MODULE domzgr !!============================================================================== !! *** MODULE domzgr *** !! Ocean initialization : domain initialization !!============================================================================== !! History : OPA ! 1995-12 (G. Madec) Original code : s vertical coordinate !! ! 1997-07 (G. Madec) lbc_lnk call !! ! 1997-04 (J.-O. Beismann) !! 8.5 ! 2002-09 (A. Bozec, G. Madec) F90: Free form and module !! - ! 2002-09 (A. de Miranda) rigid-lid + islands !! NEMO 1.0 ! 2003-08 (G. Madec) F90: Free form and module !! - ! 2005-10 (A. Beckmann) modifications for hybrid s-ccordinates & new stretching function !! 2.0 ! 2006-04 (R. Benshila, G. Madec) add zgr_zco !! 3.0 ! 2008-06 (G. Madec) insertion of domzgr_zps.h90 & conding style !! 3.2 ! 2009-07 (R. Benshila) Suppression of rigid-lid option !!---------------------------------------------------------------------- !!---------------------------------------------------------------------- !! dom_zgr : defined the ocean vertical coordinate system !! zgr_bat : bathymetry fields (levels and meters) !! zgr_bat_zoom : modify the bathymetry field if zoom domain !! zgr_bat_ctl : check the bathymetry files !! zgr_z : reference z-coordinate !! zgr_zco : z-coordinate !! zgr_zps : z-coordinate with partial steps !! zgr_sco : s-coordinate !! fssig : sigma coordinate non-dimensional function !! dfssig : derivative of the sigma coordinate function !!gm (currently missing!) !!--------------------------------------------------------------------- USE oce ! ocean dynamics and tracers USE dom_oce ! ocean space and time domain USE in_out_manager ! I/O manager USE lib_mpp ! distributed memory computing library USE lbclnk ! ocean lateral boundary conditions (or mpp link) USE closea ! closed seas IMPLICIT NONE PRIVATE PUBLIC dom_zgr ! called by dom_init.F90 !!gm DOCTOR name for the namelist parameter... ! !!! ** Namelist namzgr_sco ** REAL(wp) :: rn_sbot_min = 300. ! minimum depth of s-bottom surface (>0) (m) REAL(wp) :: rn_sbot_max = 5250. ! maximum depth of s-bottom surface (= ocean depth) (>0) (m) REAL(wp) :: rn_theta = 6.0 ! surface control parameter (0<=rn_theta<=20) REAL(wp) :: rn_thetb = 0.75 ! bottom control parameter (0<=rn_thetb<= 1) REAL(wp) :: rn_rmax = 0.15 ! maximum cut-off r-value allowed (00, 2D array, no slab zbathy(:,:) = FLOAT( mbathy(:,:) ) CALL lbc_lnk( zbathy, 'T', 1. ) mbathy(:,:) = INT( zbathy(:,:) ) ENDIF ! Number of ocean level inferior or equal to jpkm1 ikmax = 0 DO jj = 1, jpj DO ji = 1, jpi ikmax = MAX( ikmax, mbathy(ji,jj) ) END DO END DO !!gm !!! test to do: ikmax = MAX( mbathy(:,:) ) ??? IF( ikmax > jpkm1 ) THEN IF(lwp) WRITE(numout,*) ' maximum number of ocean level = ', ikmax,' > jpk-1' IF(lwp) WRITE(numout,*) ' change jpk to ',ikmax+1,' to use the exact ead bathymetry' ELSE IF( ikmax < jpkm1 ) THEN IF(lwp) WRITE(numout,*) ' maximum number of ocean level = ', ikmax,' < jpk-1' IF(lwp) WRITE(numout,*) ' you can decrease jpk to ', ikmax+1 ENDIF IF( lwp .AND. nprint == 1 ) THEN ! control print WRITE(numout,*) WRITE(numout,*) ' bathymetric field : number of non-zero T-levels ' WRITE(numout,*) ' ------------------' CALL prihin( mbathy, jpi, jpj, 1, jpi, 1, 1, jpj, 1, 3, numout ) WRITE(numout,*) ENDIF ! END SUBROUTINE zgr_bat_ctl SUBROUTINE zgr_zco !!---------------------------------------------------------------------- !! *** ROUTINE zgr_zco *** !! !! ** Purpose : define the z-coordinate system !! !! ** Method : set 3D coord. arrays to reference 1D array !!---------------------------------------------------------------------- INTEGER :: jk !!---------------------------------------------------------------------- ! DO jk = 1, jpk fsdept(:,:,jk) = gdept_0(jk) fsdepw(:,:,jk) = gdepw_0(jk) fsde3w(:,:,jk) = gdepw_0(jk) fse3t (:,:,jk) = e3t_0(jk) fse3u (:,:,jk) = e3t_0(jk) fse3v (:,:,jk) = e3t_0(jk) fse3f (:,:,jk) = e3t_0(jk) fse3w (:,:,jk) = e3w_0(jk) fse3uw(:,:,jk) = e3w_0(jk) fse3vw(:,:,jk) = e3w_0(jk) END DO ! END SUBROUTINE zgr_zco !!---------------------------------------------------------------------- !! Default option : zco, zps and/or sco available (gedp & e3 are 3D arrays) !!---------------------------------------------------------------------- SUBROUTINE zgr_zps !!---------------------------------------------------------------------- !! *** ROUTINE zgr_zps *** !! !! ** Purpose : the depth and vertical scale factor in partial step !! z-coordinate case !! !! ** Method : Partial steps : computes the 3D vertical scale factors !! of T-, U-, V-, W-, UW-, VW and F-points that are associated with !! a partial step representation of bottom topography. !! !! The reference depth of model levels is defined from an analytical !! function the derivative of which gives the reference vertical !! scale factors. !! From depth and scale factors reference, we compute there new value !! with partial steps on 3d arrays ( i, j, k ). !! !! w-level: gdepw(i,j,k) = fsdep(k) !! e3w(i,j,k) = dk(fsdep)(k) = fse3(i,j,k) !! t-level: gdept(i,j,k) = fsdep(k+0.5) !! e3t(i,j,k) = dk(fsdep)(k+0.5) = fse3(i,j,k+0.5) !! !! With the help of the bathymetric file ( bathymetry_depth_ORCA_R2.nc), !! we find the mbathy index of the depth at each grid point. !! This leads us to three cases: !! !! - bathy = 0 => mbathy = 0 !! - 1 < mbathy < jpkm1 !! - bathy > gdepw(jpk) => mbathy = jpkm1 !! !! Then, for each case, we find the new depth at t- and w- levels !! and the new vertical scale factors at t-, u-, v-, w-, uw-, vw- !! and f-points. !! !! This routine is given as an example, it must be modified !! following the user s desiderata. nevertheless, the output as !! well as the way to compute the model levels and scale factors !! must be respected in order to insure second order accuracy !! schemes. !! !! c a u t i o n : gdept_0, gdepw_0 and e3._0 are positives !! - - - - - - - gdept, gdepw and e3. are positives !! !! Reference : Pacanowsky & Gnanadesikan 1997, Mon. Wea. Rev., 126, 3248-3270. !!---------------------------------------------------------------------- INTEGER :: ji, jj, jk ! dummy loop indices INTEGER :: ik, it ! temporary integers LOGICAL :: ll_print ! Allow control print for debugging REAL(wp) :: ze3tp , ze3wp ! Last ocean level thickness at T- and W-points REAL(wp) :: zdepwp, zdepth ! Ajusted ocean depth to avoid too small e3t REAL(wp) :: zmax, zmin ! Maximum and minimum depth REAL(wp) :: zdiff ! temporary scalar REAL(wp), DIMENSION(jpi,jpj,jpk) :: zprt ! 3D workspace !!--------------------------------------------------------------------- IF(lwp) WRITE(numout,*) IF(lwp) WRITE(numout,*) ' zgr_zps : z-coordinate with partial steps' IF(lwp) WRITE(numout,*) ' ~~~~~~~ ' IF(lwp) WRITE(numout,*) ' mbathy is recomputed : bathy_level file is NOT used' ll_print=.FALSE. ! Local variable for debugging !! ll_print=.TRUE. IF(lwp .AND. ll_print) THEN ! control print of the ocean depth WRITE(numout,*) WRITE(numout,*) 'dom_zgr_zps: bathy (in hundred of meters)' CALL prihre( bathy, jpi, jpj, 1,jpi, 1, 1, jpj, 1, 1.e-2, numout ) ENDIF ! bathymetry in level (from bathy_meter) ! =================== zmax = gdepw_0(jpk) + e3t_0(jpk) ! maximum depth (i.e. the last ocean level thickness <= 2*e3t_0(jpkm1) ) zmin = gdepw_0(4) ! minimum depth = 3 levels mbathy(:,:) = jpkm1 ! initialize mbathy to the maximum ocean level available ! ! storage of land and island's number (zera and negative values) in mbathy WHERE( bathy(:,:) <= 0. ) mbathy(:,:) = INT( bathy(:,:) ) ! bounded value of bathy !!gm bathy(:,:) = MIN( zmax, MAX( bathy(:,:), zmin ) ) !!gm : simpler as zmin is > 0 DO jj = 1, jpj DO ji= 1, jpi IF( bathy(ji,jj) <= 0. ) THEN ; bathy(ji,jj) = 0.e0 ELSE ; bathy(ji,jj) = MIN( zmax, MAX( bathy(ji,jj), zmin ) ) ENDIF END DO END DO ! Compute mbathy for ocean points (i.e. the number of ocean levels) ! find the number of ocean levels such that the last level thickness ! is larger than the minimum of e3zps_min and e3zps_rat * e3t_0 (where ! e3t_0 is the reference level thickness DO jk = jpkm1, 1, -1 zdepth = gdepw_0(jk) + MIN( e3zps_min, e3t_0(jk)*e3zps_rat ) DO jj = 1, jpj DO ji = 1, jpi IF( 0. < bathy(ji,jj) .AND. bathy(ji,jj) <= zdepth ) mbathy(ji,jj) = jk-1 END DO END DO END DO ! Scale factors and depth at T- and W-points DO jk = 1, jpk ! intitialization to the reference z-coordinate gdept(:,:,jk) = gdept_0(jk) gdepw(:,:,jk) = gdepw_0(jk) e3t (:,:,jk) = e3t_0 (jk) e3w (:,:,jk) = e3w_0 (jk) END DO hdept(:,:) = gdept(:,:,2 ) hdepw(:,:) = gdepw(:,:,3 ) ! DO jj = 1, jpj DO ji = 1, jpi ik = mbathy(ji,jj) IF( ik > 0 ) THEN ! ocean point only ! max ocean level case IF( ik == jpkm1 ) THEN zdepwp = bathy(ji,jj) ze3tp = bathy(ji,jj) - gdepw_0(ik) ze3wp = 0.5 * e3w_0(ik) * ( 1. + ( ze3tp/e3t_0(ik) ) ) e3t(ji,jj,ik ) = ze3tp e3t(ji,jj,ik+1) = ze3tp e3w(ji,jj,ik ) = ze3wp e3w(ji,jj,ik+1) = ze3tp gdepw(ji,jj,ik+1) = zdepwp gdept(ji,jj,ik ) = gdept_0(ik-1) + ze3wp gdept(ji,jj,ik+1) = gdept(ji,jj,ik) + ze3tp ! ELSE ! standard case IF( bathy(ji,jj) <= gdepw_0(ik+1) ) THEN ; gdepw(ji,jj,ik+1) = bathy(ji,jj) ELSE ; gdepw(ji,jj,ik+1) = gdepw_0(ik+1) ENDIF !gm Bug? check the gdepw_0 ! ... on ik gdept(ji,jj,ik) = gdepw_0(ik) + ( gdepw (ji,jj,ik+1) - gdepw_0(ik) ) & & * ((gdept_0( ik ) - gdepw_0(ik) ) & & / ( gdepw_0( ik+1) - gdepw_0(ik) )) e3t (ji,jj,ik) = e3t_0 (ik) * ( gdepw (ji,jj,ik+1) - gdepw_0(ik) ) & & / ( gdepw_0( ik+1) - gdepw_0(ik) ) e3w (ji,jj,ik) = 0.5 * ( gdepw(ji,jj,ik+1) + gdepw_0(ik+1) - 2.*gdepw_0(ik) ) & & * ( e3w_0(ik) / ( gdepw_0(ik+1) - gdepw_0(ik) ) ) ! ... on ik+1 e3w (ji,jj,ik+1) = e3t (ji,jj,ik) e3t (ji,jj,ik+1) = e3t (ji,jj,ik) gdept(ji,jj,ik+1) = gdept(ji,jj,ik) + e3t(ji,jj,ik) ENDIF ENDIF END DO END DO ! it = 0 DO jj = 1, jpj DO ji = 1, jpi ik = mbathy(ji,jj) IF( ik > 0 ) THEN ! ocean point only hdept(ji,jj) = gdept(ji,jj,ik ) hdepw(ji,jj) = gdepw(ji,jj,ik+1) e3tp (ji,jj) = e3t(ji,jj,ik ) e3wp (ji,jj) = e3w(ji,jj,ik ) ! test zdiff= gdepw(ji,jj,ik+1) - gdept(ji,jj,ik ) IF( zdiff <= 0. .AND. lwp ) THEN it = it + 1 WRITE(numout,*) ' it = ', it, ' ik = ', ik, ' (i,j) = ', ji, jj WRITE(numout,*) ' bathy = ', bathy(ji,jj) WRITE(numout,*) ' gdept = ', gdept(ji,jj,ik), ' gdepw = ', gdepw(ji,jj,ik+1), ' zdiff = ', zdiff WRITE(numout,*) ' e3tp = ', e3t (ji,jj,ik), ' e3wp = ', e3w (ji,jj,ik ) ENDIF ENDIF END DO END DO ! Scale factors and depth at U-, V-, UW and VW-points DO jk = 1, jpk ! initialisation to z-scale factors e3u (:,:,jk) = e3t_0(jk) e3v (:,:,jk) = e3t_0(jk) e3uw(:,:,jk) = e3w_0(jk) e3vw(:,:,jk) = e3w_0(jk) END DO DO jk = 1,jpk ! Computed as the minimum of neighbooring scale factors DO jj = 1, jpjm1 DO ji = 1, fs_jpim1 ! vector opt. e3u (ji,jj,jk) = MIN( e3t(ji,jj,jk), e3t(ji+1,jj,jk)) e3v (ji,jj,jk) = MIN( e3t(ji,jj,jk), e3t(ji,jj+1,jk)) e3uw(ji,jj,jk) = MIN( e3w(ji,jj,jk), e3w(ji+1,jj,jk) ) e3vw(ji,jj,jk) = MIN( e3w(ji,jj,jk), e3w(ji,jj+1,jk) ) END DO END DO END DO ! ! Boundary conditions CALL lbc_lnk( e3u , 'U', 1. ) ; CALL lbc_lnk( e3uw, 'U', 1. ) CALL lbc_lnk( e3v , 'V', 1. ) ; CALL lbc_lnk( e3vw, 'V', 1. ) ! DO jk = 1, jpk ! set to z-scale factor if zero (i.e. along closed boundaries) WHERE( e3u (:,:,jk) == 0.e0 ) e3u (:,:,jk) = e3t_0(jk) WHERE( e3v (:,:,jk) == 0.e0 ) e3v (:,:,jk) = e3t_0(jk) WHERE( e3uw(:,:,jk) == 0.e0 ) e3uw(:,:,jk) = e3w_0(jk) WHERE( e3vw(:,:,jk) == 0.e0 ) e3vw(:,:,jk) = e3w_0(jk) END DO ! Scale factor at F-point DO jk = 1, jpk ! initialisation to z-scale factors e3f (:,:,jk) = e3t_0(jk) END DO DO jk = 1, jpk ! Computed as the minimum of neighbooring V-scale factors DO jj = 1, jpjm1 DO ji = 1, fs_jpim1 ! vector opt. e3f(ji,jj,jk) = MIN( e3v(ji,jj,jk), e3v(ji+1,jj,jk) ) END DO END DO END DO CALL lbc_lnk( e3f, 'F', 1. ) ! Boundary conditions ! DO jk = 1, jpk ! set to z-scale factor if zero (i.e. along closed boundaries) WHERE( e3f(:,:,jk) == 0.e0 ) e3f(:,:,jk) = e3t_0(jk) END DO !!gm bug ? : must be a do loop with mj0,mj1 ! e3t(:,mj0(1),:) = e3t(:,mj0(2),:) ! we duplicate factor scales for jj = 1 and jj = 2 e3w(:,mj0(1),:) = e3w(:,mj0(2),:) e3u(:,mj0(1),:) = e3u(:,mj0(2),:) e3v(:,mj0(1),:) = e3v(:,mj0(2),:) e3f(:,mj0(1),:) = e3f(:,mj0(2),:) ! Control of the sign IF( MINVAL( e3t (:,:,:) ) <= 0.e0 ) CALL ctl_stop( ' zgr_zps : e r r o r e3t <= 0' ) IF( MINVAL( e3w (:,:,:) ) <= 0.e0 ) CALL ctl_stop( ' zgr_zps : e r r o r e3w <= 0' ) IF( MINVAL( gdept(:,:,:) ) < 0.e0 ) CALL ctl_stop( ' zgr_zps : e r r o r gdepw < 0' ) IF( MINVAL( gdepw(:,:,:) ) < 0.e0 ) CALL ctl_stop( ' zgr_zps : e r r o r gdepw < 0' ) ! Compute gdep3w (vertical sum of e3w) gdep3w(:,:,1) = 0.5 * e3w(:,:,1) DO jk = 2, jpk gdep3w(:,:,jk) = gdep3w(:,:,jk-1) + e3w(:,:,jk) END DO ! ! ================= ! IF(lwp .AND. ll_print) THEN ! Control print ! ! ! ================= ! DO jj = 1,jpj DO ji = 1, jpi ik = MAX( mbathy(ji,jj), 1 ) zprt(ji,jj,1) = e3t (ji,jj,ik) zprt(ji,jj,2) = e3w (ji,jj,ik) zprt(ji,jj,3) = e3u (ji,jj,ik) zprt(ji,jj,4) = e3v (ji,jj,ik) zprt(ji,jj,5) = e3f (ji,jj,ik) zprt(ji,jj,6) = gdep3w(ji,jj,ik) END DO END DO WRITE(numout,*) WRITE(numout,*) 'domzgr e3t(mbathy)' ; CALL prihre(zprt(:,:,1),jpi,jpj,1,jpi,1,1,jpj,1,1.e-3,numout) WRITE(numout,*) WRITE(numout,*) 'domzgr e3w(mbathy)' ; CALL prihre(zprt(:,:,1),jpi,jpj,1,jpi,1,1,jpj,1,1.e-3,numout) WRITE(numout,*) WRITE(numout,*) 'domzgr e3u(mbathy)' ; CALL prihre(zprt(:,:,1),jpi,jpj,1,jpi,1,1,jpj,1,1.e-3,numout) WRITE(numout,*) WRITE(numout,*) 'domzgr e3v(mbathy)' ; CALL prihre(zprt(:,:,1),jpi,jpj,1,jpi,1,1,jpj,1,1.e-3,numout) WRITE(numout,*) WRITE(numout,*) 'domzgr e3f(mbathy)' ; CALL prihre(zprt(:,:,1),jpi,jpj,1,jpi,1,1,jpj,1,1.e-3,numout) WRITE(numout,*) WRITE(numout,*) 'domzgr gdep3w(mbathy)' ; CALL prihre(zprt(:,:,1),jpi,jpj,1,jpi,1,1,jpj,1,1.e-3,numout) ENDIF ! ! =============== ! IF( lzoom ) CALL zgr_bat_zoom ! Zoom domain ! ! ! =============== ! #if ! defined key_c1d ! ! =================== ! CALL zgr_bat_ctl ! Bathymetry check ! ! ! =================== ! #endif END SUBROUTINE zgr_zps FUNCTION fssig( pk ) RESULT( pf ) !!---------------------------------------------------------------------- !! *** ROUTINE eos_init *** !! !! ** Purpose : provide the analytical function in s-coordinate !! !! ** Method : the function provide the non-dimensional position of !! T and W (i.e. between 0 and 1) !! T-points at integer values (between 1 and jpk) !! W-points at integer values - 1/2 (between 0.5 and jpk-0.5) !! !! Reference : ??? !!---------------------------------------------------------------------- REAL(wp), INTENT(in ) :: pk ! continuous "k" coordinate REAL(wp) :: pf ! sigma value !!---------------------------------------------------------------------- ! pf = ( TANH( rn_theta * ( -(pk-0.5) / REAL(jpkm1) + rn_thetb ) ) & & - TANH( rn_thetb * rn_theta ) ) & & * ( COSH( rn_theta ) & & + COSH( rn_theta * ( 2.e0 * rn_thetb - 1.e0 ) ) ) & & / ( 2.e0 * SINH( rn_theta ) ) ! END FUNCTION fssig FUNCTION fssig1( pk1, pbb ) RESULT( pf1 ) !!---------------------------------------------------------------------- !! *** ROUTINE eos_init *** !! !! ** Purpose : provide the Song and Haidvogel version of the analytical function in s-coordinate !! !! ** Method : the function provides the non-dimensional position of !! T and W (i.e. between 0 and 1) !! T-points at integer values (between 1 and jpk) !! W-points at integer values - 1/2 (between 0.5 and jpk-0.5) !! !! Reference : ??? !!---------------------------------------------------------------------- REAL(wp), INTENT(in ) :: pk1 ! continuous "k" coordinate REAL(wp), INTENT(in ) :: pbb ! Stretching coefficient REAL(wp) :: pf1 ! sigma value !!---------------------------------------------------------------------- ! IF ( rn_theta == 0 ) then ! uniform sigma pf1 = -(pk1-0.5) / REAL( jpkm1 ) ELSE ! stretched sigma pf1 = (1.0-pbb) * (sinh( rn_theta*(-(pk1-0.5)/REAL(jpkm1)) ) ) / sinh(rn_theta) + & & pbb * ( (tanh( rn_theta*( (-(pk1-0.5)/REAL(jpkm1)) + 0.5) ) - tanh(0.5*rn_theta) ) / & & (2*tanh(0.5*rn_theta) ) ) ENDIF ! END FUNCTION fssig1 SUBROUTINE zgr_sco !!---------------------------------------------------------------------- !! *** ROUTINE zgr_sco *** !! !! ** Purpose : define the s-coordinate system !! !! ** Method : s-coordinate !! The depth of model levels is defined as the product of an !! analytical function by the local bathymetry, while the vertical !! scale factors are defined as the product of the first derivative !! of the analytical function by the bathymetry. !! (this solution save memory as depth and scale factors are not !! 3d fields) !! - Read bathymetry (in meters) at t-point and compute the !! bathymetry at u-, v-, and f-points. !! hbatu = mi( hbatt ) !! hbatv = mj( hbatt ) !! hbatf = mi( mj( hbatt ) ) !! - Compute gsigt, gsigw, esigt, esigw from an analytical !! function and its derivative given as function. !! gsigt(k) = fssig (k ) !! gsigw(k) = fssig (k-0.5) !! esigt(k) = fsdsig(k ) !! esigw(k) = fsdsig(k-0.5) !! This routine is given as an example, it must be modified !! following the user s desiderata. nevertheless, the output as !! well as the way to compute the model levels and scale factors !! must be respected in order to insure second order a!!uracy !! schemes. !! !! Reference : Madec, Lott, Delecluse and Crepon, 1996. JPO, 26, 1393-1408. !!---------------------------------------------------------------------- INTEGER :: ji, jj, jk, jl ! dummy loop argument INTEGER :: iip1, ijp1, iim1, ijm1 ! temporary integers REAL(wp) :: zcoeft, zcoefw, zrmax, ztaper ! temporary scalars REAL(wp), DIMENSION(jpi,jpj) :: zenv, ztmp, zmsk ! 2D workspace REAL(wp), DIMENSION(jpi,jpj) :: zri , zrj , zhbat ! - - !! REAL(wp), DIMENSION(jpi,jpj,jpk) :: gsigw3 REAL(wp), DIMENSION(jpi,jpj,jpk) :: gsigt3 REAL(wp), DIMENSION(jpi,jpj,jpk) :: gsi3w3 REAL(wp), DIMENSION(jpi,jpj,jpk) :: esigt3 REAL(wp), DIMENSION(jpi,jpj,jpk) :: esigw3 REAL(wp), DIMENSION(jpi,jpj,jpk) :: esigtu3 REAL(wp), DIMENSION(jpi,jpj,jpk) :: esigtv3 REAL(wp), DIMENSION(jpi,jpj,jpk) :: esigtf3 REAL(wp), DIMENSION(jpi,jpj,jpk) :: esigwu3 REAL(wp), DIMENSION(jpi,jpj,jpk) :: esigwv3 !! NAMELIST/namzgr_sco/ rn_sbot_max, rn_sbot_min, rn_theta, rn_thetb, rn_rmax, ln_s_sigma, rn_bb, rn_hc !!---------------------------------------------------------------------- REWIND( numnam ) ! Read Namelist namzgr_sco : sigma-stretching parameters READ ( numnam, namzgr_sco ) IF(lwp) THEN ! control print WRITE(numout,*) WRITE(numout,*) 'dom:zgr_sco : s-coordinate or hybrid z-s-coordinate' WRITE(numout,*) '~~~~~~~~~~~' WRITE(numout,*) ' Namelist namzgr_sco' WRITE(numout,*) ' sigma-stretching coeffs ' WRITE(numout,*) ' maximum depth of s-bottom surface (>0) rn_sbot_max = ' ,rn_sbot_max WRITE(numout,*) ' minimum depth of s-bottom surface (>0) rn_sbot_min = ' ,rn_sbot_min WRITE(numout,*) ' surface control parameter (0<=rn_theta<=20) rn_theta = ', rn_theta WRITE(numout,*) ' bottom control parameter (0<=rn_thetb<= 1) rn_thetb = ', rn_thetb WRITE(numout,*) ' maximum cut-off r-value allowed rn_rmax = ', rn_rmax WRITE(numout,*) ' Hybrid s-sigma-coordinate ln_s_sigma = ', ln_s_sigma WRITE(numout,*) ' stretching parameter (song and haidvogel) rn_bb = ', rn_bb WRITE(numout,*) ' Critical depth rn_hc = ', rn_hc ENDIF gsigw3 = 0.0d0 ; gsigt3 = 0.0d0 ; gsi3w3 = 0.0d0 esigt3 = 0.0d0 ; esigw3 = 0.0d0 esigtu3 = 0.0d0 ; esigtv3 = 0.0d0 ; esigtf3 = 0.0d0 esigwu3 = 0.0d0 ; esigwv3 = 0.0d0 hift(:,:) = rn_sbot_min ! set the minimum depth for the s-coordinate hifu(:,:) = rn_sbot_min hifv(:,:) = rn_sbot_min hiff(:,:) = rn_sbot_min ! ! set maximum ocean depth bathy(:,:) = MIN( rn_sbot_max, bathy(:,:) ) DO jj = 1, jpj DO ji = 1, jpi IF (bathy(ji,jj) .gt. 0.0) THEN bathy(ji,jj) = MAX( rn_sbot_min, bathy(ji,jj) ) ENDIF END DO END DO ! ! ============================= ! ! Define the envelop bathymetry (hbatt) ! ! ============================= ! use r-value to create hybrid coordinates DO jj = 1, jpj DO ji = 1, jpi zenv(ji,jj) = MAX( bathy(ji,jj), rn_sbot_min ) END DO END DO ! ! Smooth the bathymetry (if required) scosrf(:,:) = 0.e0 ! ocean surface depth (here zero: no under ice-shelf sea) scobot(:,:) = bathy(:,:) ! ocean bottom depth ! jl = 0 zrmax = 1.e0 ! ! ================ ! DO WHILE ( jl <= 10000 .AND. zrmax > rn_rmax ) ! Iterative loop ! ! ! ================ ! jl = jl + 1 zrmax = 0.e0 zmsk(:,:) = 0.e0 DO jj = 1, nlcj DO ji = 1, nlci iip1 = MIN( ji+1, nlci ) ! force zri = 0 on last line (ji=ncli+1 to jpi) ijp1 = MIN( jj+1, nlcj ) ! force zrj = 0 on last raw (jj=nclj+1 to jpj) zri(ji,jj) = ABS( zenv(iip1,jj ) - zenv(ji,jj) ) / ( zenv(iip1,jj ) + zenv(ji,jj) ) zrj(ji,jj) = ABS( zenv(ji ,ijp1) - zenv(ji,jj) ) / ( zenv(ji ,ijp1) + zenv(ji,jj) ) zrmax = MAX( zrmax, zri(ji,jj), zrj(ji,jj) ) IF( zri(ji,jj) > rn_rmax ) zmsk(ji ,jj ) = 1.0 IF( zri(ji,jj) > rn_rmax ) zmsk(iip1,jj ) = 1.0 IF( zrj(ji,jj) > rn_rmax ) zmsk(ji ,jj ) = 1.0 IF( zrj(ji,jj) > rn_rmax ) zmsk(ji ,ijp1) = 1.0 END DO END DO IF( lk_mpp ) CALL mpp_max( zrmax ) ! max over the global domain ! lateral boundary condition on zmsk: keep 1 along closed boundary (use of MAX) ztmp(:,:) = zmsk(:,:) ; CALL lbc_lnk( zmsk, 'T', 1. ) DO jj = 1, nlcj DO ji = 1, nlci zmsk(ji,jj) = MAX( zmsk(ji,jj), ztmp(ji,jj) ) END DO END DO ! IF(lwp)WRITE(numout,*) 'zgr_sco : iter= ',jl, ' rmax= ', zrmax, ' nb of pt= ', INT( SUM(zmsk(:,:) ) ) ! DO jj = 1, nlcj DO ji = 1, nlci iip1 = MIN( ji+1, nlci ) ! last line (ji=nlci) ijp1 = MIN( jj+1, nlcj ) ! last raw (jj=nlcj) iim1 = MAX( ji-1, 1 ) ! first line (ji=nlci) ijm1 = MAX( jj-1, 1 ) ! first raw (jj=nlcj) IF( zmsk(ji,jj) == 1.0 ) THEN ztmp(ji,jj) = ( & & zenv(iim1,ijp1)*zmsk(iim1,ijp1) + zenv(ji,ijp1)*zmsk(ji,ijp1) + zenv(iip1,ijp1)*zmsk(iip1,ijp1) & & + zenv(iim1,jj )*zmsk(iim1,jj ) + zenv(ji,jj )* 2.e0 + zenv(iip1,jj )*zmsk(iip1,jj ) & & + zenv(iim1,ijm1)*zmsk(iim1,ijm1) + zenv(ji,ijm1)*zmsk(ji,ijm1) + zenv(iip1,ijm1)*zmsk(iip1,ijm1) & & ) / ( & & zmsk(iim1,ijp1) + zmsk(ji,ijp1) + zmsk(iip1,ijp1) & & + zmsk(iim1,jj ) + 2.e0 + zmsk(iip1,jj ) & & + zmsk(iim1,ijm1) + zmsk(ji,ijm1) + zmsk(iip1,ijm1) & & ) ENDIF END DO END DO ! DO jj = 1, nlcj DO ji = 1, nlci IF( zmsk(ji,jj) == 1.0 ) zenv(ji,jj) = MAX( ztmp(ji,jj), bathy(ji,jj) ) END DO END DO ! ! Apply lateral boundary condition CAUTION: kept the value when the lbc field is zero ztmp(:,:) = zenv(:,:) ; CALL lbc_lnk( zenv, 'T', 1. ) DO jj = 1, nlcj DO ji = 1, nlci IF( zenv(ji,jj) == 0.e0 ) zenv(ji,jj) = ztmp(ji,jj) END DO END DO ! ! ================ ! END DO ! End loop ! ! ! ================ ! ! ! ! envelop bathymetry saved in hbatt hbatt(:,:) = zenv(:,:) IF( MINVAL( gphit(:,:) ) * MAXVAL( gphit(:,:) ) <= 0.e0 ) THEN CALL ctl_warn( ' s-coordinates are tapered in vicinity of the Equator' ) DO jj = 1, jpj DO ji = 1, jpi ztaper = EXP( -(gphit(ji,jj)/8)**2 ) hbatt(ji,jj) = rn_sbot_max * ztaper + hbatt(ji,jj) * (1.-ztaper) END DO END DO ENDIF ! IF(lwp) THEN ! Control print WRITE(numout,*) WRITE(numout,*) ' domzgr: hbatt field; ocean depth in meters' WRITE(numout,*) CALL prihre( hbatt(1,1), jpi, jpj, 1, jpi, 1, 1, jpj, 1, 0., numout ) IF( nprint == 1 ) THEN WRITE(numout,*) ' bathy MAX ', MAXVAL( bathy(:,:) ), ' MIN ', MINVAL( bathy(:,:) ) WRITE(numout,*) ' hbatt MAX ', MAXVAL( hbatt(:,:) ), ' MIN ', MINVAL( hbatt(:,:) ) ENDIF ENDIF ! ! ============================== ! ! hbatu, hbatv, hbatf fields ! ! ============================== IF(lwp) THEN WRITE(numout,*) WRITE(numout,*) ' zgr_sco: minimum depth of the envelop topography set to : ', rn_sbot_min ENDIF hbatu(:,:) = rn_sbot_min hbatv(:,:) = rn_sbot_min hbatf(:,:) = rn_sbot_min DO jj = 1, jpjm1 DO ji = 1, jpim1 ! NO vector opt. hbatu(ji,jj) = 0.5 * ( hbatt(ji ,jj) + hbatt(ji+1,jj ) ) hbatv(ji,jj) = 0.5 * ( hbatt(ji ,jj) + hbatt(ji ,jj+1) ) hbatf(ji,jj) = 0.25* ( hbatt(ji ,jj) + hbatt(ji ,jj+1) & & + hbatt(ji+1,jj) + hbatt(ji+1,jj+1) ) END DO END DO ! ! Apply lateral boundary condition !!gm ! CAUTION: retain non zero value in the initial file this should be OK for orca cfg, not for EEL zhbat(:,:) = hbatu(:,:) ; CALL lbc_lnk( hbatu, 'U', 1. ) DO jj = 1, jpj DO ji = 1, jpi IF( hbatu(ji,jj) == 0.e0 ) THEN IF( zhbat(ji,jj) == 0.e0 ) hbatu(ji,jj) = rn_sbot_min IF( zhbat(ji,jj) /= 0.e0 ) hbatu(ji,jj) = zhbat(ji,jj) ENDIF END DO END DO zhbat(:,:) = hbatv(:,:) ; CALL lbc_lnk( hbatv, 'V', 1. ) DO jj = 1, jpj DO ji = 1, jpi IF( hbatv(ji,jj) == 0.e0 ) THEN IF( zhbat(ji,jj) == 0.e0 ) hbatv(ji,jj) = rn_sbot_min IF( zhbat(ji,jj) /= 0.e0 ) hbatv(ji,jj) = zhbat(ji,jj) ENDIF END DO END DO zhbat(:,:) = hbatf(:,:) ; CALL lbc_lnk( hbatf, 'F', 1. ) DO jj = 1, jpj DO ji = 1, jpi IF( hbatf(ji,jj) == 0.e0 ) THEN IF( zhbat(ji,jj) == 0.e0 ) hbatf(ji,jj) = rn_sbot_min IF( zhbat(ji,jj) /= 0.e0 ) hbatf(ji,jj) = zhbat(ji,jj) ENDIF END DO END DO !!bug: key_helsinki a verifer hift(:,:) = MIN( hift(:,:), hbatt(:,:) ) hifu(:,:) = MIN( hifu(:,:), hbatu(:,:) ) hifv(:,:) = MIN( hifv(:,:), hbatv(:,:) ) hiff(:,:) = MIN( hiff(:,:), hbatf(:,:) ) IF( nprint == 1 .AND. lwp ) THEN WRITE(numout,*) ' MAX val hif t ', MAXVAL( hift (:,:) ), ' f ', MAXVAL( hiff (:,:) ), & & ' u ', MAXVAL( hifu (:,:) ), ' v ', MAXVAL( hifv (:,:) ) WRITE(numout,*) ' MIN val hif t ', MINVAL( hift (:,:) ), ' f ', MINVAL( hiff (:,:) ), & & ' u ', MINVAL( hifu (:,:) ), ' v ', MINVAL( hifv (:,:) ) WRITE(numout,*) ' MAX val hbat t ', MAXVAL( hbatt(:,:) ), ' f ', MAXVAL( hbatf(:,:) ), & & ' u ', MAXVAL( hbatu(:,:) ), ' v ', MAXVAL( hbatv(:,:) ) WRITE(numout,*) ' MIN val hbat t ', MINVAL( hbatt(:,:) ), ' f ', MINVAL( hbatf(:,:) ), & & ' u ', MINVAL( hbatu(:,:) ), ' v ', MINVAL( hbatv(:,:) ) ENDIF !! helsinki ! ! ======================= ! ! s-ccordinate fields (gdep., e3.) ! ! ======================= ! ! non-dimensional "sigma" for model level depth at w- and t-levels IF( ln_s_sigma ) THEN ! Song and Haidvogel style stretched sigma for depths ! ! below rn_hc, with uniform sigma in shallower waters DO ji = 1, jpi DO jj = 1, jpj IF (hbatt(ji,jj).GT.rn_hc) THEN !deep water, stretched sigma DO jk = 1, jpk gsigw3(ji,jj,jk) = -fssig1( REAL(jk,wp)-0.5_wp, rn_bb ) gsigt3(ji,jj,jk) = -fssig1( REAL(jk,wp) , rn_bb ) END DO ELSE ! shallow water, uniform sigma DO jk = 1, jpk gsigw3(ji,jj,jk) = REAL(jk-1,wp) /REAL(jpk-1,wp) gsigt3(ji,jj,jk) = (REAL(jk-1,wp)+0.5)/REAL(jpk-1,wp) END DO ENDIF IF( nprint == 1 .AND. lwp ) WRITE(numout,*) 'gsigw3 1 jpk ', gsigw3(ji,jj,1), gsigw3(ji,jj,jpk) DO jk = 1, jpkm1 esigt3(ji,jj,jk) = gsigw3(ji,jj,jk+1) - gsigw3(ji,jj,jk) esigw3(ji,jj,jk+1) = gsigt3(ji,jj,jk+1) - gsigt3(ji,jj,jk) END DO esigw3(ji,jj,1 ) = 2.0_wp * (gsigt3(ji,jj,1 ) - gsigw3(ji,jj,1 )) esigt3(ji,jj,jpk) = 2.0_wp * (gsigt3(ji,jj,jpk) - gsigw3(ji,jj,jpk)) ! Coefficients for vertical depth as the sum of e3w scale factors gsi3w3(ji,jj,1) = 0.5 * esigw3(ji,jj,1) DO jk = 2, jpk gsi3w3(ji,jj,jk) = gsi3w3(ji,jj,jk-1) + esigw3(ji,jj,jk) END DO DO jk = 1, jpk zcoeft = ( REAL(jk,wp) - 0.5 ) / REAL(jpkm1,wp) zcoefw = ( REAL(jk,wp) - 1.0 ) / REAL(jpkm1,wp) gdept (ji,jj,jk) = (scosrf(ji,jj)+(hbatt(ji,jj)-rn_hc)*gsigt3(ji,jj,jk)+rn_hc*zcoeft) gdepw (ji,jj,jk) = (scosrf(ji,jj)+(hbatt(ji,jj)-rn_hc)*gsigw3(ji,jj,jk)+rn_hc*zcoefw) gdep3w(ji,jj,jk) = (scosrf(ji,jj)+(hbatt(ji,jj)-rn_hc)*gsi3w3(ji,jj,jk)+rn_hc*zcoeft) END DO ENDDO ! for all jj's ENDDO ! for all ji's DO ji=1,jpi DO jj=1,jpj DO jk = 1, jpk esigtu3(ji,jj,jk) = ( hbatt(ji,jj)*esigt3(ji,jj,jk)+hbatt(ji+1,jj)*esigt3(ji+1,jj,jk) ) / & ( hbatt(ji,jj)+hbatt(ji+1,jj) ) esigtv3(ji,jj,jk) = ( hbatt(ji,jj)*esigt3(ji,jj,jk)+hbatt(ji,jj+1)*esigt3(ji,jj+1,jk) ) / & ( hbatt(ji,jj)+hbatt(ji,jj+1) ) esigtf3(ji,jj,jk) = ( hbatt(ji,jj)*esigt3(ji,jj,jk)+hbatt(ji+1,jj)*esigt3(ji+1,jj,jk) + & hbatt(ji,jj+1)*esigt3(ji,jj+1,jk)+hbatt(ji+1,jj+1)*esigt3(ji+1,jj+1,jk) ) / & ( hbatt(ji,jj)+hbatt(ji+1,jj)+hbatt(ji,jj+1)+hbatt(ji+1,jj+1) ) esigwu3(ji,jj,jk) = ( hbatt(ji,jj)*esigw3(ji,jj,jk)+hbatt(ji+1,jj)*esigw3(ji+1,jj,jk) ) / & ( hbatt(ji,jj)+hbatt(ji+1,jj) ) esigwv3(ji,jj,jk) = ( hbatt(ji,jj)*esigw3(ji,jj,jk)+hbatt(ji,jj+1)*esigw3(ji,jj+1,jk) ) / & ( hbatt(ji,jj)+hbatt(ji,jj+1) ) e3t(ji,jj,jk)=((hbatt(ji,jj)-rn_hc)*esigt3(ji,jj,jk) + rn_hc/FLOAT(jpkm1)) e3u(ji,jj,jk)=((hbatu(ji,jj)-rn_hc)*esigtu3(ji,jj,jk) + rn_hc/FLOAT(jpkm1)) e3v(ji,jj,jk)=((hbatv(ji,jj)-rn_hc)*esigtv3(ji,jj,jk) + rn_hc/FLOAT(jpkm1)) e3f(ji,jj,jk)=((hbatf(ji,jj)-rn_hc)*esigtf3(ji,jj,jk) + rn_hc/FLOAT(jpkm1)) ! e3w (ji,jj,jk)=((hbatt(ji,jj)-rn_hc)*esigw3(ji,jj,jk) + rn_hc/FLOAT(jpkm1)) e3uw(ji,jj,jk)=((hbatu(ji,jj)-rn_hc)*esigwu3(ji,jj,jk) + rn_hc/FLOAT(jpkm1)) e3vw(ji,jj,jk)=((hbatv(ji,jj)-rn_hc)*esigwv3(ji,jj,jk) + rn_hc/FLOAT(jpkm1)) END DO ENDDO ENDDO ELSE ! not ln_s_sigma DO jk = 1, jpk gsigw(jk) = -fssig( REAL(jk,wp)-0.5_wp ) gsigt(jk) = -fssig( REAL(jk,wp) ) END DO IF( nprint == 1 .AND. lwp ) WRITE(numout,*) 'gsigw 1 jpk ', gsigw(1), gsigw(jpk) ! ! Coefficients for vertical scale factors at w-, t- levels !!gm bug : define it from analytical function, not like juste bellow.... !!gm or betteroffer the 2 possibilities.... DO jk = 1, jpkm1 esigt(jk ) = gsigw(jk+1) - gsigw(jk) esigw(jk+1) = gsigt(jk+1) - gsigt(jk) END DO esigw( 1 ) = 2.0_wp * (gsigt(1) - gsigw(1)) esigt(jpk) = 2.0_wp * (gsigt(jpk) - gsigw(jpk)) !!gm original form !!org DO jk = 1, jpk !!org esigt(jk)=fsdsig( FLOAT(jk) ) !!org esigw(jk)=fsdsig( FLOAT(jk)-0.5 ) !!org END DO !!gm ! ! Coefficients for vertical depth as the sum of e3w scale factors gsi3w(1) = 0.5 * esigw(1) DO jk = 2, jpk gsi3w(jk) = gsi3w(jk-1) + esigw(jk) END DO !!gm: depuw, depvw can be suppressed (modif in ldfslp) and depw=dep3w can be set (save 3 3D arrays) DO jk = 1, jpk zcoeft = ( FLOAT(jk) - 0.5 ) / FLOAT(jpkm1) zcoefw = ( FLOAT(jk) - 1.0 ) / FLOAT(jpkm1) gdept (:,:,jk) = (scosrf(:,:)+(hbatt(:,:)-hift(:,:))*gsigt(jk)+hift(:,:)*zcoeft) gdepw (:,:,jk) = (scosrf(:,:)+(hbatt(:,:)-hift(:,:))*gsigw(jk)+hift(:,:)*zcoefw) gdep3w(:,:,jk) = (scosrf(:,:)+(hbatt(:,:)-hift(:,:))*gsi3w(jk)+hift(:,:)*zcoeft) END DO !!gm: e3uw, e3vw can be suppressed (modif in dynzdf, dynzdf_iso, zdfbfr) (save 2 3D arrays) DO jj = 1, jpj DO ji = 1, jpi DO jk = 1, jpk e3t(ji,jj,jk)=((hbatt(ji,jj)-hift(ji,jj))*esigt(jk) + hift(ji,jj)/FLOAT(jpkm1)) e3u(ji,jj,jk)=((hbatu(ji,jj)-hifu(ji,jj))*esigt(jk) + hifu(ji,jj)/FLOAT(jpkm1)) e3v(ji,jj,jk)=((hbatv(ji,jj)-hifv(ji,jj))*esigt(jk) + hifv(ji,jj)/FLOAT(jpkm1)) e3f(ji,jj,jk)=((hbatf(ji,jj)-hiff(ji,jj))*esigt(jk) + hiff(ji,jj)/FLOAT(jpkm1)) ! e3w (ji,jj,jk)=((hbatt(ji,jj)-hift(ji,jj))*esigw(jk) + hift(ji,jj)/FLOAT(jpkm1)) e3uw(ji,jj,jk)=((hbatu(ji,jj)-hifu(ji,jj))*esigw(jk) + hifu(ji,jj)/FLOAT(jpkm1)) e3vw(ji,jj,jk)=((hbatv(ji,jj)-hifv(ji,jj))*esigw(jk) + hifv(ji,jj)/FLOAT(jpkm1)) END DO END DO END DO ENDIF ! ln_s_sigma ! !! H. Liu, POL. April 2009. Added for passing the scale check for the new released vvl code. fsdept(:,:,:) = gdept (:,:,:) fsdepw(:,:,:) = gdepw (:,:,:) fsde3w(:,:,:) = gdep3w(:,:,:) fse3t (:,:,:) = e3t (:,:,:) fse3u (:,:,:) = e3u (:,:,:) fse3v (:,:,:) = e3v (:,:,:) fse3f (:,:,:) = e3f (:,:,:) fse3w (:,:,:) = e3w (:,:,:) fse3uw(:,:,:) = e3uw (:,:,:) fse3vw(:,:,:) = e3vw (:,:,:) !! ! HYBRID : DO jj = 1, jpj DO ji = 1, jpi DO jk = 1, jpkm1 IF( scobot(ji,jj) >= fsdept(ji,jj,jk) ) mbathy(ji,jj) = MAX( 2, jk ) IF( scobot(ji,jj) == 0.e0 ) mbathy(ji,jj) = 0 END DO END DO END DO IF( nprint == 1 .AND. lwp ) WRITE(numout,*) ' MIN val mbathy h90 ', MINVAL( mbathy(:,:) ), & & ' MAX ', MAXVAL( mbathy(:,:) ) ! ! =========== IF( lzoom ) CALL zgr_bat_zoom ! Zoom domain ! ! =========== #if ! defined key_c1d ! ! =================== ! CALL zgr_bat_ctl ! Bathymetry check ! ! ! =================== ! #endif ! ! ============= IF(lwp) THEN ! Control print ! ! ============= WRITE(numout,*) WRITE(numout,*) ' domzgr: vertical coefficients for model level' WRITE(numout, "(9x,' level gsigt gsigw esigt esigw gsi3w')" ) WRITE(numout, "(10x,i4,5f11.4)" ) ( jk, gsigt(jk), gsigw(jk), esigt(jk), esigw(jk), gsi3w(jk), jk=1,jpk ) ENDIF IF( nprint == 1 .AND. lwp ) THEN ! min max values over the local domain WRITE(numout,*) ' MIN val mbathy ', MINVAL( mbathy(:,:) ), ' MAX ', MAXVAL( mbathy(:,:) ) WRITE(numout,*) ' MIN val depth t ', MINVAL( fsdept(:,:,:) ), & & ' w ', MINVAL( fsdepw(:,:,:) ), '3w ' , MINVAL( fsde3w(:,:,:) ) WRITE(numout,*) ' MIN val e3 t ', MINVAL( fse3t (:,:,:) ), ' f ' , MINVAL( fse3f (:,:,:) ), & & ' u ', MINVAL( fse3u (:,:,:) ), ' u ' , MINVAL( fse3v (:,:,:) ), & & ' uw', MINVAL( fse3uw(:,:,:) ), ' vw' , MINVAL( fse3vw(:,:,:) ), & & ' w ', MINVAL( fse3w (:,:,:) ) WRITE(numout,*) ' MAX val depth t ', MAXVAL( fsdept(:,:,:) ), & & ' w ', MAXVAL( fsdepw(:,:,:) ), '3w ' , MAXVAL( fsde3w(:,:,:) ) WRITE(numout,*) ' MAX val e3 t ', MAXVAL( fse3t (:,:,:) ), ' f ' , MAXVAL( fse3f (:,:,:) ), & & ' u ', MAXVAL( fse3u (:,:,:) ), ' u ' , MAXVAL( fse3v (:,:,:) ), & & ' uw', MAXVAL( fse3uw(:,:,:) ), ' vw' , MAXVAL( fse3vw(:,:,:) ), & & ' w ', MAXVAL( fse3w (:,:,:) ) ENDIF ! IF(lwp) THEN ! selected vertical profiles WRITE(numout,*) WRITE(numout,*) ' domzgr: vertical coordinates : point (1,1,k) bathy = ', bathy(1,1), hbatt(1,1) WRITE(numout,*) ' ~~~~~~ --------------------' WRITE(numout,"(9x,' level gdept gdepw gde3w e3t e3w ')") WRITE(numout,"(10x,i4,4f9.2)") ( jk, fsdept(1,1,jk), fsdepw(1,1,jk), & & fse3t (1,1,jk), fse3w (1,1,jk), jk=1,jpk ) DO jj = mj0(20), mj1(20) DO ji = mi0(20), mi1(20) WRITE(numout,*) WRITE(numout,*) ' domzgr: vertical coordinates : point (20,20,k) bathy = ', bathy(ji,jj), hbatt(ji,jj) WRITE(numout,*) ' ~~~~~~ --------------------' WRITE(numout,"(9x,' level gdept gdepw gde3w e3t e3w ')") WRITE(numout,"(10x,i4,4f9.2)") ( jk, fsdept(ji,jj,jk), fsdepw(ji,jj,jk), & & fse3t (ji,jj,jk), fse3w (ji,jj,jk), jk=1,jpk ) END DO END DO DO jj = mj0(74), mj1(74) DO ji = mi0(100), mi1(100) WRITE(numout,*) WRITE(numout,*) ' domzgr: vertical coordinates : point (100,74,k) bathy = ', bathy(ji,jj), hbatt(ji,jj) WRITE(numout,*) ' ~~~~~~ --------------------' WRITE(numout,"(9x,' level gdept gdepw gde3w e3t e3w ')") WRITE(numout,"(10x,i4,4f9.2)") ( jk, fsdept(ji,jj,jk), fsdepw(ji,jj,jk), & & fse3t (ji,jj,jk), fse3w (ji,jj,jk), jk=1,jpk ) END DO END DO ENDIF !!gm bug? no more necessary? if ! defined key_helsinki DO jk = 1, jpk DO jj = 1, jpj DO ji = 1, jpi IF( fse3w(ji,jj,jk) <= 0. .OR. fse3t(ji,jj,jk) <= 0. ) THEN WRITE(ctmp1,*) 'zgr_sco : e3w or e3t =< 0 at point (i,j,k)= ', ji, jj, jk CALL ctl_stop( ctmp1 ) ENDIF IF( fsdepw(ji,jj,jk) < 0. .OR. fsdept(ji,jj,jk) < 0. ) THEN WRITE(ctmp1,*) 'zgr_sco : gdepw or gdept =< 0 at point (i,j,k)= ', ji, jj, jk CALL ctl_stop( ctmp1 ) ENDIF END DO END DO END DO !!gm bug #endif ! END SUBROUTINE zgr_sco !!====================================================================== END MODULE domzgr