New URL for NEMO forge!   http://forge.nemo-ocean.eu

Since March 2022 along with NEMO 4.2 release, the code development moved to a self-hosted GitLab.
This present forge is now archived and remained online for history.
ldfdyn_c2d.h90 in branches/nemo_v3_3_beta/NEMOGCM/NEMO/OPA_SRC/LDF – NEMO

source: branches/nemo_v3_3_beta/NEMOGCM/NEMO/OPA_SRC/LDF/ldfdyn_c2d.h90 @ 2380

Last change on this file since 2380 was 2380, checked in by acc, 13 years ago

nemo_v3_3beta. ORCA_R1 settings (step 2, see ticket #758). Introduces key_orca_r1 (46 level default, 75 level if key_orca_r1=75)

  • Property svn:keywords set to Id
File size: 16.8 KB
Line 
1   !!----------------------------------------------------------------------
2   !!                      ***  ldfdyn_c2d.h90  ***
3   !!----------------------------------------------------------------------
4   !!   ldf_dyn_c2d  : set the lateral viscosity coefficients
5   !!   ldf_dyn_c2d_orca : specific case for orca r2 and r4
6   !!----------------------------------------------------------------------
7
8   !!----------------------------------------------------------------------
9   !! NEMO/OPA 3.3 , NEMO Consortium (2010)
10   !! $Id$
11   !! Software governed by the CeCILL licence (NEMOGCM/NEMO_CeCILL.txt)
12   !!----------------------------------------------------------------------
13
14   SUBROUTINE ldf_dyn_c2d( ld_print )
15      !!----------------------------------------------------------------------
16      !!                 ***  ROUTINE ldf_dyn_c2d  ***
17      !!                 
18      !! ** Purpose :   initializations of the horizontal ocean physics
19      !!
20      !! ** Method :
21      !!      2D eddy viscosity coefficients ( longitude, latitude )
22      !!
23      !!       harmonic operator   : ahm1 is defined at t-point
24      !!                             ahm2 is defined at f-point
25      !!           + isopycnal     : ahm3 is defined at u-point
26      !!           or geopotential   ahm4 is defined at v-point
27      !!           iso-model level : ahm3, ahm4 not used
28      !!
29      !!       biharmonic operator : ahm3 is defined at u-point
30      !!                             ahm4 is defined at v-point
31      !!                           : ahm1, ahm2 not used
32      !!
33      !!----------------------------------------------------------------------
34      !! * Arguments
35      LOGICAL, INTENT (in) :: ld_print   ! If true, output arrays on numout
36
37      !! * Local variables
38      INTEGER :: ji, jj
39      REAL(wp) ::   za00, zd_max, zetmax, zeumax, zefmax, zevmax
40      !!----------------------------------------------------------------------
41
42      IF(lwp) WRITE(numout,*)
43      IF(lwp) WRITE(numout,*) 'ldf_dyn_c2d : 2d lateral eddy viscosity coefficient'
44      IF(lwp) WRITE(numout,*) '~~~~~~~~~~~'
45      IF(lwp) WRITE(numout,*)
46
47      ! harmonic operator (ahm1, ahm2) : ( T- and F- points) (used for laplacian operators
48      ! ===============================                       whatever its orientation is)
49      IF( ln_dynldf_lap ) THEN
50         ! define ahm1 and ahm2 at the right grid point position
51         ! (USER: modify ahm1 and ahm2 following your desiderata)
52
53         zd_max = MAX( MAXVAL( e1t(:,:) ), MAXVAL( e2t(:,:) ) )
54         IF( lk_mpp )   CALL mpp_max( zd_max )   ! max over the global domain
55
56         IF(lwp) WRITE(numout,*) '              laplacian operator: ahm proportional to e1'
57         IF(lwp) WRITE(numout,*) '              maximum grid-spacing = ', zd_max, ' maximum value for ahm = ', ahm0
58
59         za00 = ahm0 / zd_max
60         DO jj = 1, jpj
61            DO ji = 1, jpi
62               zetmax = MAX( e1t(ji,jj), e2t(ji,jj) )
63               zefmax = MAX( e1f(ji,jj), e2f(ji,jj) )
64               ahm1(ji,jj) = za00 * zetmax
65               ahm2(ji,jj) = za00 * zefmax
66            END DO
67         END DO
68
69         IF( ln_dynldf_iso ) THEN
70            IF(lwp) WRITE(numout,*) '              Caution, as implemented now, the isopycnal part of momentum'
71            IF(lwp) WRITE(numout,*) '                 mixing use aht0 as eddy viscosity coefficient. Thus, it is'
72            IF(lwp) WRITE(numout,*) '                 uniform and you must be sure that your ahm is greater than'
73            IF(lwp) WRITE(numout,*) '                 aht0 everywhere in the model domain.'
74         ENDIF
75
76         ! Special case for ORCA R1, R2 and R4 configurations (overwrite the value of ahm1 ahm2)
77         ! ==============================================
78         IF( cp_cfg == "orca" .AND. ( jp_cfg == 2 .OR. jp_cfg == 4 ) )   CALL ldf_dyn_c2d_orca( ld_print )
79         IF( cp_cfg == "orca" .AND.   jp_cfg == 1)                       CALL ldf_dyn_c2d_orca_R1( ld_print )
80
81         ! Control print
82         IF( lwp .AND. ld_print ) THEN
83            WRITE(numout,*)
84            WRITE(numout,*) 'inildf: 2D ahm1 array'
85            CALL prihre(ahm1,jpi,jpj,1,jpi,1,1,jpj,1,1.e-3,numout)
86            WRITE(numout,*)
87            WRITE(numout,*) 'inildf: 2D ahm2 array'
88            CALL prihre(ahm2,jpi,jpj,1,jpi,1,1,jpj,1,1.e-3,numout)
89         ENDIF
90      ENDIF
91
92      ! biharmonic operator (ahm3, ahm4) : at U- and V-points (used for bilaplacian operator
93      ! =================================                      whatever its orientation is)
94      IF( ln_dynldf_bilap ) THEN
95         ! (USER: modify ahm3 and ahm4 following your desiderata)
96         ! Here: ahm is proportional to the cube of the maximum of the gridspacing
97         !       in the to horizontal direction
98
99         zd_max = MAX( MAXVAL( e1u(:,:) ), MAXVAL( e2u(:,:) ) )
100         IF( lk_mpp )   CALL mpp_max( zd_max )   ! max over the global domain
101
102         IF(lwp) WRITE(numout,*) '              bi-laplacian operator: ahm proportional to e1**3 '
103         IF(lwp) WRITE(numout,*) '              maximum grid-spacing = ', zd_max, ' maximum value for ahm = ', ahm0
104
105         za00 = ahm0_blp / ( zd_max * zd_max * zd_max )
106         DO jj = 1, jpj
107            DO ji = 1, jpi
108               zeumax = MAX( e1u(ji,jj), e2u(ji,jj) )
109               zevmax = MAX( e1v(ji,jj), e2v(ji,jj) )
110               ahm3(ji,jj) = za00 * zeumax * zeumax * zeumax
111               ahm4(ji,jj) = za00 * zevmax * zevmax * zevmax
112            END DO
113         END DO
114
115         ! Control print
116         IF( lwp .AND. ld_print ) THEN
117            WRITE(numout,*)
118            WRITE(numout,*) 'inildf: ahm3 array'
119            CALL prihre(ahm3,jpi,jpj,1,jpi,1,1,jpj,1,1.e-3,numout)
120            WRITE(numout,*)
121            WRITE(numout,*) 'inildf: ahm4 array'
122            CALL prihre(ahm4,jpi,jpj,1,jpi,1,1,jpj,1,1.e-3,numout)
123         ENDIF
124      ENDIF
125
126
127   END SUBROUTINE ldf_dyn_c2d
128
129
130   SUBROUTINE ldf_dyn_c2d_orca( ld_print )
131      !!----------------------------------------------------------------------
132      !!                 ***  ROUTINE ldf_dyn_c2d  ***
133      !!
134      !!                   **** W A R N I N G ****
135      !!
136      !!                ORCA R2 and R4 configurations
137      !!                 
138      !!                   **** W A R N I N G ****
139      !!                 
140      !! ** Purpose :   initializations of the lateral viscosity for orca R2
141      !!
142      !! ** Method  :   blah blah blah...
143      !!
144      !!----------------------------------------------------------------------
145      !! * Modules used
146      USE ldftra_oce, ONLY : aht0
147
148      !! * Arguments
149      LOGICAL, INTENT (in) ::   ld_print   ! If true, output arrays on numout
150
151      !! * Local variables
152      INTEGER ::   ji, jj, jn      ! dummy loop indices
153      INTEGER ::   inum            ! temporary logical unit
154      INTEGER ::   iim, ijm
155      INTEGER ::   ifreq, il1, il2, ij, ii
156      INTEGER, DIMENSION(jpidta,jpidta) ::   idata
157      INTEGER, DIMENSION(jpi   ,jpj   ) ::   icof
158
159      REAL(wp) ::   zahmeq, zcoft, zcoff, zmsk
160
161      CHARACTER (len=15) ::   clexp
162      !!----------------------------------------------------------------------
163
164      IF(lwp) WRITE(numout,*)
165      IF(lwp) WRITE(numout,*) 'inildf: 2d eddy viscosity coefficient'
166      IF(lwp) WRITE(numout,*) '~~~~~~  --'
167      IF(lwp) WRITE(numout,*)
168      IF(lwp) WRITE(numout,*) '        orca ocean model'
169      IF(lwp) WRITE(numout,*)
170
171#if defined key_antarctic
172#     include "ldfdyn_antarctic.h90"
173#elif defined key_arctic
174#     include "ldfdyn_arctic.h90"
175#else
176      ! Read 2d integer array to specify western boundary increase in the
177      ! ===================== equatorial strip (20N-20S) defined at t-points
178
179      CALL ctl_opn( inum, 'ahmcoef', 'OLD', 'FORMATTED', 'SEQUENTIAL', -1, numout, lwp )
180      READ(inum,9101) clexp, iim, ijm
181      READ(inum,'(/)')
182      ifreq = 40
183      il1 = 1
184      DO jn = 1, jpidta/ifreq+1
185         READ(inum,'(/)')
186         il2 = MIN( jpidta, il1+ifreq-1 )
187         READ(inum,9201) ( ii, ji = il1, il2, 5 )
188         READ(inum,'(/)')
189         DO jj = jpjdta, 1, -1
190            READ(inum,9202) ij, ( idata(ji,jj), ji = il1, il2 )
191         END DO
192         il1 = il1 + ifreq
193      END DO
194     
195      DO jj = 1, nlcj
196         DO ji = 1, nlci
197            icof(ji,jj) = idata( mig(ji), mjg(jj) )
198         END DO
199      END DO
200      DO jj = nlcj+1, jpj
201         DO ji = 1, nlci
202            icof(ji,jj) = icof(ji,nlcj)
203         END DO
204      END DO
205      DO jj = 1, jpj
206         DO ji = nlci+1, jpi
207            icof(ji,jj) = icof(nlci,jj)
208         END DO
209      END DO
210
211 9101 FORMAT(1x,a15,2i8)
212 9201 FORMAT(3x,13(i3,12x))
213 9202 FORMAT(i3,41i3)
214
215
216      ! Set ahm1 and ahm2  ( T- and F- points) (used for laplacian operator)
217      ! =================
218      ! define ahm1 and ahm2 at the right grid point position
219      ! (USER: modify ahm1 and ahm2 following your desiderata)
220     
221     
222      ! Decrease ahm to zahmeq m2/s in the tropics
223      ! (from 90 to 20 degre: ahm = constant
224      ! from 20 to  2.5 degre: ahm = decrease in (1-cos)/2
225      ! from  2.5 to  0 degre: ahm = constant
226      ! symmetric in the south hemisphere)
227
228      zahmeq = aht0
229     
230      DO jj = 1, jpj
231         DO ji = 1, jpi
232            IF( ABS( gphif(ji,jj) ) >= 20. ) THEN
233               ahm2(ji,jj) =  ahm0
234            ELSEIF( ABS( gphif(ji,jj) ) <= 2.5 ) THEN
235               ahm2(ji,jj) =  zahmeq
236            ELSE
237               ahm2(ji,jj) = zahmeq + (ahm0-zahmeq)/2.   &
238                  * ( 1. - COS( rad * ( ABS(gphif(ji,jj))-2.5 ) * 180. / 17.5 ) )
239            ENDIF
240            IF( ABS( gphit(ji,jj) ) >= 20. ) THEN
241               ahm1(ji,jj) =  ahm0
242            ELSEIF( ABS( gphit(ji,jj) ) <= 2.5 ) THEN
243               ahm1(ji,jj) =  zahmeq
244            ELSE
245               ahm1(ji,jj) = zahmeq + (ahm0-zahmeq)/2.   &
246                  * ( 1. - COS( rad * ( ABS(gphit(ji,jj))-2.5 ) * 180. / 17.5 ) )
247            ENDIF
248         END DO
249      END DO
250
251      ! increase along western boundaries of equatorial strip
252      ! t-point
253      DO jj = 1, jpjm1
254         DO ji = 1, jpim1
255            zcoft = FLOAT( icof(ji,jj) ) / 100.
256            ahm1(ji,jj) = zcoft * ahm0 + (1.-zcoft) * ahm1(ji,jj)
257         END DO
258      END DO
259      ! f-point
260      icof(:,:) = icof(:,:) * tmask(:,:,1)
261      DO jj = 1, jpjm1
262         DO ji = 1, jpim1   ! NO vector opt.
263            zmsk = tmask(ji,jj+1,1) + tmask(ji+1,jj+1,1) + tmask(ji,jj,1) + tmask(ji,jj+1,1)
264            IF( zmsk == 0. ) THEN
265               zcoff = 1.
266            ELSE
267               zcoff = FLOAT( icof(ji,jj+1) + icof(ji+1,jj+1) + icof(ji,jj) + icof(ji,jj+1) )   &
268                     / (zmsk * 100.)
269            ENDIF
270            ahm2(ji,jj) = zcoff * ahm0 + (1.-zcoff) * ahm2(ji,jj)
271         END DO
272      END DO
273#endif
274     
275      ! Lateral boundary conditions on ( ahm1, ahm2 )
276      !                                ==============
277      CALL lbc_lnk( ahm1, 'T', 1. )   ! T-point, unchanged sign
278      CALL lbc_lnk( ahm2, 'F', 1. )   ! F-point, unchanged sign
279
280      ! Control print
281      IF( lwp .AND. ld_print ) THEN
282         WRITE(numout,*)
283         WRITE(numout,*) 'inildf: 2D ahm1 array'
284         CALL prihre(ahm1,jpi,jpj,1,jpi,1,1,jpj,1,1.e-3,numout)
285         WRITE(numout,*)
286         WRITE(numout,*) 'inildf: 2D ahm2 array'
287         CALL prihre(ahm2,jpi,jpj,1,jpi,1,1,jpj,1,1.e-3,numout)
288      ENDIF
289
290   END SUBROUTINE ldf_dyn_c2d_orca
291
292   SUBROUTINE ldf_dyn_c2d_orca_R1( ld_print )
293      !!----------------------------------------------------------------------
294      !!                 ***  ROUTINE ldf_dyn_c2d  ***
295      !!
296      !!                   **** W A R N I N G ****
297      !!
298      !!                ORCA R1 configuration
299      !!                 
300      !!                   **** W A R N I N G ****
301      !!                 
302      !! ** Purpose :   initializations of the lateral viscosity for orca R1
303      !!
304      !! ** Method  :   blah blah blah...
305      !!
306      !!----------------------------------------------------------------------
307      !! * Modules used
308      USE ldftra_oce, ONLY : aht0
309
310      !! * Arguments
311      LOGICAL, INTENT (in) ::   ld_print   ! If true, output arrays on numout
312
313      !! * Local variables
314      INTEGER ::   ji, jj, jn      ! dummy loop indices
315      INTEGER ::   inum            ! temporary logical unit
316      INTEGER ::   iim, ijm
317      INTEGER ::   ifreq, il1, il2, ij, ii
318      INTEGER, DIMENSION(jpidta,jpidta) ::   idata
319      INTEGER, DIMENSION(jpi   ,jpj   ) ::   icof
320
321      REAL(wp) ::   zahmeq, zcoft, zcoff, zmsk, zam20s
322
323      CHARACTER (len=15) ::   clexp
324      !!----------------------------------------------------------------------
325
326      IF(lwp) WRITE(numout,*)
327      IF(lwp) WRITE(numout,*) 'inildf: 2d eddy viscosity coefficient'
328      IF(lwp) WRITE(numout,*) '~~~~~~  --'
329      IF(lwp) WRITE(numout,*)
330      IF(lwp) WRITE(numout,*) '        orca_r1 ocean model'
331      IF(lwp) WRITE(numout,*)
332
333#if defined key_antarctic
334#     include "ldfdyn_antarctic.h90"
335#elif defined key_arctic
336#     include "ldfdyn_arctic.h90"
337#else
338      ! Read 2d integer array to specify western boundary increase in the
339      ! ===================== equatorial strip (20N-20S) defined at t-points
340
341      CALL ctl_opn( inum, 'ahmcoef', 'UNKNOWN', 'FORMATTED', 'SEQUENTIAL',   &
342         &           1, numout, lwp )
343      REWIND inum
344      READ(inum,9101) clexp, iim, ijm
345      READ(inum,'(/)')
346      ifreq = 40
347      il1 = 1
348      DO jn = 1, jpidta/ifreq+1
349         READ(inum,'(/)')
350         il2 = MIN( jpidta, il1+ifreq-1 )
351         READ(inum,9201) ( ii, ji = il1, il2, 5 )
352         READ(inum,'(/)')
353         DO jj = jpjdta, 1, -1
354            READ(inum,9202) ij, ( idata(ji,jj), ji = il1, il2 )
355         END DO
356         il1 = il1 + ifreq
357      END DO
358     
359      DO jj = 1, nlcj
360         DO ji = 1, nlci
361            icof(ji,jj) = idata( mig(ji), mjg(jj) )
362         END DO
363      END DO
364      DO jj = nlcj+1, jpj
365         DO ji = 1, nlci
366            icof(ji,jj) = icof(ji,nlcj)
367         END DO
368      END DO
369      DO jj = 1, jpj
370         DO ji = nlci+1, jpi
371            icof(ji,jj) = icof(nlci,jj)
372         END DO
373      END DO
374
375 9101 FORMAT(1x,a15,2i8)
376 9201 FORMAT(3x,13(i3,12x))
377 9202 FORMAT(i3,41i3)
378
379
380      ! Set ahm1 and ahm2  ( T- and F- points) (used for laplacian operator)
381      ! =================
382      ! define ahm1 and ahm2 at the right grid point position
383      ! (USER: modify ahm1 and ahm2 following your desiderata)
384     
385     
386      ! Decrease ahm to zahmeq m2/s in the tropics
387      ! (from 90   to 20   degrees: ahm = scaled by local metrics
388      !  from 20   to  2.5 degrees: ahm = decrease in (1-cos)/2
389      !  from  2.5 to  0   degrees: ahm = constant
390      ! symmetric in the south hemisphere)
391
392      zahmeq = aht0
393      zam20s = ahm0*COS( rad * 20. )
394     
395      DO jj = 1, jpj
396         DO ji = 1, jpi
397            IF( ABS( gphif(ji,jj) ) >= 20. ) THEN
398!              leave as set in ldf_dyn_c2d
399            ELSEIF( ABS( gphif(ji,jj) ) <= 2.5 ) THEN
400               ahm2(ji,jj) =  zahmeq
401            ELSE
402               ahm2(ji,jj) =  zahmeq + (zam20s-zahmeq)/2.   &
403                  * ( 1. - COS( rad * ( ABS(gphif(ji,jj))-2.5 ) * 180. / 17.5 ) )
404            ENDIF
405            IF( ABS( gphit(ji,jj) ) >= 20. ) THEN
406!             leave as set in ldf_dyn_c2d
407            ELSEIF( ABS( gphit(ji,jj) ) <= 2.5 ) THEN
408               ahm1(ji,jj) =  zahmeq
409            ELSE
410               ahm1(ji,jj) =  zahmeq + (zam20s-zahmeq)/2.   &
411                  * ( 1. - COS( rad * ( ABS(gphit(ji,jj))-2.5 ) * 180. / 17.5 ) )
412            ENDIF
413         END DO
414      END DO
415
416      ! increase along western boundaries of equatorial strip
417      ! t-point
418      DO jj = 1, jpjm1
419         DO ji = 1, jpim1
420          IF( ABS( gphit(ji,jj) ) < 20. ) THEN
421            zcoft = FLOAT( icof(ji,jj) ) / 100.
422            ahm1(ji,jj) = zcoft * ahm0 + (1.-zcoft) * ahm1(ji,jj)
423          ENDIF
424         END DO
425      END DO
426      ! f-point
427      icof(:,:) = icof(:,:) * tmask(:,:,1)
428      DO jj = 1, jpjm1
429         DO ji = 1, jpim1
430          IF( ABS( gphif(ji,jj) ) < 20. ) THEN
431            zmsk = tmask(ji,jj+1,1) + tmask(ji+1,jj+1,1) + tmask(ji,jj,1) + tmask(ji,jj+1,1)
432            IF( zmsk == 0. ) THEN
433               zcoff = 1.
434            ELSE
435               zcoff = FLOAT( icof(ji,jj+1) + icof(ji+1,jj+1) + icof(ji,jj) + icof(ji,jj+1) )   &
436                     / (zmsk * 100.)
437            ENDIF
438            ahm2(ji,jj) = zcoff * ahm0 + (1.-zcoff) * ahm2(ji,jj)
439          ENDIF
440         END DO
441      END DO
442#endif
443     
444      ! Lateral boundary conditions on ( ahm1, ahm2 )
445      !                                ==============
446      CALL lbc_lnk( ahm1, 'T', 1. )   ! T-point, unchanged sign
447      CALL lbc_lnk( ahm2, 'F', 1. )   ! F-point, unchanged sign
448
449      ! Control print
450      IF( lwp .AND. ld_print ) THEN
451         WRITE(numout,*)
452         WRITE(numout,*) 'inildf: 2D ahm1 array'
453         CALL prihre(ahm1,jpi,jpj,1,jpi,1,1,jpj,1,1.e-3,numout)
454         WRITE(numout,*)
455         WRITE(numout,*) 'inildf: 2D ahm2 array'
456         CALL prihre(ahm2,jpi,jpj,1,jpi,1,1,jpj,1,1.e-3,numout)
457      ENDIF
458
459   END SUBROUTINE ldf_dyn_c2d_orca_R1
Note: See TracBrowser for help on using the repository browser.