MODULE traldf_iso_grif !!====================================================================== !! *** MODULE traldf_iso_grif *** !! Ocean tracers: horizontal component of the lateral tracer mixing trend !!====================================================================== !! History : 3.3 ! 2010-10 (G. Nurser, C. Harris, G. Madec) !! ! Griffies operator version adapted from traldf_iso.F90 !!---------------------------------------------------------------------- #if defined key_ldfslp || defined key_esopa !!---------------------------------------------------------------------- !! 'key_ldfslp' slope of the lateral diffusive direction !!---------------------------------------------------------------------- !! tra_ldf_iso_grif : update the tracer trend with the horizontal !! component of a iso-neutral laplacian operator !! and with the vertical part of !! the isopycnal or geopotential s-coord. operator !!---------------------------------------------------------------------- USE oce ! ocean dynamics and active tracers USE dom_oce ! ocean space and time domain USE ldftra_oce ! ocean active tracers: lateral physics USE zdf_oce ! ocean vertical physics USE in_out_manager ! I/O manager USE iom ! USE ldfslp ! iso-neutral slopes USE diaptr ! poleward transport diagnostics USE trc_oce ! share passive tracers/Ocean variables #if defined key_diaar5 USE phycst ! physical constants USE lbclnk ! ocean lateral boundary conditions (or mpp link) #endif IMPLICIT NONE PRIVATE PUBLIC tra_ldf_iso_grif ! routine called by traldf.F90 REAL(wp), PUBLIC, DIMENSION(:,:,:), ALLOCATABLE :: psix_eiv REAL(wp), PUBLIC, DIMENSION(:,:,:), ALLOCATABLE :: psiy_eiv REAL(wp), PUBLIC, DIMENSION(:,:,:), ALLOCATABLE :: ah_wslp2 !! * Substitutions # include "domzgr_substitute.h90" # include "ldftra_substitute.h90" # include "vectopt_loop_substitute.h90" # include "ldfeiv_substitute.h90" !!---------------------------------------------------------------------- !! NEMO/OPA 3.3 , NEMO Consortium (2010) !! $Id$ !! Software governed by the CeCILL licence (NEMOGCM/NEMO_CeCILL.txt) !!---------------------------------------------------------------------- CONTAINS SUBROUTINE tra_ldf_iso_grif( kt, cdtype, pgu, pgv, & & ptb, pta, kjpt, pahtb0 ) !!---------------------------------------------------------------------- !! *** ROUTINE tra_ldf_iso_grif *** !! !! ** Purpose : Compute the before horizontal tracer (t & s) diffusive !! trend for a laplacian tensor (ezxcept the dz[ dz[.] ] term) and !! add it to the general trend of tracer equation. !! !! ** Method : The horizontal component of the lateral diffusive trends !! is provided by a 2nd order operator rotated along neural or geopo- !! tential surfaces to which an eddy induced advection can be added !! It is computed using before fields (forward in time) and isopyc- !! nal or geopotential slopes computed in routine ldfslp. !! !! 1st part : masked horizontal derivative of T ( di[ t ] ) !! ======== with partial cell update if ln_zps=T. !! !! 2nd part : horizontal fluxes of the lateral mixing operator !! ======== !! zftu = (aht+ahtb0) e2u*e3u/e1u di[ tb ] !! - aht e2u*uslp dk[ mi(mk(tb)) ] !! zftv = (aht+ahtb0) e1v*e3v/e2v dj[ tb ] !! - aht e2u*vslp dk[ mj(mk(tb)) ] !! take the horizontal divergence of the fluxes: !! difft = 1/(e1t*e2t*e3t) { di-1[ zftu ] + dj-1[ zftv ] } !! Add this trend to the general trend (ta,sa): !! ta = ta + difft !! !! 3rd part: vertical trends of the lateral mixing operator !! ======== (excluding the vertical flux proportional to dk[t] ) !! vertical fluxes associated with the rotated lateral mixing: !! zftw =-aht { e2t*wslpi di[ mi(mk(tb)) ] !! + e1t*wslpj dj[ mj(mk(tb)) ] } !! take the horizontal divergence of the fluxes: !! difft = 1/(e1t*e2t*e3t) dk[ zftw ] !! Add this trend to the general trend (ta,sa): !! pta = pta + difft !! !! ** Action : Update pta arrays with the before rotated diffusion !!---------------------------------------------------------------------- USE oce, zftu => ua ! use ua as workspace USE oce, zftv => va ! use va as workspace !! INTEGER , INTENT(in ) :: kt ! ocean time-step index CHARACTER(len=3) , INTENT(in ) :: cdtype ! =TRA or TRC (tracer indicator) INTEGER , INTENT(in ) :: kjpt ! number of tracers REAL(wp), DIMENSION(jpi,jpj ,kjpt), INTENT(in ) :: pgu, pgv ! tracer gradient at pstep levels REAL(wp), DIMENSION(jpi,jpj,jpk,kjpt), INTENT(in ) :: ptb ! before and now tracer fields REAL(wp), DIMENSION(jpi,jpj,jpk,kjpt), INTENT(inout) :: pta ! tracer trend REAL(wp) , INTENT(in ) :: pahtb0 ! background diffusion coef !! INTEGER :: ji, jj, jk,jn ! dummy loop indices INTEGER :: ip,jp,kp ! dummy loop indices INTEGER :: iku, ikv ! temporary integer INTEGER :: ierr ! temporary integer REAL(wp) :: zmsku, zabe1, zcof1, zcoef3 ! local scalars REAL(wp) :: zmskv, zabe2, zcof2, zcoef4 ! - - REAL(wp) :: zcoef0, zbtr ! - - REAL(wp), DIMENSION(jpi,jpj,0:1) :: zdkt ! 2D+1 workspace REAL(wp), DIMENSION(jpi,jpj,jpk) :: zdit, zdjt, ztfw ! 3D workspace ! REAL(wp) :: zslope_skew,zslope_iso,zslope2, zbu, zbv REAL(wp) :: ze1ur,zdxt,ze2vr,ze3wr,zdyt,zdzt REAL(wp) :: ah,zah_slp,zaei_slp #if defined key_diaar5 REAL(wp), DIMENSION(jpi,jpj) :: z2d ! 2D workspace REAL(wp) :: zztmp ! local scalar #endif !!---------------------------------------------------------------------- IF( kt == nit000 ) THEN IF(lwp) WRITE(numout,*) IF(lwp) WRITE(numout,*) 'tra_ldf_iso_grif : rotated laplacian diffusion operator on ', cdtype IF(lwp) WRITE(numout,*) ' WARNING: STILL UNDER TEST, NOT RECOMMENDED. USE AT YOUR OWN PERIL' IF(lwp) WRITE(numout,*) '~~~~~~~~~~~' ALLOCATE( ah_wslp2(jpi,jpj,jpk) , STAT=ierr ) IF( ierr > 0 ) THEN CALL ctl_stop( 'tra_ldf_iso_grif : unable to allocate Griffies operator ah_wslp2 ' ) ; RETURN ENDIF IF( ln_traldf_gdia ) THEN ALLOCATE( psix_eiv(jpi,jpj,jpk) , psiy_eiv(jpi,jpj,jpk) , STAT=ierr ) IF( ierr > 0 ) THEN CALL ctl_stop( 'tra_ldf_iso_grif : unable to allocate Griffies operator diagnostics ' ) ; RETURN ENDIF ENDIF ENDIF ! !!---------------------------------------------------------------------- !! 0 - calculate ah_wslp2, psix_eiv, psiy_eiv !!---------------------------------------------------------------------- !!gm Future development: consider using Ah defined at T-points and attached to the 4 t-point triads ah_wslp2(:,:,:) = 0.0 IF( ln_traldf_gdia ) THEN psix_eiv(:,:,:) = 0.0 psiy_eiv(:,:,:) = 0.0 ENDIF DO ip=0,1 DO kp=0,1 DO jk=1,jpkm1 DO jj=1,jpjm1 DO ji=1,fs_jpim1 ze3wr=1.0_wp/fse3w(ji+ip,jj,jk+kp) zbu = 0.25_wp*e1u(ji,jj)*e2u(ji,jj)*fse3u(ji,jj,jk) ah = fsahtu(ji,jj,jk) ! fsaht(ji+ip,jj,jk) zslope_skew = triadi_g(ji+ip,jj,jk,1-ip,kp) zslope2=(zslope_skew & & - umask(ji,jj,jk+kp)*(fsdept(ji+1,jj,jk) - fsdept(ji ,jj ,jk))*ze1ur & & )**2 ah_wslp2(ji+ip,jj,jk+kp)=ah_wslp2(ji+ip,jj,jk+kp) + & & ah*((zbu*ze3wr)/(e1t(ji+ip,jj)*e2t(ji+ip,jj)))*zslope2 IF( ln_traldf_gdia ) THEN zaei_slp = fsaeiw(ji+ip,jj,jk)*zslope_skew!fsaeit(ji+ip,jj,jk)*zslope_skew psix_eiv(ji,jj,jk+kp) = psix_eiv(ji,jj,jk+kp) + 0.25_wp*zaei_slp ENDIF END DO END DO END DO END DO END DO DO jp=0,1 DO kp=0,1 DO jk=1,jpkm1 DO jj=1,jpjm1 DO ji=1,fs_jpim1 ze3wr=1.0_wp/fse3w(ji,jj+jp,jk+kp) zbv = 0.25_wp*e1v(ji,jj)*e2v(ji,jj)*fse3v(ji,jj,jk) ah = fsahtu(ji,jj,jk)!fsaht(ji,jj+jp,jk) zslope_skew = triadj_g(ji,jj+jp,jk,1-jp,kp) zslope2=(zslope_skew - vmask(ji,jj,jk+kp)*(fsdept(ji,jj+1,jk) - fsdept(ji ,jj ,jk))*ze2vr & & )**2 ah_wslp2(ji,jj+jp,jk+kp)=ah_wslp2(ji,jj+jp,jk+kp) + & & ah*((zbv*ze3wr)/(e1t(ji,jj+jp)*e2t(ji,jj+jp)))*zslope2 IF( ln_traldf_gdia ) THEN zaei_slp = fsaeiw(ji,jj+jp,jk) * zslope_skew !fsaeit(ji,jj+jp,jk)*zslope_skew psiy_eiv(ji,jj,jk+kp) = psiy_eiv(ji,jj,jk+kp) + 0.25_wp*zaei_slp ENDIF END DO END DO END DO END DO END DO ! ! ! =========== DO jn = 1, kjpt ! tracer loop ! ! =========== ! Zero fluxes for each tracer ztfw(:,:,:) = 0._wp zftu(:,:,:) = 0._wp zftv(:,:,:) = 0._wp ! DO jk = 1, jpkm1 !== before lateral T & S gradients at T-level jk ==! DO jj = 1, jpjm1 DO ji = 1, fs_jpim1 ! vector opt. zdit(ji,jj,jk) = ( ptb(ji+1,jj ,jk,jn) - ptb(ji,jj,jk,jn) ) * umask(ji,jj,jk) zdjt(ji,jj,jk) = ( ptb(ji ,jj+1,jk,jn) - ptb(ji,jj,jk,jn) ) * vmask(ji,jj,jk) END DO END DO END DO IF( ln_zps ) THEN ! partial steps: correction at the last level # if defined key_vectopt_loop DO jj = 1, 1 DO ji = 1, jpij-jpi ! vector opt. (forced unrolling) # else DO jj = 1, jpjm1 DO ji = 1, jpim1 # endif iku = MIN( mbathy(ji,jj), mbathy(ji+1,jj ) ) - 1 ! last level ikv = MIN( mbathy(ji,jj), mbathy(ji ,jj+1) ) - 1 zdit(ji,jj,iku) = pgu(ji,jj,jn) zdjt(ji,jj,ikv) = pgv(ji,jj,jn) END DO END DO ENDIF !!---------------------------------------------------------------------- !! II - horizontal trend (full) !!---------------------------------------------------------------------- ! DO jk = 1, jpkm1 ! ! !== Vertical tracer gradient at level jk and jk+1 zdkt(:,:,1) = ( ptb(:,:,jk,jn) - ptb(:,:,jk+1,jn) ) * tmask(:,:,jk+1) ! ! ! surface boundary condition: zdkt(jk=1)=zdkt(jk=2) IF( jk == 1 ) THEN ; zdkt(:,:,0) = zdkt(:,:,1) ELSE ; zdkt(:,:,0) = ( ptb(:,:,jk-1,jn) - ptb(:,:,jk,jn) ) * tmask(:,:,jk) ENDIF IF( .NOT. l_triad_iso ) THEN triadi = triadi_g triadj = triadj_g ENDIF DO ip=0,1 !== Horizontal & vertical fluxes DO kp=0,1 DO jj=1,jpjm1 DO ji=1,fs_jpim1 ze1ur = 1._wp / e1u(ji,jj) zdxt = zdit(ji,jj,jk) * ze1ur ze3wr = 1._wp/fse3w(ji+ip,jj,jk+kp) zdzt = zdkt(ji+ip,jj,kp) * ze3wr zslope_skew = triadi_g(ji+ip,jj,jk,1-ip,kp) zslope_iso = triadi(ji+ip,jj,jk,1-ip,kp) zbu = 0.25_wp * e1u(ji,jj) * e2u(ji,jj) * fse3u(ji,jj,jk) ah = fsahtu(ji,jj,jk)!*umask(ji,jj,jk+kp) !fsaht(ji+ip,jj,jk) ===>> ???? zah_slp = ah*zslope_iso zaei_slp = fsaeiw(ji+ip,jj,jk) * zslope_skew !fsaeit(ji+ip,jj,jk)*zslope_skew zftu(ji,jj,jk) = zftu(ji,jj,jk) - (ah*zdxt + (zah_slp - zaei_slp)*zdzt)*zbu*ze1ur ztfw(ji+ip,jj,jk+kp) = ztfw(ji+ip,jj,jk+kp) - (zah_slp + zaei_slp)*zdxt *zbu*ze3wr END DO END DO END DO END DO DO jp=0,1 DO kp=0,1 DO jj=1,jpjm1 DO ji=1,fs_jpim1 ze2vr = 1._wp/e2v(ji,jj) zdyt = zdjt(ji,jj,jk)*ze2vr ze3wr = 1._wp/fse3w(ji,jj+jp,jk+kp) zdzt = zdkt(ji,jj+jp,kp) * ze3wr zslope_skew = triadj_g(ji,jj+jp,jk,1-jp,kp) zslope_iso = triadj(ji,jj+jp,jk,1-jp,kp) zbv = 0.25_wp * e1v(ji,jj) * e2v(ji,jj) * fse3v(ji,jj,jk) ah = fsahtv(ji,jj,jk)!*vmask(ji,jj,jk+kp) !fsaht(ji,jj+jp,jk) zah_slp = ah * zslope_iso zaei_slp = fsaeiw(ji,jj+jp,jk)*zslope_skew!fsaeit(ji,jj+jp,jk)*zslope_skew zftv(ji,jj,jk) = zftv(ji,jj,jk) - (ah*zdyt + (zah_slp - zaei_slp)*zdzt)*zbv*ze2vr ztfw(ji,jj+jp,jk+kp) = ztfw(ji,jj+jp,jk+kp) - (zah_slp + zaei_slp)*zdyt*zbv*ze3wr END DO END DO END DO END DO ! !== divergence and add to the general trend ==! DO jj = 2 , jpjm1 DO ji = fs_2, fs_jpim1 ! vector opt. zbtr = 1._wp / ( e1t(ji,jj) * e2t(ji,jj) * fse3t(ji,jj,jk) ) pta(ji,jj,jk,jn) = pta(ji,jj,jk,jn) + zbtr * ( zftu(ji-1,jj,jk) - zftu(ji,jj,jk) & & + zftv(ji,jj-1,jk) - zftv(ji,jj,jk) ) END DO END DO ! END DO ! DO jk = 1, jpkm1 !== Divergence of vertical fluxes added to the general tracer trend DO jj = 2, jpjm1 DO ji = fs_2, fs_jpim1 ! vector opt. pta(ji,jj,jk,jn) = pta(ji,jj,jk,jn) + ( ztfw(ji,jj,jk+1) - ztfw(ji,jj,jk) ) & & / ( e1t(ji,jj) * e2t(ji,jj) * fse3t(ji,jj,jk) ) END DO END DO END DO ! ! ! "Poleward" diffusive heat or salt transports (T-S case only) IF( cdtype == 'TRA' .AND. ln_diaptr .AND. ( MOD( kt, nn_fptr ) == 0 ) ) THEN IF( jn == jp_tem) htr_ldf(:) = ptr_vj( zftv(:,:,:) ) ! 3.3 names IF( jn == jp_sal) str_ldf(:) = ptr_vj( zftv(:,:,:) ) ENDIF #if defined key_diaar5 IF( cdtype == 'TRA' .AND. jn == jp_tem ) THEN zztmp = 0.5 * rau0 * rcp z2d(:,:) = 0.e0 DO jk = 1, jpkm1 DO jj = 2, jpjm1 DO ji = fs_2, fs_jpim1 ! vector opt. z2d(ji,jj) = z2d(ji,jj) + zztmp * zftu(ji,jj,jk) & & * ( ptn(ji,jj,jk,jn) + ptn(ji+1,jj,jk,jn) ) * e1u(ji,jj) * fse3u(ji,jj,jk) END DO END DO END DO CALL lbc_lnk( z2d, 'U', -1. ) CALL iom_put( "udiff_heattr", z2d ) ! heat transport in i-direction z2d(:,:) = 0.e0 DO jk = 1, jpkm1 DO jj = 2, jpjm1 DO ji = fs_2, fs_jpim1 ! vector opt. z2d(ji,jj) = z2d(ji,jj) + zztmp * zftv(ji,jj,jk) & & * ( ptn(ji,jj,jk,jn) + ptn(ji,jj+1,jk,jn) ) * e2v(ji,jj) * fse3v(ji,jj,jk) END DO END DO END DO CALL lbc_lnk( z2d, 'V', -1. ) CALL iom_put( "vdiff_heattr", z2d ) ! heat transport in i-direction END IF #endif ! END DO ! END SUBROUTINE tra_ldf_iso_grif #else !!---------------------------------------------------------------------- !! default option : Dummy code NO rotation of the diffusive tensor !!---------------------------------------------------------------------- CONTAINS SUBROUTINE tra_ldf_iso_grif( kt ) ! Empty routine WRITE(*,*) 'tra_ldf_iso: You should not have seen this print! error?', kt END SUBROUTINE tra_ldf_iso_grif #endif !!============================================================================== END MODULE traldf_iso_grif