as it goes ''downstairs'' following the step topography, sometimes over a thickness
906much larger than the thickness of the observed gravity plume. A similar problem
907occurs in the $s$-coordinate when the thickness of the bottom level varies rapidly
908downstream of a sill \citep{Willebrand_al_PO01}, and the thickness
909of the plume is not resolved.
910
911The idea of the bottom boundary layer (BBL) parameterisation, first introduced by
912\citet{Beckmann_Doscher1997}, is to allow a direct communication between
913two adjacent bottom cells at different levels, whenever the densest water is
914located above the less dense water. The communication can be by a diffusive flux
915(diffusive BBL), an advective flux (advective BBL), or both. In the current
916implementation of the BBL, only the tracers are modified, not the velocities.
917Furthermore, it only connects ocean bottom cells, and therefore does not include
918all the improvements introduced by \citet{Campin_Goosse_Tel99}.
919
920% -------------------------------------------------------------------------------------------------------------
921%        Diffusive BBL
922% -------------------------------------------------------------------------------------------------------------
923\subsection{Diffusive Bottom Boundary layer (\np{nn\_bbl\_ldf}=1)}
924\label{TRA_bbl_diff}
925
926When applying sigma-diffusion (\key{trabbl} defined and \np{nn\_bbl\_ldf} set to 1),
927the diffusive flux between two adjacent cells at the ocean floor is given by
928\begin{equation} \label{Eq_tra_bbl_diff}
929{\rm {\bf F}}_\sigma=A_l^\sigma \; \nabla_\sigma T
930\end{equation} 
931with $\nabla_\sigma$ the lateral gradient operator taken between bottom cells,
932and  $A_l^\sigma$ the lateral diffusivity in the BBL. Following \citet{Beckmann_Doscher1997},
933the latter is prescribed with a spatial dependence, $i.e.$ in the conditional form
934\begin{equation} \label{Eq_tra_bbl_coef}
935A_l^\sigma (i,j,t)=\left\{ {\begin{array}{l}
936 A_{bbl}  \quad \quad   \mbox{if}  \quad   \nabla_\sigma \rho  \cdot  \nabla H<0 \\ 
937 \\
938 0\quad \quad \;\,\mbox{otherwise} \\ 
939 \end{array}} \right.
940\end{equation} 
941where $A_{bbl}$ is the BBL diffusivity coefficient, given by the namelist
942parameter \np{rn\_ahtbbl} and usually set to a value much larger
943than the one used for lateral mixing in the open ocean. The constraint in \eqref{Eq_tra_bbl_coef} 
944implies that sigma-like diffusion only occurs when the density above the sea floor, at the top of
945the slope, is larger than in the deeper ocean (see green arrow in Fig.\ref{Fig_bbl}).
946In practice, this constraint is applied separately in the two horizontal directions,
947and the density gradient in \eqref{Eq_tra_bbl_coef} is evaluated with the log gradient formulation:
948\begin{equation} \label{Eq_tra_bbl_Drho}
949   \nabla_\sigma \rho / \rho = \alpha \,\nabla_\sigma T + \beta   \,\nabla_\sigma S
950\end{equation} 
951where $\rho$, $\alpha$ and $\beta$ are functions of $\overline{T}^\sigma$,
952$\overline{S}^\sigma$ and $\overline{H}^\sigma$, the along bottom mean temperature,
953salinity and depth, respectively.
954
955% -------------------------------------------------------------------------------------------------------------
956%        Advective BBL
957% -------------------------------------------------------------------------------------------------------------
958\subsection   {Advective Bottom Boundary Layer  (\np{nn\_bbl\_adv}= 1 or 2)}
959\label{TRA_bbl_adv}
960
961\sgacomment{"downsloping flow" has been replaced by "downslope flow" in the following
962if this is not what is meant then "downwards sloping flow" is also a possibility"}
963
964%>>>>>>>>>>>>>>>>>>>>>>>>>>>>
965\begin{figure}[!t] \label{Fig_bbl}  \begin{center}
966\includegraphics[width=0.7\textwidth]{./TexFiles/Figures/Fig_BBL_adv.pdf}
967\caption{Advective/diffusive Bottom Boundary Layer. The BBL parameterisation is
968activated when $\rho^i_{kup}$ is larger than $\rho^{i+1}_{kdnw}$.
969Red arrows indicate the additional overturning circulation due to the advective BBL.
970The transport of the downslope flow is defined either as the transport of the bottom
971ocean cell (black arrow), or as a function of the along slope density gradient.
972The green arrow indicates the diffusive BBL flux directly connecting $kup$ and $kdwn$
973ocean bottom cells.
974connection}
975\end{center}   \end{figure}
976%>>>>>>>>>>>>>>>>>>>>>>>>>>>>
977
978
979%!!      nn_bbl_adv = 1   use of the ocean velocity as bbl velocity
980%!!      nn_bbl_adv = 2   follow Campin and Goosse (1999) implentation
981%!!        i.e. transport proportional to the along-slope density gradient
982
983%%%gmcomment   :  this section has to be really written
984
985When applying an advective BBL (\np{nn\_bbl\_adv} = 1 or 2), an overturning
986circulation is added which connects two adjacent bottom grid-points only if dense
987water overlies less dense water on the slope. The density difference causes dense
988water to move down the slope.
989
990\np{nn\_bbl\_adv} = 1 : the downslope velocity is chosen to be the Eulerian
991ocean velocity just above the topographic step (see black arrow in Fig.\ref{Fig_bbl})
992\citep{Beckmann_Doscher1997}. It is a \textit{conditional advection}, that is, advection
993is allowed only if dense water overlies less dense water on the slope ($i.e.$ 
994$\nabla_\sigma \rho  \cdot  \nabla H<0$) and if the velocity is directed towards
995greater depth ($i.e.$ $\vect{U}  \cdot  \nabla H>0$).
996
997\np{nn\_bbl\_adv} = 2 : the downslope velocity is chosen to be proportional to $\Delta \rho$,
998the density difference between the higher cell and lower cell densities \citep{Campin_Goosse_Tel99}.
999The advection is allowed only  if dense water overlies less dense water on the slope ($i.e.$ 
1000$\nabla_\sigma \rho  \cdot  \nabla H<0$). For example, the resulting transport of the
1001downslope flow, here in the $i$-direction (Fig.\ref{Fig_bbl}), is simply given by the
1002following expression:
1003\begin{equation} \label{Eq_bbl_Utr}
1004 u^{tr}_{bbl} = \gamma \, g \frac{\Delta \rho}{\rho_o}  e_{1u} \; min \left( {e_{3u}}_{kup},{e_{3u}}_{kdwn} \right)
1005\end{equation}
1006where $\gamma$, expressed in seconds, is the coefficient of proportionality
1007provided as \np{rn\_gambbl}, a namelist parameter, and \textit{kup} and \textit{kdwn} 
1008are the vertical index of the higher and lower cells, respectively.
1009The parameter $\gamma$ should take a different value for each bathymetric
1010step, but for simplicity, and because no direct estimation of this parameter is
1011available, a uniform value has been assumed. The possible values for $\gamma$ 
1012range between 1 and $10~s$ \citep{Campin_Goosse_Tel99}
1013
1014Scalar properties are advected by this additional transport $( u^{tr}_{bbl}, v^{tr}_{bbl} )$ 
1015using the upwind scheme. Such a diffusive advective scheme has been chosen
1016to mimic the entrainment between the downslope plume and the surrounding
1017water at intermediate depths. The entrainment is replaced by the vertical mixing
1018implicit in the advection scheme. Let us consider as an example the
1019case displayed in Fig.\ref{Fig_bbl} where the density at level $(i,kup)$ is
1020larger than the one at level $(i,kdwn)$. The advective BBL scheme
1021modifies the tracer time tendency of the ocean cells near the
1022topographic step by the downslope flow \eqref{Eq_bbl_dw},
1023the horizontal \eqref{Eq_bbl_hor}  and the upward \eqref{Eq_bbl_up} 
1024return flows as follows:
1025\begin{align} 
1026\partial_t T^{do}_{kdw} &\equiv \partial_t T^{do}_{kdw}
1027                                     +  \frac{u^{tr}_{bbl}}{{b_t}^{do}_{kdw}}  \left( T^{sh}_{kup} - T^{do}_{kdw} \right\label{Eq_bbl_dw} \\
1028%
1029\partial_t T^{sh}_{kup} &\equiv \partial_t T^{sh}_{kup} 
1030               + \frac{u^{tr}_{bbl}}{{b_t}^{sh}_{kup}}   \left( T^{do}_{kup} - T^{sh}_{kup} \right)   \label{Eq_bbl_hor} \\
1031%
1032\intertext{and for $k =kdw-1,\;..., \; kup$ :} 
1033%
1034\partial_t T^{do}_{k} &\equiv \partial_t S^{do}_{k}
1035               + \frac{u^{tr}_{bbl}}{{b_t}^{do}_{k}}   \left( T^{do}_{k+1} - T^{sh}_{k} \right)   \label{Eq_bbl_up}
1036\end{align}
1037where $b_t$ is the $T$-cell volume.
1038
1039Note that the BBL transport, $( u^{tr}_{bbl}, v^{tr}_{bbl} )$, is available in
1040the model outputs. It has to be used to compute the effective velocity
1041as well as the effective overturning circulation.
1042
1043% ================================================================
1044% Tracer damping
1045% ================================================================
1046\section  [Tracer damping (\textit{tradmp})]
1047      {Tracer damping (\mdl{tradmp})}
1048\label{TRA_dmp}
1049%--------------------------------------------namtra_dmp-------------------------------------------------
1050\namdisplay{namtra_dmp}
1051%--------------------------------------------------------------------------------------------------------------
1052
1053In some applications it can be useful to add a Newtonian damping term
1054into the temperature and salinity equations:
1055\begin{equation} \label{Eq_tra_dmp}
1056\begin{split}
1057 \frac{\partial T}{\partial t}=\;\cdots \;-\gamma \,\left( {T-T_o } \right\\
1058 \frac{\partial S}{\partial t}=\;\cdots \;-\gamma \,\left( {S-S_o } \right)
1059 \end{split}
1060 \end{equation} 
1061where $\gamma$ is the inverse of a time scale, and $T_o$ and $S_o$ 
1062are given temperature and salinity fields (usually a climatology).
1063The restoring term is added when \key{tradmp} is defined.
1064It also requires that both \key{dtatem} and \key{dtasal} are defined
1065($i.e.$ that $T_o$ and $S_o$ are read). The restoring coefficient
1066$\gamma$ is a three-dimensional array initialized by the user in routine
1067\rou{dtacof} also located in module \mdl{tradmp}.
1068
1069The two main cases in which \eqref{Eq_tra_dmp} is used are \textit{(a)} 
1070the specification of the boundary conditions along artificial walls of a
1071limited domain basin and \textit{(b)} the computation of the velocity
1072field associated with a given $T$-$S$ field (for example to build the
1073initial state of a prognostic simulation, or to use the resulting velocity
1074field for a passive tracer study). The first case applies to regional
1075models that have artificial walls instead of open boundaries.
1076In the vicinity of these walls, $\gamma$ takes large values (equivalent to
1077a time scale of a few days) whereas it is zero in the interior of the
1078model domain. The second case corresponds to the use of the robust
1079diagnostic method \citep{Sarmiento1982}. It allows us to find the velocity
1080field consistent with the model dynamics whilst having a $T$, $S$ field
1081close to a given climatological field ($T_o$, $S_o$). The time scale
1082associated with $S_o$ is generally not a constant but spatially varying
1083in order to respect other properties. For example, it is usually set to zero
1084in the mixed layer (defined either on a density or $S_o$ criterion)
1085\citep{Madec_al_JPO96} and in the equatorial region
1086\citep{Reverdin1991, Fujio1991, Marti_PhD92} since these two regions
1087have a short time scale of adjustment; while smaller $\gamma$ are used
1088in the deep ocean where the typical time scale is long \citep{Sarmiento1982}.
1089In addition the time scale is reduced (even to zero) along the western
1090boundary to allow the model to reconstruct its own western boundary
1091structure in equilibrium with its physics.
1092The choice of the shape of the Newtonian damping is controlled by two
1093namelist parameters \np{nn\_hdmp} and \np{nn\_zdmp}. The former allows us to specify: the
1094width of the equatorial band in which no damping is applied; a decrease
1095in the vicinity of the coast; and a damping everywhere in the Red and Med Seas.
1096The latter sets whether damping should act in the mixed layer or not.
1097The time scale associated with the damping depends on the depth as
1098a hyperbolic tangent, with \np{rn\_surf} as surface value, \np{rn\_bot} as
1099bottom value and a transition depth of \np{rn\_dep}
1100
1101The robust diagnostic method is very efficient in preventing temperature
1102drift in intermediate waters but it produces artificial sources of heat and salt
1103within the ocean. It also has undesirable effects on the ocean convection.
1104It tends to prevent deep convection and subsequent deep-water formation,
1105by stabilising the water column too much.
1106
1107An example of the computation of $\gamma$ for a robust diagnostic experiment
1108with the ORCA2 model is provided in the \mdl{tradmp} module
1109(subroutines \rou{dtacof} and \rou{cofdis} which compute the coefficient
1110and the distance to the bathymetry, respectively). These routines are
1111provided as examples and can be customised by the user.
1112
1113% ================================================================
1114% Tracer time evolution
1115% ================================================================
1116\section  [Tracer time evolution (\textit{tranxt})]
1117      {Tracer time evolution (\mdl{tranxt})}
1118\label{TRA_nxt}
1119%--------------------------------------------namdom-----------------------------------------------------
1120\namdisplay{namdom}
1121%--------------------------------------------------------------------------------------------------------------
1122
1123The general framework for tracer time stepping is a modified leap-frog scheme
1124\citep{Leclair_Madec_OM09}, $i.e.$ a three level centred time scheme associated
1125with a Asselin time filter (cf. \S\ref{STP_mLF}):
1126\begin{equation} \label{Eq_tra_nxt}
1127\begin{aligned}
1128(e_{3t}T)^{t+\rdt} &= (e_{3t}T)_f^{t-\rdt} &+ 2 \, \rdt  \,e_{3t}^t\ \text{RHS}^t & \\
1129\\
1130(e_{3t}T)_f^\;\ \quad &= (e_{3t}T)^t \;\quad 
1131                                    &+\gamma \,\left[ {(e_{3t}T)_f^{t-\rdt} -2(e_{3t}T)^t+(e_{3t}T)^{t+\rdt}} \right] &  \\
1132                                 & &- \gamma\,\rdt \, \left[ Q^{t+\rdt/2} -  Q^{t-\rdt/2} \right]  &                     
1133\end{aligned}
1134\end{equation} 
1135where RHS is the right hand side of the temperature equation,
1136the subscript $f$ denotes filtered values, $\gamma$ is the Asselin coefficient,
1137and $S$ is the total forcing applied on $T$ ($i.e.$ fluxes plus content in mass exchanges).
1138$\gamma$ is initialized as \np{rn\_atfp} (\textbf{namelist} parameter).
1139Its default value is \np{rn\_atfp}=$10^{-3}$. Note that the forcing correction term in the filter
1140is not applied in linear free surface (\jp{lk\_vvl}=false) (see \S\ref{TRA_sbc}.
1141Not also that in constant volume case, the time stepping is performed on $T$,
1142not on its content, $e_{3t}T$.
1143
1144When the vertical mixing is solved implicitly, the update of the \textit{next} tracer
1145fields is done in module \mdl{trazdf}. In this case only the swapping of arrays
1146and the Asselin filtering is done in the \mdl{tranxt} module.
1147
1148In order to prepare for the computation of the \textit{next} time step,
1149a swap of tracer arrays is performed: $T^{t-\rdt} = T^t$ and $T^t = T_f$.
1150
1151% ================================================================
1152% Equation of State (eosbn2)
1153% ================================================================
1154\section  [Equation of State (\textit{eosbn2}) ]
1155      {Equation of State (\mdl{eosbn2}) }
1156\label{TRA_eosbn2}
1157%--------------------------------------------nameos-----------------------------------------------------
1158\namdisplay{nameos}
1159%--------------------------------------------------------------------------------------------------------------
1160
1161% -------------------------------------------------------------------------------------------------------------
1162%        Equation of State
1163% -------------------------------------------------------------------------------------------------------------
1164\subsection{Equation of State (\np{nn\_eos} = 0, 1 or 2)}
1165\label{TRA_eos}
1166
1167It is necessary to know the equation of state for the ocean very accurately
1168to determine stability properties (especially the Brunt-Vais\"{a}l\"{a} frequency),
1169particularly in the deep ocean. The ocean seawater volumic mass, $\rho$,
1170abusively called density, is a non linear empirical function of \textit{in situ} 
1171temperature, salinity and pressure. The reference equation of state is that
1172defined by the Joint Panel on Oceanographic Tables and Standards
1173\citep{UNESCO1983}. It was the standard equation of state used in early
1174releases of OPA. However, even though this computation is fully vectorised,
1175it is quite time consuming ($15$ to $20${\%} of the total CPU time) since
1176it requires the prior computation of the \textit{in situ} temperature from the
1177model \textit{potential} temperature using the \citep{Bryden1973} polynomial
1178for adiabatic lapse rate and a $4^th$ order Runge-Kutta integration scheme.
1179Since OPA6, we have used the \citet{JackMcD1995} equation of state for
1180seawater instead. It allows the computation of the \textit{in situ} ocean density
1181directly as a function of \textit{potential} temperature relative to the surface
1182(an \NEMO variable), the practical salinity (another \NEMO variable) and the
1183pressure (assuming no pressure variation along geopotential surfaces, $i.e.$ 
1184the pressure in decibars is approximated by the depth in meters).
1185Both the \citet{UNESCO1983} and \citet{JackMcD1995} equations of state
1186have exactly the same except that the values of the various coefficients have
1187been adjusted by \citet{JackMcD1995} in order to directly use the \textit{potential} 
1188temperature instead of the \textit{in situ} one. This reduces the CPU time of the
1189\textit{in situ} density computation to about $3${\%} of the total CPU time,
1190while maintaining a quite accurate equation of state.
1191
1192In the computer code, a \textit{true} density anomaly, $d_a= \rho / \rho_o - 1$,
1193is computed, with $\rho_o$ a reference volumic mass. Called \textit{rau0} 
1194in the code, $\rho_o$ is defined in \mdl{phycst}, and a value of $1,035~Kg/m^3$.
1195This is a sensible choice for the reference density used in a Boussinesq ocean
1196climate model, as, with the exception of only a small percentage of the ocean,
1197density in the World Ocean varies by no more than 2$\%$ from $1,035~kg/m^3$ 
1198\citep{Gill1982}.
1199
1200The default option (namelist parameter \np{nn\_eos}=0) is the \citet{JackMcD1995} 
1201equation of state. Its use is highly recommended. However, for process studies,
1202it is often convenient to use a linear approximation of the density.
1203With such an equation of state there is no longer a distinction between
1204\textit{in situ} and \textit{potential} density and both cabbeling and thermobaric
1205effects are removed.
1206Two linear formulations are available: a function of $T$ only (\np{nn\_eos}=1)
1207and a function of both $T$ and $S$ (\np{nn\_eos}=2):
1208\begin{equation} \label{Eq_tra_eos_linear}
1209\begin{split}
1210  d_a(T)       &\rho (T)      /  \rho_o   - 1     =  \  0.0285         -  \alpha   \;T     \\ 
1211  d_a(T,S)    &\rho (T,S)   /  \rho_o   - 1     =  \  \beta \; S       -  \alpha   \;T   
1212\end{split}
1213\end{equation} 
1214where $\alpha$ and $\beta$ are the thermal and haline expansion
1215coefficients, and $\rho_o$, the reference volumic mass, $rau0$.
1216($\alpha$ and $\beta$ can be modified through the \np{rn\_alpha} and
1217\np{rn\_beta} namelist parameters). Note that when $d_a$ is a function
1218of $T$ only (\np{nn\_eos}=1), the salinity is a passive tracer and can be
1219used as such.
1220
1221% -------------------------------------------------------------------------------------------------------------
1222%        Brunt-Vais\"{a}l\"{a} Frequency
1223% -------------------------------------------------------------------------------------------------------------
1224\subsection{Brunt-Vais\"{a}l\"{a} Frequency (\np{nn\_eos} = 0, 1 or 2)}
1225\label{TRA_bn2}
1226
1227An accurate computation of the ocean stability (i.e. of $N$, the brunt-Vais\"{a}l\"{a}
1228 frequency) is of paramount importance as it is used in several ocean
1229 parameterisations (namely TKE, KPP, Richardson number dependent
1230 vertical diffusion, enhanced vertical diffusion, non-penetrative convection,
1231 iso-neutral diffusion). In particular, one must be aware that $N^2$ has to
1232 be computed with an \textit{in situ} reference. The expression for $N^2$ 
1233 depends on the type of equation of state used (\np{nn\_eos} namelist parameter).
1234
1235For \np{nn\_eos}=0 (\citet{JackMcD1995} equation of state), the \citet{McDougall1987} 
1236polynomial expression is used (with the pressure in decibar approximated by
1237the depth in meters):
1238\begin{equation} \label{Eq_tra_bn2}
1239N^2 = \frac{g}{e_{3w}} \; \beta   \
1240      \left\alpha / \beta \ \delta_{k+1/2}[T]     - \delta_{k+1/2}[S]   \right)
1241\end{equation} 
1242where $\alpha$ and $\beta$ are the thermal and haline expansion coefficients.
1243They are a function of  $\overline{T}^{\,k+1/2},\widetilde{S}=\overline{S}^{\,k+1/2} - 35.$,
1244and  $z_w$, with $T$ the \textit{potential} temperature and $\widetilde{S}$ a salinity anomaly.
1245Note that both $\alpha$ and $\beta$ depend on \textit{potential} 
1246temperature and salinity which are averaged at $w$-points prior
1247to the computation instead of being computed at $T$-points and
1248then averaged to $w$-points.
1249
1250When a linear equation of state is used (\np{nn\_eos}=1 or 2,
1251\eqref{Eq_tra_bn2} reduces to:
1252\begin{equation} \label{Eq_tra_bn2_linear}
1253N^2 = \frac{g}{e_{3w}} \left(   \beta \;\delta_{k+1/2}[S] - \alpha \;\delta_{k+1/2}[T]   \right)
1254\end{equation} 
1255where $\alpha$ and $\beta $ are the constant coefficients used to
1256defined the linear equation of state \eqref{Eq_tra_eos_linear}.
1257
1258% -------------------------------------------------------------------------------------------------------------
1259%        Specific Heat
1260% -------------------------------------------------------------------------------------------------------------
1261\subsection    [Specific Heat (\textit{phycst})]
1262         {Specific Heat (\mdl{phycst})}
1263\label{TRA_adv_ldf}
1264
1265The specific heat of sea water, $C_p$, is a function of temperature, salinity
1266and pressure \citep{UNESCO1983}. It is only used in the model to convert
1267surface heat fluxes into surface temperature increase and so the pressure
1268dependence is neglected. The dependence on $T$ and $S$ is weak.
1269For example, with $S=35~psu$, $C_p$ increases from $3989$ to $4002$ 
1270when $T$ varies from -2~\degres C to 31~\degres C. Therefore, $C_p$ has
1271been chosen as a constant: $C_p=4.10^3~J\,Kg^{-1}\,\degres K^{-1}$.
1272Its value is set in \mdl{phycst} module.
1273
1274
1275% -------------------------------------------------------------------------------------------------------------
1276%        Freezing Point of Seawater
1277% -------------------------------------------------------------------------------------------------------------
1278\subsection   [Freezing Point of Seawater]
1279         {Freezing Point of Seawater}
1280\label{TRA_fzp}
1281
1282The freezing point of seawater is a function of salinity and pressure \citep{UNESCO1983}:
1283\begin{equation} \label{Eq_tra_eos_fzp}
1284   \begin{split}
1285T_f (S,p) = \left( -0.0575 + 1.710523 \;10^{-3} \, \sqrt{S} 
1286                       -  2.154996 \;10^{-4} \,\right) \ S    \\
1287               - 7.53\,10^{-3} \ \ p
1288   \end{split}
1289\end{equation}
1290
1291\eqref{Eq_tra_eos_fzp} is only used to compute the potential freezing point of
1292sea water ($i.e.$ referenced to the surface $p=0$), thus the pressure dependent
1293terms in \eqref{Eq_tra_eos_fzp} (last term) have been dropped. The freezing
1294point is computed through \textit{tfreez}, a \textsc{Fortran} function that can be found
1295in \mdl{eosbn2}
1296
1297% ================================================================
1298% Horizontal Derivative in zps-coordinate
1299% ================================================================
1300\section  [Horizontal Derivative in \textit{zps}-coordinate (\textit{zpshde})]
1301      {Horizontal Derivative in \textit{zps}-coordinate (\mdl{zpshde})}
1302\label{TRA_zpshde}
1303
1304\gmcomment{STEVEN: to be consistent with earlier discussion of differencing and averaging operators, I've changed "derivative" to "difference" and "mean" to "average"}
1305
1306With partial bottom cells (\np{ln\_zps}=true), in general, tracers in horizontally
1307adjacent cells live at different depths. Horizontal gradients of tracers are needed
1308for horizontal diffusion (\mdl{traldf} module) and for the hydrostatic pressure
1309gradient (\mdl{dynhpg} module) to be active.
1310\gmcomment{STEVEN from gm : question: not sure of  what -to be active- means}
1311Before taking horizontal gradients between the tracers next to the bottom, a linear
1312interpolation in the vertical is used to approximate the deeper tracer as if it actually
1313lived at the depth of the shallower tracer point (Fig.~\ref{Fig_Partial_step_scheme}).
1314For example, for temperature in the $i$-direction the needed interpolated
1315temperature, $\widetilde{T}$, is:
1316
1317%>>>>>>>>>>>>>>>>>>>>>>>>>>>>
1318\begin{figure}[!p] \label{Fig_Partial_step_scheme}  \begin{center}
1319\includegraphics[width=0.9\textwidth]{./TexFiles/Figures/Partial_step_scheme.pdf}
1320\caption{ Discretisation of the horizontal difference and average of tracers in the $z$-partial step coordinate (\np{ln\_zps}=true) in the case $( e3w_k^{i+1} - e3w_k^i  )>0$. A linear interpolation is used to estimate $\widetilde{T}_k^{i+1}$, the tracer value at the depth of the shallower tracer point of the two adjacent bottom $T$-points. The horizontal difference is then given by: $\delta _{i+1/2} T_k=  \widetilde{T}_k^{\,i+1} -T_k^{\,i}$ and the average by: $\overline{T}_k^{\,i+1/2}= ( \widetilde{T}_k^{\,i+1/2} - T_k^{\,i} ) / 2$}
1321\end{center}   \end{figure}
1322%>>>>>>>>>>>>>>>>>>>>>>>>>>>>
1323\begin{equation*}
1324\widetilde{T}= \left\{  \begin{aligned} 
1325&T^{\,i+1}      -\frac{ \left( e_{3w}^{i+1} -e_{3w}^i \right)}{ e_{3w}^{i+1} }\;\delta _k T^{i+1} 
1326                        && \quad\text{if  $\ e_{3w}^{i+1} \geq e_{3w}^i$   }  \\
1327                              \\
1328&T^{\,i} \ \ \ \,+\frac{ \left( e_{3w}^{i+1} -e_{3w}^i \right) }{e_{3w}^i       }\;\delta _k T^{i+1}
1329                        && \quad\text{if  $\ e_{3w}^{i+1}    <   e_{3w}^i$   } 
1330            \end{aligned}   \right.
1331\end{equation*}
1332and the resulting forms for the horizontal difference and the horizontal average
1333value of $T$ at a $U$-point are:
1334\begin{equation} \label{Eq_zps_hde}
1335\begin{aligned}
1336 \delta _{i+1/2} T=  \begin{cases}
1337\ \ \ \widetilde {T}\quad\ -T^i     & \ \ \quad\quad\text{if  $\ e_{3w}^{i+1} \geq e_{3w}^i$ } \\
1338                              \\
1339\ \ \ T^{\,i+1}-\widetilde{T}    & \ \ \quad\quad\text{if  $\ e_{3w}^{i+1}    <   e_{3w}^i$   } 
1340                  \end{cases}     \\
1341\\
1342\overline {T}^{\,i+1/2} \ =   \begin{cases}
1343( \widetilde {T}\ \ \;\,-T^{\,i})    / 2  & \;\ \ \quad\text{if  $\ e_{3w}^{i+1} \geq e_{3w}^i$ } \\
1344                              \\
1345( T^{\,i+1}-\widetilde{T} ) / 2     & \;\ \ \quad\text{if  $\ e_{3w}^{i+1}    <   e_{3w}^i$   } 
1346            \end{cases}
1347\end{aligned}
1348\end{equation}
1349
1350The computation of horizontal derivative of tracers as well as of density is
1351performed once for all at each time step in \mdl{zpshde} module and stored
1352in shared arrays to be used when needed. It has to be emphasized that the
1353procedure used to compute the interpolated density, $\widetilde{\rho}$, is not
1354the same as that used for $T$ and $S$. Instead of forming a linear approximation
1355of density, we compute $\widetilde{\rho }$ from the interpolated values of $T$ 
1356and $S$, and the pressure at a $u$-point (in the equation of state pressure is
1357approximated by depth, see \S\ref{TRA_eos} ) :
1358\begin{equation} \label{Eq_zps_hde_rho}
1359\widetilde{\rho } = \rho ( {\widetilde{T},\widetilde {S},z_u })
1360\quad \text{where }\  z_u = \min \left( {z_T^{i+1} ,z_T^i } \right)
1361\end{equation} 
1362
1363This is a much better approximation as the variation of $\rho$ with depth (and
1364thus pressure) is highly non-linear with a true equation of state and thus is badly
1365approximated with a linear interpolation. This approximation is used to compute
1366both the horizontal pressure gradient (\S\ref{DYN_hpg}) and the slopes of neutral
1367surfaces (\S\ref{LDF_slp})
1368
1369Note that in almost all the advection schemes presented in this Chapter, both
1370averaging and differencing operators appear. Yet \eqref{Eq_zps_hde} has not
1371been used in these schemes: in contrast to diffusion and pressure gradient
1372computations, no correction for partial steps is applied for advection. The main
1373motivation is to preserve the domain averaged mean variance of the advected
1374field when using the $2^{nd}$ order centred scheme. Sensitivity of the advection
1375schemes to the way horizontal averages are performed in the vicinity of partial
1376cells should be further investigated in the near future.
1377%%%
1378\gmcomment{gm :   this last remark has to be done}
1379%%%
Note: See TracBrowser for help on using the repository browser.