MODULE dynspg !!====================================================================== !! *** MODULE dynspg *** !! Ocean dynamics: surface pressure gradient control !!====================================================================== !! History : 1.0 ! 2005-12 (C. Talandier, G. Madec, V. Garnier) Original code !! 3.2 ! 2009-07 (R. Benshila) Suppression of rigid-lid option !!---------------------------------------------------------------------- !!---------------------------------------------------------------------- !! dyn_spg : update the dynamics trend with the lateral diffusion !! dyn_spg_ctl : initialization, namelist read, and parameters control !!---------------------------------------------------------------------- USE oce ! ocean dynamics and tracers variables USE dom_oce ! ocean space and time domain variables USE obc_oce ! ocean open boundary conditions USE dynspg_oce ! surface pressure gradient variables USE dynspg_exp ! surface pressure gradient (dyn_spg_exp routine) USE dynspg_ts ! surface pressure gradient (dyn_spg_ts routine) USE dynspg_flt ! surface pressure gradient (dyn_spg_flt routine) USE dynadv ! dynamics: vector invariant versus flux form USE trdmod ! ocean dynamics trends USE trdmod_oce ! ocean variables trends USE prtctl ! Print control (prt_ctl routine) USE in_out_manager ! I/O manager IMPLICIT NONE PRIVATE PUBLIC dyn_spg ! routine called by step module PUBLIC dyn_spg_init ! routine called by opa module INTEGER :: nspg = 0 ! type of surface pressure gradient scheme defined from lk_dynspg_... !! * Substitutions # include "domzgr_substitute.h90" # include "vectopt_loop_substitute.h90" !!---------------------------------------------------------------------- !! NEMO/OPA 3.2 , LODYC-IPSL (2009) !! $Id$ !! Software governed by the CeCILL licence (NEMOGCM/NEMO_CeCILL.txt) !!---------------------------------------------------------------------- CONTAINS SUBROUTINE dyn_spg( kt, kindic ) !!---------------------------------------------------------------------- !! *** ROUTINE dyn_spg *** !! !! ** Purpose : achieve the momentum time stepping by computing the !! last trend, the surface pressure gradient, and performing !! the Leap-Frog integration. !!gm In the current version only the filtered solution provide !!gm the after velocity, in the 2 other (ua,va) are still the trends !! !! ** Method : Three schemes: !! - explicit computation : the spg is evaluated at now !! - filtered computation : the Roulet & madec (2000) technique is used !! - split-explicit computation: a time splitting technique is used !! !! N.B. : When key_esopa is used all the scheme are tested, regardless !! of the physical meaning of the results. !!---------------------------------------------------------------------- INTEGER, INTENT(in ) :: kt ! ocean time-step index INTEGER, INTENT( out) :: kindic ! solver flag !! REAL(wp) :: z2dt ! temporary scalar REAL(wp), DIMENSION(jpi,jpj,jpk) :: ztrdu, ztrdv ! 3D workspace !!---------------------------------------------------------------------- !!gm NOTA BENE : the dynspg_exp and dynspg_ts should be modified so that !!gm they return the after velocity, not the trends (as in trazdf_imp...) !!gm In this case, change/simplify dynnxt IF( l_trddyn ) THEN ! temporary save of ta and sa trends ztrdu(:,:,:) = ua(:,:,:) ztrdv(:,:,:) = va(:,:,:) ENDIF SELECT CASE ( nspg ) ! compute surf. pressure gradient trend and add it to the general trend ! CASE ( 0 ) ; CALL dyn_spg_exp( kt ) ! explicit CASE ( 1 ) ; CALL dyn_spg_ts ( kt ) ! time-splitting CASE ( 2 ) ; CALL dyn_spg_flt( kt, kindic ) ! filtered ! CASE ( -1 ) ! esopa: test all possibility with control print CALL dyn_spg_exp( kt ) CALL prt_ctl( tab3d_1=ua, clinfo1=' spg0 - Ua: ', mask1=umask, & & tab3d_2=va, clinfo2= ' Va: ', mask2=vmask, clinfo3='dyn' ) CALL dyn_spg_ts ( kt ) CALL prt_ctl( tab3d_1=ua, clinfo1=' spg1 - Ua: ', mask1=umask, & & tab3d_2=va, clinfo2= ' Va: ', mask2=vmask, clinfo3='dyn' ) CALL dyn_spg_flt( kt, kindic ) CALL prt_ctl( tab3d_1=ua, clinfo1=' spg2 - Ua: ', mask1=umask, & & tab3d_2=va, clinfo2= ' Va: ', mask2=vmask, clinfo3='dyn' ) END SELECT ! IF( l_trddyn ) THEN ! save the surface pressure gradient trends for further diagnostics SELECT CASE ( nspg ) CASE ( 0, 1 ) ztrdu(:,:,:) = ua(:,:,:) - ztrdu(:,:,:) ztrdv(:,:,:) = va(:,:,:) - ztrdv(:,:,:) CASE( 2 ) z2dt = 2. * rdt IF( neuler == 0 .AND. kt == nit000 ) z2dt = rdt ztrdu(:,:,:) = ( ua(:,:,:) - ub(:,:,:) ) / z2dt - ztrdu(:,:,:) ztrdv(:,:,:) = ( va(:,:,:) - vb(:,:,:) ) / z2dt - ztrdv(:,:,:) END SELECT CALL trd_mod( ztrdu, ztrdv, jpdyn_trd_spg, 'DYN', kt ) ENDIF ! ! print mean trends (used for debugging) IF(ln_ctl) CALL prt_ctl( tab3d_1=ua, clinfo1=' spg - Ua: ', mask1=umask, & & tab3d_2=va, clinfo2= ' Va: ', mask2=vmask, clinfo3='dyn' ) ! END SUBROUTINE dyn_spg SUBROUTINE dyn_spg_init !!--------------------------------------------------------------------- !! *** ROUTINE dyn_spg_init *** !! !! ** Purpose : Control the consistency between cpp options for !! surface pressure gradient schemes !!---------------------------------------------------------------------- INTEGER :: ioptio !!---------------------------------------------------------------------- IF(lwp) THEN ! Control print WRITE(numout,*) WRITE(numout,*) 'dyn_spg_init : choice of the surface pressure gradient scheme' WRITE(numout,*) '~~~~~~~~~~~' WRITE(numout,*) ' Explicit free surface lk_dynspg_exp = ', lk_dynspg_exp WRITE(numout,*) ' Free surface with time splitting lk_dynspg_ts = ', lk_dynspg_ts WRITE(numout,*) ' Filtered free surface cst volume lk_dynspg_flt = ', lk_dynspg_flt ENDIF ! ! Control of surface pressure gradient scheme options ioptio = 0 IF(lk_dynspg_exp) ioptio = ioptio + 1 IF(lk_dynspg_ts ) ioptio = ioptio + 1 IF(lk_dynspg_flt) ioptio = ioptio + 1 ! IF( ( ioptio > 1 .AND. .NOT. lk_esopa ) .OR. ioptio == 0 ) & & CALL ctl_stop( ' Choose only one surface pressure gradient scheme with a key cpp' ) ! IF( lk_esopa ) nspg = -1 IF( lk_dynspg_exp) nspg = 0 IF( lk_dynspg_ts ) nspg = 1 IF( lk_dynspg_flt) nspg = 2 ! IF( lk_esopa ) nspg = -1 ! IF(lwp) THEN WRITE(numout,*) IF( nspg == -1 ) WRITE(numout,*) ' ESOPA test All scheme used' IF( nspg == 0 ) WRITE(numout,*) ' explicit free surface' IF( nspg == 1 ) WRITE(numout,*) ' free surface with time splitting scheme' IF( nspg == 2 ) WRITE(numout,*) ' filtered free surface' ENDIF ! ! Control of timestep choice IF( lk_dynspg_ts .OR. lk_dynspg_exp ) THEN IF( nn_cla == 1 ) CALL ctl_stop( 'Crossland advection not implemented for this free surface formulation' ) ENDIF ! ! Control of momentum formulation IF( lk_dynspg_ts .AND. lk_vvl ) THEN IF( .NOT.ln_dynadv_vec ) CALL ctl_stop( 'Flux form not implemented for this free surface formulation' ) ENDIF #if defined key_obc ! ! Conservation of ocean volume (key_dynspg_flt) IF( lk_dynspg_flt ) ln_vol_cst = .true. ! ! Application of Flather's algorithm at open boundaries IF( lk_dynspg_flt ) ln_obc_fla = .false. IF( lk_dynspg_exp ) ln_obc_fla = .true. IF( lk_dynspg_ts ) ln_obc_fla = .true. #endif ! END SUBROUTINE dyn_spg_init !!====================================================================== END MODULE dynspg