New URL for NEMO forge!   http://forge.nemo-ocean.eu

Since March 2022 along with NEMO 4.2 release, the code development moved to a self-hosted GitLab.
This present forge is now archived and remained online for history.
Biblio.bib in tags/nemo_v3_2/nemo_v3_2/DOC/TexFiles/Biblio – NEMO

source: tags/nemo_v3_2/nemo_v3_2/DOC/TexFiles/Biblio/Biblio.bib @ 1878

Last change on this file since 1878 was 1878, checked in by flavoni, 14 years ago

initial test for nemogcm

File size: 81.7 KB
Line 
1This file was created with JabRef 2.2.
2Encoding: UTF8
3
4@STRING{AP = {Academic Press}}
5
6@STRING{AREPS = {Annual Review of Earth Planetary Science}}
7
8@STRING{ARFM = {Annual Review of Fluid Mechanics}}
9
10@STRING{ASL = {Atmospheric Science Letters}}
11
12@STRING{AW = {Addison-Wesley}}
13
14@STRING{CD = {Clim. Dyn.}}
15
16@STRING{CP = {Clarendon Press}}
17
18@STRING{CUP = {Cambridge University Press}}
19
20@STRING{D = {Dover Publications}}
21
22@STRING{DAO = {Dyn. Atmos. Ocean}}
23
24@STRING{DSR = {Deep-Sea Res.}}
25
26@STRING{E = {Eyrolles}}
27
28@STRING{GRL = {Geophys. Res. Let.}}
29
30@STRING{I = {Interscience}}
31
32@STRING{JAOT = {J. Atmos. Ocean Tech.}}
33
34@STRING{JAS = {J. Atmos. Sc.}}
35
36@STRING{JC = {J. Climate}}
37
38@STRING{JCP = {J. Comput. Phys.}}
39
40@STRING{JGR = {J. Geophys. Res}}
41
42@STRING{JHUP = {The Johns Hopkins University Press}}
43
44@STRING{JMR = {J. Mar. Res.}}
45
46@STRING{JMS = {J. Mar. Sys.}}
47
48@STRING{JMSJ = {J. Met. Soc. Japan}}
49
50@STRING{JPO = {J. Phys. Oceanogr.}}
51
52@STRING{JWS = {John Wiley and Sons}}
53
54@STRING{M = {Macmillan}}
55
56@STRING{MGH = {McGraw-Hill}}
57
58@STRING{MWR = {Mon. Wea. Rev.}}
59
60@STRING{Nature = {Nat.}}
61
62@STRING{NH = {North-Holland}}
63
64@STRING{Ocean = {Oceanology}}
65
66@STRING{OS = {Ocean Science}}
67
68@STRING{OUP = {Oxford University Press}}
69
70@STRING{PH = {Prentice-Hall}}
71
72@STRING{PO = {Prog. Oceangr.}}
73
74@STRING{PP = {Pergamon Press}}
75
76@STRING{PRSL = {Proceedings of the Royal Society of London}}
77
78@STRING{QJRMS = {Quart J Roy Meteor Soc}}
79
80@STRING{Recherche = {La Recherche}}
81
82@STRING{Science = {Science}}
83
84@STRING{SV = {Springer-Verlag}}
85
86@STRING{Tellus = {Tellus}}
87
88@ARTICLE{Adcroft_Campin_OM04,
89  author = {A. Adcroft and J.-M. Campin},
90  title = {Re-scaled height coordinates for accurate representation of free-surface
91   flows in ocean circulation models},
92  journal = {Ocean Modelling},
93  year = {2004},
94  volume = {7},
95  owner = {gm},
96  timestamp = {2008.01.27}
97}
98
99@ARTICLE{Arakawa1966,
100  author = {A. Arakawa},
101  title = {Computational design for long term numerical integration of the equations
102   of fluid motion, two-dimensional incompressible flow, Part. I.},
103  journal = JCP,
104  year = {1966},
105  volume = {I},
106  pages = {119-149},
107  owner = {gm},
108  timestamp = {2007.08.04}
109}
110
111@ARTICLE{Arakawa1990,
112  author = {A. Arakawa and Y.-J. G. Hsu},
113  title = {Energy Conserving and Potential-Enstrophy Dissipating Schemes for
114   the Shallow Water Equations},
115  journal = MWR,
116  year = {1990},
117  volume = {118},
118  pages = {1960--1969
119   
120   },
121  number = {10},
122  abstract = {To incorporate potential enstrophy dissipation into discrete shallow
123   water equations with no or arbitrarily small energy dissipation,
124   a family of finite-difference schemes have been derived with which
125   potential enstrophy is guaranteed to decrease while energy is conserved
126   (when the mass flux is nondivergent and time is continuous). Among
127   this family of schemes, there is a member that minimizes the spurious
128   impact of infinite potential vorticities associated with infinitesimal
129   fluid depth. The scheme is, therefore, useful for problems in which
130   the free surface may intersect with the lower boundary.},
131  date = {October 01, 1990},
132  owner = {gm},
133  timestamp = {2007.08.05}
134}
135
136@ARTICLE{Arakawa1981,
137  author = {Arakawa, Akio and Lamb, Vivian R.},
138  title = {A Potential Enstrophy and Energy Conserving Scheme for the Shallow
139   Water Equations},
140  journal = MWR,
141  year = {1981},
142  volume = {109},
143  pages = {18--36
144   
145   },
146  number = {1},
147  abstract = {To improve the simulation of nonlinear aspects of the flow over steep
148   topography, a potential enstrophy and energy conserving scheme for
149   the shallow water equations is derived. It is pointed out that a
150   family of schemes can conserve total energy for general flow and
151   potential enstrophy for flow with no mass flux divergence. The newly
152   derived scheme is a unique member of this family, that conserves
153   both potential enstrophy and energy for general flow. Comparison
154   by means of numerical experiment with a scheme that conserves (potential)
155   enstrophy for purely horizontal nondivergent flow demonstrated the
156   considerable superiority of the newly derived potential enstrophy
157   and energy conserving scheme, not only in suppressing a spurious
158   energy cascade but also in determining the overall flow regime. The
159   potential enstrophy and energy conserving scheme for a spherical
160   grid is also presented.},
161  date = {January 01, 1981},
162  owner = {gm},
163  timestamp = {2007.08.05}
164}
165
166@ARTICLE{Arhan2006,
167  author = {M. Arhan and A.M. Treguier and B. Bourles and S. Michel},
168  title = {Diagnosing the annual cycle of the Equatorial Undercurrent in the
169   Atlantic Ocean from a general circulation model},
170  journal = JPO,
171  year = {2006},
172  volume = { 36},
173  pages = {1502-1522}
174}
175
176@ARTICLE{ASSELIN1972,
177  author = {R. Asselin},
178  title = {Frequency Filter for Time Integrations},
179  journal = MWR,
180  year = {1972},
181  volume = {100},
182  pages = {487-490},
183  number = {6},
184  abstract = {A simple filter for controlling high-frequency computational and physical
185   modes arising in time integrations is proposed. A linear analysis
186   of the filter with leapfrog, implicit, and semi-implicit, differences
187   is made. The filter very quickly removes the computational mode and
188   is also very useful in damping high-frequency physical waves. The
189   stability of the leapfrog scheme is adversely affected when a large
190   filter parameter is used, but the analysis shows that the use of
191   centered differences with frequency filter is still more advantageous
192   than the use of the Euler-backward method. An example of the use
193   of the filter in an actual forecast with the meteorological equations
194   is shown.},
195  date = {June 01, 1972},
196  owner = {gm},
197  timestamp = {2007.08.03}
198}
199
200@ARTICLE{Barnier_al_OD06,
201  author = {B. Barnier and G. Madec and T. Penduff and J.-M. Molines and A.-M.
202   Treguier and J. Le Sommer and A. Beckmann and A. Biastoch and C.
203   Boning and J. Dengg and C. Derval and E. Durand and S. Gulev and
204   E. Remy and C. Talandier and S. Theetten and M. Maltrud and J. McClean
205   and B. De Cuevas},
206  title = {Impact of partial steps and momentum advection schemes in a global
207   ocean circulation model at eddy-permitting resolution.},
208  journal = {Ocean Dyn.},
209  year = {2006},
210  pages = {doi: 10.1007/s10236-006-0082-1.},
211  owner = {gm},
212  timestamp = {2008.01.25}
213}
214
215@INCOLLECTION{Barnier1996,
216  author = {B. Barnier and P. Marchesiello and A.P. de Miranda},
217  title = {Modeling the ocean circulation in the South Atlantic: A strategy
218   for dealing with open boundaries},
219  booktitle = {The South Atlantic: Present and Past Circulation},
220  publisher = {Springer-Verlag, Berlin},
221  year = {1996},
222  editor = {G.Wefer and W.H. Berger and G Siedler and D. Webb},
223  pages = {289-304}
224}
225
226@ARTICLE{Barnier1998,
227  author = {B. Barnier and P. Marchesiello and A. P. de Miranda and J.M. Molines
228   and M. Coulibaly},
229  title = {A sigma-coordinate primitive equation model for studying the circulation
230   in the South Atlantic I, Model configuration with error estimates},
231  journal = {Deep Sea Res.},
232  year = {1998},
233  volume = {45},
234  pages = {543-572}
235}
236
237@ARTICLE{Beckmann1998,
238  author = {A. Beckmann},
239  title = {The representation of bottom boundary layer processes in numerical
240   ocean circulation models.},
241  journal = {Ocean modelling and parameterization, E. P. Chassignet and J. Verron
242   (eds.), NATO Science Series, Kluwer Academic Publishers},
243  year = {1998},
244  owner = {gm},
245  timestamp = {2007.08.04}
246}
247
248@ARTICLE{BeckDos1998,
249  author = {A. Beckmann and R. D\"{o}scher},
250  title = {A method for improved representation of dense water spreading over
251   topography in geopotential-coordinate models},
252  journal = JPO,
253  year = {1998},
254  volume = {27},
255  pages = {581-591},
256  owner = {gm},
257  timestamp = {2007.08.04}
258}
259
260@ARTICLE{Beckmann1993,
261  author = {A. Beckmann and D. B. Haidvogel},
262  title = {Numerical Simulation of Flow around a Tall Isolated Seamount. Part
263   I - Problem Formulation and Model Accuracy},
264  journal = {Journal of Physical Oceanography},
265  year = {1993},
266  volume = {23},
267  pages = {1736--1753
268   
269   },
270  number = {8},
271  abstract = {A sigma coordinate ocean circulation model is employed to study flow
272   trapped to a tall seamount in a periodic f-plane channel. In Part
273   I, errors arising from the pressure gradient formulation in the steep
274   topography/strong stratification limit are examined. To illustrate
275   the error properties, a linearized adiabatic version of the model
276   is considered, both with and without forcing, and starting from a
277   resting state with level isopycnals. The systematic discretization
278   errors from the horizontal pressure gradient terms are shown analytically
279   to increase with steeper topography (relative to a fixed horizontal
280   grid) and for stronger stratification (as measured by the Burger
281   number). For an initially quiescent unforced ocean, the pressure
282   gradient errors produce a spurious oscillating current that, at the
283   end of 10 days, is approximately 1 cm s−1 in amplitude. The
284   period of the spurious oscillation (about 0.5 days) is shown to be
285   a consequence of the particular form of the pressure gradient terms
286   in the sigma coordinate system. With the addition of an alongchannel
287   diurnal forcing, resonantly generated seamount-trapped waves are
288   observed to form. Error levels in these solutions are less than those
289   in the unforced cases; spurious time-mean currents are several orders
290   of magnitude less in amplitude than the resonant propagating waves.
291   However, numerical instability is encountered in a wider range of
292   parameter space. The properties of these resonantly generated waves
293   is explored in detail in Part II of this study. Several new formulations
294   of the pressure gradient terms are tested. Two of the formulations—constructed
295   to have additional conservation properties relative to the traditional
296   form of the pressure gradient terms (conservation of JEBAR and conservation
297   of energy)—are found to have error properties generally similar
298   to those of the traditional formulation. A corrected gradient algorithm,
299   based upon vertical interpolation of the pressure field, has a dramatically
300   reduced error level but a much more restrictive range of stable behavior.},
301  date = {August 01, 1993},
302  owner = {gm},
303  timestamp = {2007.08.03}
304}
305
306@ARTICLE{Blanke_al_JPO99,
307  author = {B. Blanke and M. Arhan and G. Madec and S. Roche},
308  title = {Warm Water Paths in the Equatorial Atlantic as Diagnosed with a General
309   Circulation Model},
310  journal = JPO,
311  year = {1999},
312  volume = {29, 11},
313  pages = {2753-2768},
314  owner = {gm},
315  timestamp = {2008.05.27}
316}
317
318@ARTICLE{Blanke1993,
319  author = {B. Blanke and P. Delecluse},
320  title = {Low frequency variability of the tropical Atlantic ocean simulated
321   by a general circulation model with mixed layer physics},
322  journal = JPO,
323  year = {1993},
324  volume = {23},
325  pages = {1363-1388}
326}
327
328@ARTICLE{blanketal97,
329  author = {B. Blanke and J. D. Neelin and D. Gutzler},
330  title = {Estimating the effect of stochastic wind forcing on ENSO irregularity},
331  journal = JC,
332  year = {1997},
333  volume = {10},
334  pages = {1473-1486},
335  abstract = {One open question in El Nin˜o–Southern Oscillation (ENSO) simulation
336   and predictability is the role of random
337   
338   forcing by atmospheric variability with short correlation times, on
339   coupled variability with interannual timescales.
340   
341   The discussion of this question requires a quantitative assessment
342   of the stochastic component of the wind stress
343   
344   forcing. Self-consistent estimates of this noise (the stochastic forcing)
345   can be made quite naturally in an empirical
346   
347   atmospheric model that uses a statistical estimate of the relationship
348   between sea surface temperature (SST) and
349   
350   wind stress anomaly patterns as the deterministic feedback between
351   the ocean and the atmosphere. The authors
352   
353   use such an empirical model as the atmospheric component of a hybrid
354   coupled model, coupled to the GFDL
355   
356   ocean general circulation model. The authors define as residual the
357   fraction of the Florida State University wind
358   
359   stress not explained by the empirical atmosphere run from observed
360   SST, and a noise product is constructed by
361   
362   random picks among monthly maps of this residual.
363   
364   The impact of included or excluded noise is assessed with several
365   ensembles of simulations. The model is
366   
367   run in coupled regimes where, in the absence of noise, it is perfectly
368   periodic: in the presence of prescribed
369   
370   seasonal variability, the model is strongly frequency locked on a
371   2-yr period; in annual average conditions it
372   
373   has a somewhat longer inherent ENSO period (30 months). Addition of
374   noise brings an irregular behavior that
375   
376   is considerably richer in spatial patterns as well as in temporal
377   structures. The broadening of the model ENSO
378   
379   spectral peak is roughly comparable to observed. The tendency to frequency
380   lock to subharmonic resonances
381   
382   of the seasonal cycle tends to increase the broadening and to emphasize
383   lower frequencies. An inclination to
384   
385   phase lock to preferred seasons persists even in the presence of noise-induced
386   irregularity. Natural uncoupled
387   
388   atmospheric variability is thus a strong candidate for explaining
389   the observed aperiodicity in ENSO time series.
390   
391   Model–model hindcast experiments also suggest the importance of atmospheric
392   noise in setting limits to ENSO
393   
394   predictability.},
395  pdf = {Blanke_etal_JC97.pdf}
396}
397
398@ARTICLE{Blanke_Raynaud_JPO97,
399  author = {B. Blanke and S. Raynaud},
400  title = {Kinematics of the Pacific Equatorial Undercurrent: An Eulerian and
401   Lagrangian Approach from GCM Results},
402  journal = JPO,
403  year = {1997},
404  volume = {27, 6},
405  pages = {1038-1053},
406  owner = {gm},
407  timestamp = {2008.05.27}
408}
409
410@ARTICLE{Blayo2005,
411  author = {E. Blayo and L. Debreu},
412  title = {Revisiting open boundary conditions from the point of view of characteristic
413   variables},
414  journal = {Ocean Modelling},
415  year = {2005},
416  volume = {9},
417  pages = {231-252}
418}
419
420@ARTICLE{Bougeault1989,
421  author = {P. Bougeault and P. Lacarrere},
422  title = {Parameterization of Orography-Induced Turbulence in a Mesobeta--Scale
423   Model},
424  journal = MWR,
425  year = {1989},
426  volume = {117},
427  pages = {1872-1890},
428  number = {8},
429  abstract = {The possibility of extending existing techniques for turbulence parameterization
430   in the planetary boundary layer to attitude, orography-induced turbulence
431   events is examined. Starting from a well-tested scheme, we show that
432   it is possible to generalize the specification method of the length
433   scales, with no deterioration of the scheme performance in the boundary
434   layer. The new scheme is implemented in a two-dimensional version
435   of a limited-area, numerical model used for the simulation of mesobeta-scale
436   atmospheric flows. Three well-known cases of orographically induced
437   turbulence are studied. The comparison with observations and former
438   studies shows a satisfactory behavior of the new scheme.},
439  date = {August 01, 1989},
440  owner = {gm},
441  timestamp = {2007.08.06}
442}
443
444@ARTICLE{Brown1978,
445  author = {J. A. Brown and K. A. Campana},
446  title = {An Economical Time-Differencing System for Numerical Weather Prediction},
447  journal = MWR,
448  year = {1978},
449  volume = {106},
450  pages = {1125-1136},
451  number = {8},
452  month = aug,
453  abstract = {A simple method for integrating the primitive equations is presented
454   which allows for a timestep increment up to twice that of the conventional
455   leapfrog scheme. It consists of a time-averaging operator, which
456   incorporates three consecutive time levels, on the pressure gradient
457   terms in the equations of motion. An attractive feature of the method
458   is its case in programming, since the resulting finite-difference
459   equations can he solved explicitly.Presented here are linear analyses
460   of the method applied to the barotropic and two-layer baroclinic
461   gravity waves. Also presented is an analysis of the method with a
462   time-damping device incorporated, which is an alternative in controlling
463   linearly amplifying computational modes.},
464  owner = {gm},
465  timestamp = {2007.08.05}
466}
467
468@ARTICLE{Bryan1997,
469  author = {K. Bryan},
470  title = {A Numerical Method for the Study of the Circulation of the World
471   Ocean},
472  journal = JCP,
473  year = {1997},
474  volume = {135, 2},
475  owner = {gm},
476  timestamp = {2007.08.10}
477}
478
479@ARTICLE{Bryan1984,
480  author = {K. Bryan},
481  title = {Accelerating the convergence to equilibrium of ocean-climate models},
482  journal = JPO,
483  year = {1984},
484  volume = {14},
485  owner = {gm},
486  timestamp = {2007.08.10}
487}
488
489@ARTICLE{Bryden1973,
490  author = {H. L. Bryden},
491  title = {New polynomials for thermal expansion, adiabatic temperature gradient
492   
493   and potential temperature of sea water},
494  journal = DSR,
495  year = {1973},
496  volume = {20},
497  pages = {401-408},
498  owner = {gm},
499  timestamp = {2007.08.04}
500}
501
502@ARTICLE{Campin2004,
503  author = {J.-M. Campin and A. Adcroft and C. Hill and J. Marshall},
504  title = {Conservation of properties in a free-surface model},
505  journal = {Ocean Modelling},
506  year = {2004},
507  volume = {6, 3-4},
508  pages = {221-244},
509  owner = {gm},
510  timestamp = {2007.08.04}
511}
512
513@ARTICLE{Campin_Goosse_Tel99,
514  author = {J. M. Campin and H. Goosse},
515  title = {Parameterization of density-driven downsloping flow for a coarse-resolution
516   ocean model in z-coordinate},
517  journal = {Tellus},
518  year = {1999},
519  volume = {51},
520  pages = {412-430},
521  owner = {gm},
522  timestamp = {2008.01.20}
523}
524
525@ARTICLE{Cox1987,
526  author = {M. Cox},
527  title = {Isopycnal diffusion in a z-coordinate ocean model},
528  journal = {Ocean Modelling},
529  year = {1987},
530  volume = {74},
531  pages = {1-9},
532  owner = {gm},
533  timestamp = {2007.08.03}
534}
535
536@ARTICLE{Dorscher_Beckmann_JAOT00,
537  author = {R. D\"{o}scher and A. Beckmann},
538  title = {Effects of a Bottom Boundary Layer Parameterization in a Coarse-Resolution
539   Model of the North Atlantic Ocean},
540  journal = JAOT,
541  year = {2000},
542  volume = {17},
543  pages = {698-707},
544  owner = {gm},
545  timestamp = {2008.01.23}
546}
547
548@ARTICLE{Debreu_al_CG2008,
549  author = {L. Debreu and C. Vouland and E. Blayo},
550  title = {AGRIF: Adaptive Grid Refinement In Fortran},
551  journal = {Computers and Geosciences},
552  year = {2008},
553  volume = {34},
554  pages = {8-13},
555  owner = {gm},
556  timestamp = {2008.02.03}
557}
558
559@ARTICLE{Delecluse_Madec_Bk00,
560  author = {P. Delecluse and G. Madec},
561  title = {Ocean modelling and the role of the ocean in the climate system},
562  journal = {In \textit{Modeling the Earth's Climate and its Variability}, Les
563   Houches, Session, LXVII 1997,
564   
565   Eds. W. R. Holland, S. Joussaume and F. David, Elsevier Science,},
566  year = {2000},
567  pages = {237-313},
568  owner = {gm},
569  timestamp = {2008.02.03}
570}
571
572@ARTICLE{Dukowicz1994,
573  author = {J. K. Dukowicz and R. D. Smith},
574  title = {Implicit free-surface method for the Bryan-Cox-Semtner ocean model},
575  journal = JGR,
576  year = {1994},
577  volume = {99},
578  pages = {7991-8014},
579  owner = {gm},
580  timestamp = {2007.08.03}
581}
582
583@INCOLLECTION{Durran2001,
584  author = {D.R. Durran },
585  title = {Open boundary conditions: fact and fiction},
586  booktitle = {Advances in Mathematical Modelling of Atmosphere and Ocean Dynamics},
587  publisher = {Kluwer Academic Publishers},
588  year = {2001},
589  editor = {P.F. Hodnett}
590}
591
592@ARTICLE{Dutay.J.C2004,
593  author = {J. -C. Dutay and P. J. -Baptiste and J. -M. Campin and A. Ishida
594   and E. M. -Reimer and R. J. Matear and A. Mouchet and I. J. Totterdell
595   and Y. Yamanaka and K. Rodgers and G. Madec and J.C. Orr},
596  title = {Evaluation of OCMIP-2 ocean models’ deep circulation
597   
598   with mantle helium-3},
599  journal = {Journal of Marine Systems},
600  year = {2004},
601  pages = {1-22},
602  abstract = {We compare simulations of the injection of mantle helium-3 into the
603   deep ocean from six global coarse resolution models which participated
604   in the Ocean Carbon Model Intercomparison Project (OCMIP). We also
605   discuss the results of a study carried out with one of the models,
606   which examines the effect of the subgrid-scale mixing parameterization.
607   These sensitivity tests provide useful information to interpret the
608   differences among the OCMIP models and between model simulations
609   and the data.
610   
611   We find that the OCMIP models, which parameterize subgrid-scale mixing
612   using an eddy-induced velocity, tend to
613   
614   underestimate the ventilation of the deep ocean, based on diagnostics
615   with d3He. In these models, this parameterization is implemented
616   with a constant thickness diffusivity coefficient. In future simulations,
617   we recommend using such a parameterization with spatially and temporally
618   varying coefficients in order to moderate its effect on stratification.
619   
620   The performance of the models with regard to the formation of AABW
621   confirms the conclusion from a previous evaluation with CFC-11. Models
622   coupled with a sea-ice model produce a substantial bottom water formation
623   in the Southern Ocean that tends to overestimate AABW ventilation,
624   while models that are not coupled with a sea-ice model systematically
625   underestimate the formation of AABW.
626   
627   We also analyze specific features of the deep 3He distribution (3He
628   plumes) that are particularly well depicted in the data and which
629   put severe constraints on the deep circulation. We show that all
630   the models fail to reproduce a correct propagation of these plumes
631   in the deep ocean. The resolution of the models may be too coarse
632   to reproduce the strong and narrow currents in the deep ocean, and
633   the models do not incorporate the geothermal heating that may also
634   contribute to the generation of these currents. We also use the context
635   of OCMIP-2 to explore the potential of mantle helium-3 as a tool
636   to compare and evaluate modeled deep-ocean circulations. Although
637   the source function of mantle helium is known with a rather large
638   uncertainty, we find that the parameterization used for the injection
639   of mantle helium-3 is sufficient to generate realistic results, even
640   in the Atlantic Ocean where a previous pioneering study [J. Geophys.
641   Res. 100 (1995) 3829] claimed this parameterization generates
642   
643   inadequate results. These results are supported by a multi-tracer
644   evaluation performed by considering the simulated distributions of
645   both helium-3 and natural 14C, and comparing the simulated tracer
646   fields with available data.},
647  owner = {sandra},
648  pdf = {Dutay_etal_OCMIP_JMS04.pdf},
649  timestamp = {2006.10.17}
650}
651
652@ARTICLE{Eiseman1980,
653  author = {P. R. Eiseman and A. P. Stone},
654  title = {Conservation lows of fluid dynamics -- A survey},
655  journal = {SIAM Review},
656  year = {1980},
657  volume = {22},
658  pages = {12-27},
659  owner = {gm},
660  timestamp = {2007.08.03}
661}
662
663@ARTICLE{Emile-Geay_Madec_OSD08,
664  author = {J. Emile-Geay and G. Madec},
665  title = {Geothermal heating, diapycnal mixing and the abyssal circulation},
666  journal = {Ocean Sci. Discuss.},
667  year = {2008},
668  volume = {5},
669  pages = {281-325},
670  owner = {gm},
671  timestamp = {2008.07.16}
672}
673
674@PHDTHESIS{Farge1987,
675  author = {M. Farge},
676  title = {Dynamique non lineaire des ondes et des tourbillons dans les equations
677   de Saint Venant},
678  school = {Doctorat es Mathematiques, Paris VI University, 401 pp.},
679  year = {1987},
680  owner = {gm},
681  timestamp = {2007.08.03}
682}
683
684@ARTICLE{Farrow1995,
685  author = {D. E. Farrow and D. P. Stevens},
686  title = {A new tracer advection scheme for Bryan--Cox type ocean general circulation
687   models},
688  journal = JPO,
689  year = {1995},
690  volume = {25},
691  pages = {1731-1741.},
692  owner = {gm},
693  timestamp = {2007.08.04}
694}
695
696@ARTICLE{Fujio1991,
697  author = {S. Fujio and N. Imasato},
698  title = {Diagnostic calculation for circulation and water mass movement in
699   the deep Pacific},
700  journal = JGR,
701  year = {1991},
702  volume = {96},
703  pages = {759-774},
704  month = jan,
705  owner = {gm},
706  timestamp = {2007.08.04}
707}
708
709@ARTICLE{Gargett1984,
710  author = {A. E. Gargett},
711  title = {Vertical eddy diffusivity in the ocean interior},
712  journal = JMR,
713  year = {1984},
714  volume = {42},
715  owner = {gm},
716  timestamp = {2007.08.06}
717}
718
719@ARTICLE{Gaspar1990,
720  author = {P. Gaspar and Y. Gr{\'e}goris and J.-M. Lefevre},
721  title = {A simple eddy kinetic energy model for simulations of the oceanic
722   vertical mixing\: Tests at Station Papa and long-term upper ocean
723   study site},
724  journal = JGR,
725  year = {1990},
726  volume = {95(C9)},
727  owner = {gm},
728  timestamp = {2007.08.06}
729}
730
731@ARTICLE{Gent1990,
732  author = {P. R. Gent and J. C. Mcwilliams},
733  title = {Isopycnal Mixing in Ocean Circulation Models},
734  journal = JPO,
735  year = {1990},
736  volume = {20},
737  pages = {150-155},
738  number = {1},
739  abstract = {A subgrid-scale form for mesoscale eddy mixing on isopycnal surfaces
740   is proposed for use in non-eddy-resolving ocean circulation models.
741   The mixing is applied in isopycnal coordinates to isopycnal layer
742   thickness, or inverse density gradient, as well as to passive scalars,
743   temperature and salinity. The transformation of these mixing forms
744   to physical coordinates is also presented.},
745  date = {January 01, 1990},
746  owner = {gm},
747  timestamp = {2007.08.03}
748}
749
750@ARTICLE{Gerdes1993a,
751  author = {R. Gerdes},
752  title = {A primitive equation ocean circulation model using a general vertical
753   coordinate transformation 1. Description and testing of the model},
754  journal = JGR,
755  year = {1993},
756  volume = {98},
757  owner = {gm},
758  timestamp = {2007.08.03}
759}
760
761@ARTICLE{Gerdes1993b,
762  author = {R. Gerdes},
763  title = {A primitive equation ocean circulation model using a general vertical
764   coordinate transformation 2. Application to an overflow problem},
765  journal = JGR,
766  year = {1993},
767  volume = {98},
768  pages = {14703-14726},
769  owner = {gm},
770  timestamp = {2007.08.03}
771}
772
773@TECHREPORT{Gibson_TR86,
774  author = {J. K. Gibson},
775  title = {Standard software development and maintenance},
776  institution = {Operational Dep., ECMWF, Reading, UK.},
777  year = {1986},
778  owner = {gm},
779  timestamp = {2008.02.03}
780}
781
782@BOOK{Gill1982,
783  title = {Atmosphere-Ocean Dynamics},
784  publisher = {International Geophysics Series, Academic Press, New-York},
785  year = {1982},
786  author = {A. E. Gill}
787}
788
789@ARTICLE{Goosse_al_JGR99,
790  author = {H. Goosse and E. Deleersnijder and T. Fichefet and M. England},
791  title = {Sensitivity of a global coupled ocean-sea ice model to the parameterization
792   of vertical mixing},
793  journal = JGR,
794  year = {1999},
795  volume = {104},
796  pages = {13,681-13,695},
797  owner = {gm},
798  timestamp = {2008.05.27}
799}
800
801@ARTICLE{Griffes2005,
802  author = {S. M. Griffes and A. Gnanadesikan and K. W. Dixon and J. P. Dunne
803   and R. Gerdes and M. J. Harrison and A. Rosati and J. L. Russell
804   and B. L. Samuels and M. J. Spelman and M. Winton and R. Zhang},
805  title = {Formulation of an ocean model for global climate simulations},
806  journal = OS,
807  year = {2005},
808  pages = {165–246},
809  abstract = {This paper summarizes the formulation of the ocean component to the
810   Geophysical
811   
812   Fluid Dynamics Laboratory’s (GFDL) coupled climate model used for
813   the 4th IPCC As- Assessment
814   
815   (AR4) of global climate change. In particular, it reviews elements
816   of ocean
817   
818   sessment climate models and how they are pieced together for use in
819   a state-of-the-art coupled 5
820   
821   model. Novel issues are also highlighted, with particular attention
822   given to sensitivity of
823   
824   the coupled simulation to physical parameterizations and numerical
825   methods. Features
826   
827   of the model described here include the following: (1) tripolar grid
828   to resolve the Arctic
829   
830   Ocean without polar filtering, (2) partial bottom step representation
831   of topography to
832   
833   better represent topographically influenced advective and wave processes,
834   (3) more 10
835   
836   accurate equation of state, (4) three-dimensional flux limited tracer
837   advection to reduce
838   
839   overshoots and undershoots, (5) incorporation of regional climatological
840   variability in
841   
842   shortwave penetration, (6) neutral physics parameterization for representation
843   of the
844   
845   pathways of tracer transport, (7) staggered time stepping for tracer
846   conservation and
847   
848   numerical eciency, (8) anisotropic horizontal viscosities for representation
849   of equato- 15
850   
851   rial currents, (9) parameterization of exchange with marginal seas,
852   (10) incorporation
853   
854   of a free surface that accomodates a dynamic ice model and wave propagation,
855   (11)
856   
857   transport of water across the ocean free surface to eliminate unphysical
858   “virtual tracer
859   
860   flux” methods, (12) parameterization of tidal mixing on continental
861   shelves.},
862  owner = {sandra},
863  pdf = {Griffies_al_OSD05.pdf},
864  timestamp = {2007.01.25}
865}
866
867@BOOK{Griffies2004,
868  title = {Fundamentals of ocean climate models},
869  publisher = {Princeton University Press, 434pp},
870  year = {2004},
871  author = {S. M. Griffies},
872  owner = {gm},
873  timestamp = {2007.08.05}
874}
875
876@ARTICLE{Griffies_JPO98,
877  author = {S. M. Griffies},
878  title = {The Gent-McWilliams skew-flux},
879  journal = JPO,
880  year = {1998},
881  volume = {28},
882  pages = {831–841},
883  owner = {gm},
884  timestamp = {2008.06.28}
885}
886
887@ARTICLE{Griffies1998,
888  author = {S. M. Griffies and A. Gnanadesikan and R. C. Pacanowski and V. D.
889   Larichev and J. K. Dukowicz and R. D. Smith},
890  title = {Isoneutral Diffusion in a z-Coordinate Ocean Model},
891  journal = JPO,
892  year = {1998},
893  volume = {28},
894  pages = {805-830},
895  number = {5},
896  abstract = {This paper considers the requirements that must be satisfied in order
897   to provide a stable and physically based isoneutral tracer diffusion
898   scheme in a z-coordinate ocean model. Two properties are emphasized:
899   1) downgradient orientation of the diffusive fluxes along the neutral
900   directions and 2) zero isoneutral diffusive flux of locally referenced
901   potential density. It is shown that the Cox diffusion scheme does
902   not respect either of these properties, which provides an explanation
903   for the necessity to add a nontrivial background horizontal diffusion
904   to that scheme. A new isoneutral diffusion scheme is proposed that
905   aims to satisfy the stated properties and is found to require no
906   horizontal background diffusion.},
907  date = {May 01, 1998},
908  owner = {gm},
909  timestamp = {2007.08.05}
910}
911
912@ARTICLE{Griffies2001,
913  author = {S. M. Griffies and R. C. Pacanowski and M. Schmidt and V. Balaji},
914  title = {Tracer Conservation with an Explicit Free Surface Method for z-Coordinate
915   Ocean Models},
916  journal = MWR,
917  year = {2001},
918  volume = {129},
919  pages = {1081-1098},
920  number = {5},
921  abstract = {This paper details a free surface method using an explicit time stepping
922   scheme for use in z-coordinate ocean models. One key property that
923   makes the method especially suitable for climate simulations is its
924   very stable numerical time stepping scheme, which allows for the
925   use of a long density time step, as commonly employed with coarse-resolution
926   rigid-lid models. Additionally, the effects of the undulating free
927   surface height are directly incorporated into the baroclinic momentum
928   and tracer equations. The novel issues related to local and global
929   tracer conservation when allowing for the top cell to undulate are
930   the focus of this work. The method presented here is quasi-conservative
931   locally and globally of tracer when the baroclinic and tracer time
932   steps are equal. Important issues relevant for using this method
933   in regional as well as large-scale climate models are discussed and
934   illustrated, and examples of scaling achieved on parallel computers
935   provided.},
936  date = {May 01, 2001},
937  owner = {gm},
938  timestamp = {2007.08.04}
939}
940
941@ARTICLE{Guily2001,
942  author = {E. Guilyardi and G. Madec and L. Terray},
943  title = {The role of lateral ocean physics in the upper ocean thermal balance
944   of a coupled ocean-atmosphere GCM},
945  journal = CD,
946  year = {2001},
947  volume = {17},
948  pages = {589-599},
949  number = {8},
950  pdf = {/home/ericg/TeX/Papers/Published_pdfs/Guilyardi_al_CD01.pdf}
951}
952
953@ARTICLE{Guyon_al_EP99,
954  author = {M. Guyon and G. Madec and F.-X. Roux and M. Imbard},
955  title = {A Parallel ocean model for high resolution studies},
956  journal = {Lecture Notes in Computer Science},
957  year = {1999},
958  volume = {Euro-Par'99},
959  pages = {603-607},
960  owner = {gm},
961  timestamp = {2008.05.27}
962}
963
964@ARTICLE{Guyon_al_CalPar99,
965  author = {M. Guyon and G. Madec and F.-X. Roux and M. Imbard and C. Herbaut
966   and P. Fronier},
967  title = {Parallelization of the OPA ocean model},
968  journal = {Calculateurs Paralleles},
969  year = {1999},
970  volume = {11, 4},
971  pages = {499-517},
972  owner = {gm},
973  timestamp = {2008.05.27}
974}
975
976@BOOK{Haltiner1980,
977  title = {Numerical prediction and dynamic meteorology},
978  publisher = {John Wiley {\&} Sons Eds., second edition, 477pp},
979  year = {1980},
980  author = {G. J. Haltiner and R. T. Williams},
981  owner = {gm},
982  timestamp = {2007.08.03}
983}
984
985@ARTICLE{Haney1991,
986  author = {R. L. Haney},
987  title = {On the Pressure Gradient Force over Steep Topography in Sigma Coordinate
988   Ocean Models},
989  journal = JPO,
990  year = {1991},
991  volume = {21},
992  pages = {610--619
993   
994   },
995  number = {4},
996  abstract = {The error in computing the pressure gradient force near steep topography
997   using terms following (σ) coordinates is investigated in an
998   ocean model using the family of vertical differencing schemes proposed
999   by Arakawa and Suarez. The truncation error is estimated by substituting
1000   known buoyancy profiles into the finite difference hydrostatic and
1001   pressure gradient terms. The error due to “hydrostatic inconsistency,”
1002   which is not simply a space truncation error, is also documented.
1003   The results show that the pressure gradient error is spread throughout
1004   the water column, and it is sensitive to the vertical resolution
1005   and to the placement of the grid points relative to the vertical
1006   structure of the buoyancy field being modeled. Removing a reference
1007   state, as suggested for the atmosphere by Gary, reduces the truncation
1008   error associated with the two lowest vertical modes by a factor of
1009   2 to 3. As an example, the error in computing the pressure gradient
1010   using a standard 10-level primitive equation model applied to buoyancy
1011   profiles and topographic slopes typical of the California Current
1012   region corresponds to a false geostrophic current of the order of
1013   10–12 cm s−1. The analogous error in a hydrostatically
1014   consistent 30-level model with the reference state removed is about
1015   an order of magnitude smaller.},
1016  date = {April 01, 1991},
1017  owner = {gm},
1018  timestamp = {2007.08.03}
1019}
1020
1021@ARTICLE{Hsu1990,
1022  author = {Hsu, Yueh-Jiuan G. and Arakawa, Akio},
1023  title = {Numerical Modeling of the Atmosphere with an Isentropic Vertical
1024   Coordinate},
1025  journal = MWR,
1026  year = {1990},
1027  volume = {118},
1028  pages = {1933--1959
1029   
1030   },
1031  number = {10},
1032  abstract = {In constructing a numerical model of the atmosphere, we must choose
1033   an appropriate vertical coordinate. Among the various possibilities,
1034   isentropic vertical coordinates such as the θ-coordinate seem
1035   to have the greatest potential, in spite of the technical difficulties
1036   in treating the intersections of coordinate surfaces with the lower
1037   boundary. The purpose of this paper is to describe the θ-coordinate
1038   model we have developed and to demonstrate its potential through
1039   simulating the nonlinear evolution of a baroclinic wave.In the model
1040   we have developed, vertical discretization maintains important integral
1041   constraints, such as conservation of the angular momentum and total
1042   energy. In treating the intersections of coordinate surfaces with
1043   the lower boundary, we have followed the massless-layer approach
1044   in which the intersecting coordinate surfaces are extended along
1045   the boundary by introducing massless layers. Although this approach
1046   formally eliminates the intersection problem, it raises other computational
1047   problems. Horizontal discretization of the continuity and momentum
1048   equations in the model has been carefully designed to overcome these
1049   problems.Selected results from a 10-day integration with the 25-layer,
1050   β-plane version of the model are presented. It seems that the
1051   model can simulate the nonlinear evolution of a baroclinic wave and
1052   associated dynamical processes without major computational difficulties.},
1053  date = {October 01, 1990},
1054  owner = {gm},
1055  timestamp = {2007.08.05}
1056}
1057
1058@ARTICLE{JackMcD1995,
1059  author = {D. R. Jackett and T. J. McDougall},
1060  title = {Minimal adjustment of hydrographic data to achieve static stability},
1061  journal = JAOT,
1062  year = {1995},
1063  volume = {12},
1064  pages = {381-389},
1065  owner = {gm},
1066  timestamp = {2007.08.04}
1067}
1068
1069@BOOK{Jerlov1968,
1070  title = {Optical Oceanography},
1071  publisher = {194pp},
1072  year = {1968},
1073  author = {N. G. Jerlov},
1074  owner = {gm},
1075  timestamp = {2007.08.04}
1076}
1077
1078@BOOK{Jerlov_Bk1968,
1079  publisher = {Elsevier},
1080  year = {1968},
1081  author = {N. G. Jerlov},
1082  pages = {194pp},
1083  owner = {gm},
1084  timestamp = {2008.08.31}
1085}
1086
1087@INPROCEEDINGS{Killworth1989,
1088  author = {P. D. Killworth},
1089  title = {On the parameterization of deep convection in ocean models},
1090  booktitle = {Parameterization of small-scale processes},
1091  year = {1989},
1092  editor = {Hawaiian winter workshop},
1093  month = {January 17-20},
1094  organization = {University of Hawaii at Manoa},
1095  owner = {gm},
1096  timestamp = {2007.08.06}
1097}
1098
1099@ARTICLE{Killworth1992,
1100  author = {P. D. Killworth},
1101  title = {An equivalent-barotropic mode in the fine resolution Antarctic model},
1102  journal = JPO,
1103  year = {1992},
1104  volume = {22},
1105  pages = {1379-1387}
1106}
1107
1108@ARTICLE{Killworth1991,
1109  author = {Killworth, P. D. and Stainforth, D. and Webb, D. J. and Paterson,
1110   S. M.},
1111  title = {The Development of a Free-Surface Bryan-Cox-Semtner Ocean Model},
1112  journal = JPO,
1113  year = {1991},
1114  volume = {21},
1115  pages = {1333--1348},
1116  number = {9},
1117  abstract = {A version of the Bryan–Cox–Semtner numerical ocean general
1118   circulation model, adapted to include a free surface, is described.
1119   The model is designed for the following uses: tidal studies
1120   (a tidal option is explicitly included); assimilation of altimetric
1121   data (since the surface elevation is now a prognostic variable);
1122   and in situations where accurate relaxation to obtain the streamfunction
1123   in the original model is too time consuming. Comparison is made between
1124   a 300-year run of the original model and the free-surface version,
1125   using a very coarse North Atlantic calculation as the basis. The
1126   results are very similar, differing only in the streamfunction over
1127   topography; this is to be expected, since the treatment of topographic
1128   torques on the barotropic flow differs because of the nature of the
1129   modifications.},
1130  date = {September 01, 1991},
1131  owner = {gm},
1132  timestamp = {2007.08.03}
1133}
1134
1135@ARTICLE{Kolmogorov1942,
1136  author = {A. N. Kolmogorov},
1137  title = {The equation of turbulent motion in an incompressible fluid},
1138  journal = {Izv. Akad. Nauk SSSR, Ser. Fiz.},
1139  year = {1942},
1140  volume = {6},
1141  pages = {56-58},
1142  owner = {gm},
1143  timestamp = {2007.08.06}
1144}
1145
1146@PHDTHESIS{Levy1996,
1147  author = {M. L\'{e}vy},
1148  title = {Mod\'{e}lisation des processus biog\'{e}ochimiques en M\'{e}diterran\'{e}e
1149   nord-occidentale. Cycle saisonnier et variabilit\'{e} m\'{e}so\'{e}chelle},
1150  school = {Universit\'{e} Pierre et Marie Curie, Paris, France, 207pp},
1151  year = {1996},
1152  owner = {gm},
1153  timestamp = {2007.08.04}
1154}
1155
1156@ARTICLE{Levy2001,
1157  author = {M. L\'{e}vy and A. Estubier and G Madec},
1158  title = {Choice of an advection scheme for biogeochemical models},
1159  journal = GRL,
1160  year = {2001},
1161  volume = {28},
1162  owner = {gm},
1163  timestamp = {2007.08.04}
1164}
1165
1166@ARTICLE{Levy1998,
1167  author = {M. L\'{e}vy and L. M\'{e}mery and G. Madec},
1168  title = {The onset of a bloom after deep winter convection in the Northwestern
1169   Mediterranean Sea: mesoscale
1170   
1171   process study with a primitive equation model},
1172  journal = JMS,
1173  year = {1998},
1174  volume = {16/1-2},
1175  owner = {gm},
1176  timestamp = {2007.08.10}
1177}
1178
1179@BOOK{LargeYeager2004,
1180  title = {Diurnal to decadal global forcing for ocean and sea-ice models: the
1181   data sets and flux climatologies},
1182  publisher = {NCAR Technical Note, NCAR/TN-460+STR, CGD Division of the National
1183   Center for Atmospheric Research},
1184  year = {2004},
1185  author = {W. Large and S. Yeager},
1186  owner = {gm},
1187  timestamp = {2007.08.06}
1188}
1189
1190@ARTICLE{Large_al_RG94,
1191  author = {W. G. Large and J. C. McWilliams and S. C. Doney},
1192  title = {Oceanic vertical mixing - a review and a model with a nonlocal boundary
1193   layer parameterization},
1194  journal = {Reviews of Geophysics},
1195  year = {1994},
1196  volume = {32},
1197  pages = {363-404},
1198  doi = {10.1029/94RG01872},
1199  owner = {gm},
1200  timestamp = {2007.08.03}
1201}
1202
1203@PHDTHESIS{Lazar1997,
1204  author = {A. Lazar},
1205  title = {La branche froide de la circulation thermohaline - sensibilit\'{e}
1206   \`{a} la diffusion turbulente dans un mod\`{e}le de circulation g\'{e}n\'{e}rale
1207   id\'{e}alis\'{e}e},
1208  school = {Universit\'{e} Pierre et Marie Curie, Paris, France, 200pp},
1209  year = {1997},
1210  owner = {gm},
1211  timestamp = {2007.08.06}
1212}
1213
1214@ARTICLE{Lazar1999,
1215  author = {A. Lazar and G. Madec and P. Delecluse},
1216  title = {The Deep Interior Downwelling, the Veronis Effect, and Mesoscale
1217   Tracer Transport Parameterizations in an OGCM},
1218  journal = JPO,
1219  year = {1999},
1220  volume = {29},
1221  pages = {2945-2961},
1222  number = {11},
1223  abstract = {Numerous numerical simulations of basin-scale ocean circulation display
1224   a vast interior downwelling and a companion intense western boundary
1225   layer upwelling at midlatitude below the thermocline. These features,
1226   related to the so-called Veronis effect, are poorly rationalized
1227   and depart strongly from the classical vision of the deep circulation
1228   where upwelling is considered to occur in the interior. Furthermore,
1229   they significantly alter results of ocean general circulation models
1230   (OGCMs) using horizontal Laplacian diffusion. Recently, some studies
1231   showed that the parameterization for mesoscale eddy effects formulated
1232   by Gent and McWilliams allows integral quantities like the streamfunction
1233   and meridional heat transport to be free of these undesired effects.
1234   In this paper, an idealized OGCM is used to validate an analytical
1235   rationalization of the processes at work and help understand the
1236   physics. The results show that the features associated with the Veronis
1237   effect can be related quantitatively to three different width scales
1238   that characterize the baroclinic structure of the deep western boundary
1239   current. In addition, since one of these scales may be smaller than
1240   the Munk barotropic layer, usually considered to determine the minimum
1241   resolution and horizontal viscosity for numerical models, the authors
1242   recommend that it be taken into account. Regarding the introduction
1243   of the new parameterization, diagnostics in terms of heat balances
1244   underline some interesting similarities between local heat fluxes
1245   by eddy-induced velocities and horizontal diffusion at low and midlatitudes
1246   when a common large diffusivity (here 2000 m2 s−1) is used.
1247   The near-quasigeostrophic character of the flow explains these results.
1248   As a consequence, the response of the Eulerian-mean circulation is
1249   locally similar for runs using either of the two parameterizations.
1250   However, it is shown that the advective nature of the eddy-induced
1251   heat fluxes results in a very different effective circulation, which
1252   is the one felt by tracers.},
1253  date = {November 01, 1999},
1254  owner = {gm},
1255  timestamp = {2007.08.06}
1256}
1257
1258@ARTICLE{Lengaigne_al_JGR03,
1259  author = {M. Lengaigne and G. Madec and G. Alory and C. Menkes},
1260  title = {Sensitivity of the tropical Pacific Ocean to isopycnal diffusion
1261   on tracer and dynamics},
1262  journal = JGR,
1263  year = {2003},
1264  volume = {108 (C11)},
1265  pages = {3345, doi:10.1029/2002JC001704},
1266  owner = {gm},
1267  timestamp = {2008.01.26}
1268}
1269
1270@ARTICLE{Leonard1991,
1271  author = {B. P. Leonard},
1272  title = {The ULTIMATE conservative difference scheme applied to unsteady one--dimensional
1273   advection},
1274  journal = {Computer Methods in Applied Mechanics and Engineering},
1275  year = {1991},
1276  pages = {17-74},
1277  owner = {gm},
1278  timestamp = {2007.08.04}
1279}
1280
1281@TECHREPORT{Leonard1988,
1282  author = {B. P. Leonard},
1283  title = {Universal limiter for transient interpolation modelling of the advective
1284   transport equations},
1285  institution = {Technical Memorandum TM-100916 ICOMP-88-11, NASA},
1286  year = {1988},
1287  owner = {gm},
1288  timestamp = {2007.08.04}
1289}
1290
1291@ARTICLE{Leonard1979,
1292  author = {B. P. Leonard},
1293  title = {A stable and accurate convective modelling procedure based on quadratic
1294   upstream interpolation},
1295  journal = {Computer Methods in Applied Mechanics and Engineering},
1296  year = {1979},
1297  volume = {19},
1298  pages = {59-98},
1299  month = jun,
1300  owner = {gm},
1301  timestamp = {2007.08.04}
1302}
1303
1304@TECHREPORT{Levier2007,
1305  author = {B. Levier and A.-M. Tr\'{e}guier and G. Madec and V. Garnier},
1306  title = {Free surface and variable volume in the NEMO code},
1307  institution = {MERSEA MERSEA IP report WP09-CNRS-STR-03-1A, 47pp, available on the
1308   NEMO web site},
1309  year = {2007},
1310  owner = {gm},
1311  timestamp = {2007.08.03}
1312}
1313
1314@BOOK{levitus82,
1315  title = {Climatological Atlas of the world ocean},
1316  publisher = {NOAA professional paper No. 13, 174pp},
1317  year = {1982},
1318  author = {S Levitus },
1319  note = {173 p.}
1320}
1321
1322@TECHREPORT{Lott1989,
1323  author = {F. Lott and G. Madec},
1324  title = {Implementation of bottom topography in the Ocean General Circulation
1325   Model OPA of the LODYC: formalism and experiments.},
1326  institution = {LODYC, France, 36pp.},
1327  year = {1989},
1328  number = {3},
1329  owner = {gm},
1330  timestamp = {2007.08.03}
1331}
1332
1333@ARTICLE{Lott1990,
1334  author = {F. Lott and G. Madec and J. Verron},
1335  title = {Topographic experiments in an Ocean General Circulation Model},
1336  journal = {Ocean Modelling},
1337  year = {1990},
1338  volume = {88},
1339  pages = {1-4},
1340  owner = {gm},
1341  timestamp = {2007.08.03}
1342}
1343
1344@BOOK{Madec_Bk08,
1345  title = {NEMO ocean engine},
1346  publisher = {Note du P\^ole de mod\'{e}lisation, Institut Pierre-
1347   
1348   Simon Laplace (IPSL), France, No 27, ISSN No 1288-1619},
1349  year = {2008},
1350  author = {G. Madec},
1351  owner = {gm},
1352  timestamp = {2008.07.05}
1353}
1354
1355@PHDTHESIS{Madec1990,
1356  author = {G. Madec},
1357  title = {La formation d'eau profonde et son impact sur la circulation r\'{e}gionale
1358   en M\'{e}diterran\'{e}e Occidentale - une approche num\'{e}rique},
1359  school = {Universit\'{e}Pierre et Marie Curie, Paris, France, 194pp.},
1360  year = {1990},
1361  owner = {gm},
1362  timestamp = {2007.08.10}
1363}
1364
1365@ARTICLE{Madec1991a,
1366  author = {G. Madec and M. Chartier and M. Cr\'{e}pon},
1367  title = {Effect of thermohaline forcing variability on deep water formation
1368   in the Northwestern Mediterranean Sea - a high resulution three-dimensional
1369   study},
1370  journal = DAO,
1371  year = {1991},
1372  owner = {gm},
1373  timestamp = {2007.08.06}
1374}
1375
1376@ARTICLE{Madec1991b,
1377  author = {G. Madec and M. Chartier and P. Delecluse and M. Cr\'{e}pon},
1378  title = {A three-dimensional numerical study of deep water formation in the
1379   
1380   
1381   Northwestern Mediterranean Sea .},
1382  journal = JPO,
1383  year = {1991},
1384  volume = {21},
1385  owner = {gm},
1386  timestamp = {2007.08.06}
1387}
1388
1389@INBOOK{Madec1991c,
1390  chapter = {Thermohaline-driven deep water formation in the Northwestern Mediterranean
1391   Sea},
1392  title = {Deep convection and deep water formation in the oceans},
1393  publisher = {Elsevier Oceanographic Series},
1394  year = {1991},
1395  author = {G. Madec and M. Cr\'{e}pon},
1396  owner = {gm},
1397  timestamp = {2007.08.06}
1398}
1399
1400@ARTICLE{Madec1997,
1401  author = {G. Madec and P. Delecluse},
1402  title = {The OPA/ARPEGE and OPA/LMD Global Ocean-Atmosphere Coupled Model},
1403  journal = {Int. WOCE Newsletter},
1404  year = {1997},
1405  volume = {26},
1406  pages = {12-15},
1407  owner = {gm},
1408  timestamp = {2007.08.06}
1409}
1410
1411@TECHREPORT{Madec1998,
1412  author = {G. Madec and P. Delecluse and M. Imbard and C. Levy},
1413  title = {OPA 8 Ocean General Circulation Model - Reference Manual},
1414  institution = {LODYC/IPSL Note 11},
1415  year = {1998}
1416}
1417
1418@ARTICLE{MadecImb1996,
1419  author = {G Madec and M Imbard},
1420  title = {A global ocean mesh to overcome the north pole singularity},
1421  journal = CD,
1422  year = {1996},
1423  volume = {12},
1424  pages = {381-388}
1425}
1426
1427@ARTICLE{Madec1996,
1428  author = {G. Madec and F. Lott and P. Delecluse and M. Cr\'{e}pon},
1429  title = {Large-Scale Preconditioning of Deep-Water Formation in the Northwestern
1430   Mediterranean Sea},
1431  journal = JPO,
1432  year = {1996},
1433  volume = {26},
1434  pages = {1393-1408},
1435  number = {8},
1436  month = aug,
1437  abstract = {The large-scale processes preconditioning the winter deep-water formation
1438   in the northwestern Mediterranean Sea are investigated with a primitive
1439   equation numerical model where convection is parameterized by a non-penetrative
1440   convective adjustment algorithm. The ocean is forced by momentum
1441   and buoyancy fluxes that have the gross features of mean winter forcing
1442   found in the MEDOC area. The wind-driven barotropic circulation appears
1443   to be a major ingredient of the preconditioning phase of deep-water
1444   formation. After three months, the ocean response is dominated by
1445   a strong barotropic cyclonic vortex located under the forcing area,
1446   which fits the Sverdrup balance away from the northern coast. In
1447   the vortex center, the whole water column remains trapped under the
1448   forcing area all winter. This trapping enables the thermohaline forcing
1449   to drive deep-water formation efficiently. Sensitivity studies show
1450   that, β effect and bottom topography play a paramount role and
1451   confirm that deep convection occurs only in areas that combine a
1452   strong surface thermohaline forcing and a weak barotropic advection
1453   so that water masses are submitted to the negative buoyancy fluxes
1454   for a much longer time. In particular, the impact of the Rhône
1455   Deep Sea Fan on the barotropic circulation dominates the β effect:
1456   the barotropic flow is constrained to follow the bathymetric contours
1457   and the cyclonic vortex is shifted southward so that the fluid above
1458   the fan remains quiescent. Hence, buoyancy fluxes trigger deep convection
1459   above the fan in agreement with observations. The selection of the
1460   area of deep-water formation through the defection of the barotropic
1461   circulation by the topography seems a more efficient mechanism than
1462   those associated with the wind- driven barotropic vortex. This is
1463   due to its permanency, while the latter may be too sensitive to time
1464   and space variations of the forcing.},
1465  owner = {gm},
1466  timestamp = {2007.08.03}
1467}
1468
1469@ARTICLE{Madec1988,
1470  author = {G. Madec and C. Rahier and M. Chartier},
1471  title = {A comparison of two-dimensional elliptic solvers for the barotropic
1472   streamfunction in a multilevel OGCM},
1473  journal = {Ocean Modelling},
1474  year = {1988},
1475  volume = {78},
1476  owner = {gm},
1477  timestamp = {2007.08.10}
1478}
1479
1480@ARTICLE{Maltrud1998,
1481  author = {M. E. Maltrud and R. D. Smith and A. J. Semtner and R. C. Malone},
1482  title = {Global eddy-resolving ocean simulations driven by 1985-1995 atmospheric
1483   winds},
1484  journal = JGR,
1485  year = {1998},
1486  volume = {103(C13)},
1487  pages = {30,825-30,854},
1488  owner = {gm},
1489  timestamp = {2007.08.05}
1490}
1491
1492@ARTICLE{Marchesiello2001,
1493  author = { P. Marchesiello and J. Mc Williams and A. Shchepetkin },
1494  title = {Open boundary conditions for long-term integrations of Regional Oceanic
1495   Models},
1496  journal = {Ocean Modelling},
1497  year = {2001},
1498  volume = {3},
1499  pages = {1-20}
1500}
1501
1502@BOOK{MIT-GCM_2004,
1503  title = {MIT-gcm User Manual},
1504  year = {2004},
1505  editor = {MIT Department of EAPS},
1506  author = {J. Marshall and A. Adcroft and J.-M. Campin and P. Heimbach and A.
1507   Molod and S. Dutkiewicz and H. Hill and M. Losch and B. Fox-Kemper
1508   and D. Menemenlis and D. Ferreira and E. Hill and M. Follows and
1509   C. Hill and C. Evangelinos and G. Forget},
1510  owner = {gm},
1511  timestamp = {2008.07.04}
1512}
1513
1514@PHDTHESIS{MartiTh1992,
1515  author = {O. Marti},
1516  title = {Etude de l'oc\'{e}an mondial : mod\'{e}lisation de la circulation
1517   et du transport de traceurs anthropog\'{e}niques},
1518  school = {Universit\'{e} Pierre et Marie Curie, Paris, France, 201pp},
1519  year = {1992},
1520  owner = {gm},
1521  timestamp = {2007.08.04}
1522}
1523
1524@ARTICLE{Marti1992,
1525  author = {O. Marti and G. Madec and P. Delecluse},
1526  title = {Comment on "Net diffusivity in ocean general circulation models with
1527   nonuniform grids" by F. L. Yin and I. Y. Fung},
1528  journal = JGR,
1529  year = {1992},
1530  volume = {97},
1531  pages = {12763-12766},
1532  month = aug,
1533  owner = {gm},
1534  timestamp = {2007.08.03}
1535}
1536
1537@ARTICLE{McDougall1987,
1538  author = {T. J. McDougall},
1539  title = {Neutral Surfaces},
1540  journal = {Journal of Physical Oceanography},
1541  year = {1987},
1542  volume = {17},
1543  pages = {1950-1964},
1544  number = {11},
1545  abstract = {Scalar properties in the ocean are stirred (and subsequently mixed)
1546   rather efficiently by mesoscale eddies and two-dimensional turbulence
1547   along “neutral surfaces”, defined such that when water
1548   parcels are moved small distances in the neutral surface, they experience
1549   no buoyant restoring forces. By contrast, work would have to be done
1550   on a moving fluid parcel in order to keep it on a potential density
1551   surface. The differences between neutral surfaces and potential density
1552   surfaces are due to the variation of α/β with pressure
1553   (where α is the thermal expansion coefficient and β is
1554   the saline contraction coefficient). By regarding the equation of
1555   state of seawater as a function of salinity, potential temperature,
1556   and pressure, rather than in terms of salinity, temperature, and
1557   pressure, it is possible to quantify the differences between neutral
1558   surfaces and potential density surfaces. In particular, the spatial
1559   gradients of scalar properties (e.g., S, θ, tritium or potential
1560   vorticity) on a neutral surface can be quite different to the corresponding
1561   gradients in a potential density surface. For example, at a potential
1562   temperature of 4°C and a pressure of 1000 db, the lateral gradient
1563   of potential temperature in a potential density surface (referenced
1564   to sea level) is too large by between 50% and 350% (depending
1565   on the stability ratio Rp of the water column) compared with the
1566   physically relevant gradient of potential temperature on the neutral
1567   surface. Three-examples of neutral surfaces are presented, based
1568   on the Levitus atlas of the North Atlantic.},
1569  date = {November 01, 1987},
1570  owner = {gm},
1571  timestamp = {2007.08.04}
1572}
1573
1574@ARTICLE{McDougall_Taylor_JMR84,
1575  author = {T. J. McDougall and J. R. Taylor},
1576  title = {Flux measurements across a finger interface at low values of the
1577   stability ratio},
1578  journal = {Journal of Marine Research},
1579  year = {1984},
1580  volume = {42},
1581  pages = {1-14},
1582  owner = {gm},
1583  timestamp = {2008.05.20}
1584}
1585
1586@ARTICLE{Merryfield1999,
1587  author = {W. J. Merryfield and G. Holloway and A. E. Gargett},
1588  title = {A Global Ocean Model with Double-Diffusive Mixing},
1589  journal = JPO,
1590  year = {1999},
1591  volume = {29},
1592  pages = {1124-1142},
1593  number = {6},
1594  abstract = {A global ocean model is described in which parameterizations of diapycnal
1595   mixing by double-diffusive fingering and layering are added to a
1596   stability-dependent background turbulent diffusivity. Model runs
1597   with and without double-diffusive mixing are compared for annual-mean
1598   and seasonally varying surface forcing. Sensitivity to different
1599   double-diffusive mixing parameterizations is considered. In all cases,
1600   the locales and extent of salt fingering (as diagnosed from buoyancy
1601   ratio Rρ) are grossly comparable to climatology, although fingering
1602   in the models tends to be less intense than observed. Double-diffusive
1603   mixing leads to relatively minor changes in circulation but exerts
1604   significant regional influences on temperature and salinity.},
1605  date = {June 01, 1999},
1606  owner = {gm},
1607  timestamp = {2007.08.06}
1608}
1609
1610@BOOK{Mesinger_Arakawa_Bk76,
1611  title = {Numerical methods used in Atmospheric models},
1612  publisher = {GARP Publication Series No 17},
1613  year = {1976},
1614  author = {F. Mesinger and A. Arakawa},
1615  owner = {gm},
1616  timestamp = {2008.02.09}
1617}
1618
1619@ARTICLE{Murray1996,
1620  author = {R. J. Murray},
1621  title = {Explicit Generation of Orthogonal Grids for Ocean Models},
1622  journal = JCP,
1623  year = {1996},
1624  volume = {126},
1625  pages = {251-273},
1626  number = {2},
1627  month = {July},
1628  owner = {gm},
1629  timestamp = {2007.08.03}
1630}
1631
1632@PHDTHESIS{OlivierPh2001,
1633  author = {F. Olivier},
1634  title = {Etude de l'activit\'{e} biologique et de la circulation oc\'{e}anique
1635   dans un jet g\'{e}ostrophique: le front Alm\'{e}ria-Oran},
1636  school = {Universit\'{e} Pierre et Marie Curie, Paris, France},
1637  year = {2001},
1638  owner = {gm},
1639  timestamp = {2007.08.14}
1640}
1641
1642@ARTICLE{PacPhil1981,
1643  author = {R.C. Pacanowski and S.G.H. Philander},
1644  title = {Parameterization of Vertical Mixing in Numerical Models of Tropical
1645   Oceans},
1646  journal = JPO,
1647  year = {1981},
1648  volume = {11},
1649  pages = {1443-1451},
1650  number = {11},
1651  abstract = {Measurements indicate that mixing processes are intense in the surface
1652   layers of the ocean but weak below the thermocline, except for the
1653   region below the core of the Equatorial Undercurrent where vertical
1654   temperature gradients are small and the shear is large. Parameterization
1655   of these mixing processes by means of coefficients of eddy mixing
1656   that are Richardson-number dependent, leads to realistic simulations
1657   of the response of the equatorial oceans to different windstress
1658   patterns. In the case of eastward winds results agree well with measurements
1659   in the Indian Ocean. In the case of westward winds it is of paramount
1660   importance that the nonzero heat flux into the ocean be taken into
1661   account. This beat flux stabilizes the upper layers and reduces the
1662   intensity of the mixing, especially in the cast. With an appropriate
1663   surface boundary condition, the results are relatively insensitive
1664   to values assigned to constants in the parameterization formula.},
1665  date = {November 01, 1981},
1666  owner = {gm},
1667  timestamp = {2007.08.03}
1668}
1669
1670@ARTICLE{Pacanowski_Gnanadesikan_MWR98,
1671  author = {R. C. Pacanowski and A. Gnanadesikan},
1672  title = {Transient response in a z-level ocean model that resolves topography
1673   
1674   
1675   with partial-cells},
1676  journal = MWR,
1677  year = {1998},
1678  volume = {126},
1679  pages = {3248-3270},
1680  owner = {gm},
1681  timestamp = {2008.01.26}
1682}
1683
1684@ARTICLE{Paulson1977,
1685  author = {C. A. Paulson and J. J. Simpson},
1686  title = {Irradiance Measurements in the Upper Ocean},
1687  journal = JPO,
1688  year = {1977},
1689  volume = {7},
1690  pages = {952-956},
1691  number = {6},
1692  abstract = {Observations were made of downward solar radiation as a function of
1693   depth during an experiment in the North Pacific (35°N, 155°W).
1694   The irradiance meter employed was sensitive to solar radiation of
1695   wavelength 400–1000 nm arriving from above at a horizontal
1696   surface. Because of selective absorption of the short and long wavelengths,
1697   the irradiance decreases much faster than exponential in the upper
1698   few meters, falling to one-third of the incident value between 2
1699   and 3 m depth. Below 10 m the decrease was exponential at a rate
1700   characteristic of moderately clear water of Type IA. Neglecting one
1701   case having low sun altitude, the observations are well represented
1702   by the expression I/I0=Rez/ζ1+(1−R)ezζ2,
1703   where I is the irradiance at depth −z, I0 is the irradiance
1704   at the surface less reflected solar radiation, R=0.62, ζ1
1705   and ζ2 are attenuation lengths equal to 1.5 and 20 m, respectively,
1706   and z is the vertical space coordinate, positive upward with the
1707   origin at mean sea level. The depth at which the irradiance falls
1708   to 10% of its surface value is nearly the same as observations
1709   of Secchi depth when cases with high wind speed or low solar altitude
1710   are neglected. Parameters R, ζ1, and ζ2 are computed for
1711   the entire range of oceanic water types.},
1712  date = {November 01, 1977},
1713  owner = {gm},
1714  timestamp = {2007.08.04}
1715}
1716
1717@ARTICLE{Penduff2000,
1718  author = {T. Penduff and B. Barnier and A. Colin de Verdi\`{e}re},
1719  title = { Self-adapting open boundaries for a regional model of the eastern
1720   North Atlantic},
1721  journal = JGR,
1722  year = {2000},
1723  volume = {105},
1724  pages = {11,279-11,297}
1725}
1726
1727@ARTICLE{Penduff2007,
1728  author = {T. Penduff and J. Le Sommer and B. Barnier and A.M. Treguier and
1729   J. Molines and G. Madec},
1730  title = {Influence of numerical schemes on current-topography interactions
1731   in 1/4$^{\circ}$ global ocean simulations},
1732  journal = {Ocean Science},
1733  year = {2007},
1734  volume = {?},
1735  pages = {in revision}
1736}
1737
1738@ARTICLE{Phillips1959,
1739  author = {R. S. Phillips},
1740  title = {Dissipative Operators and Hyperbolic Systems of Partial Differential
1741   Equations},
1742  journal = {Transactions of the American Mathematical Society},
1743  year = {1959},
1744  volume = {90(2)},
1745  pages = {193-254},
1746  doi = {doi:10.2307/1993202},
1747  owner = {gm},
1748  timestamp = {2007.08.10}
1749}
1750
1751@ARTICLE{Redi_JPO82,
1752  author = {M. H. Redi},
1753  title = {Oceanic isopycnal mixing by coordinate rotation},
1754  journal = JPO,
1755  year = {1982},
1756  volume = {13},
1757  pages = {1154-1158},
1758  owner = {gm},
1759  timestamp = {2008.02.02}
1760}
1761
1762@ARTICLE{Reverdin1991,
1763  author = {G. Reverdin and P. Delecluse and C. L\'{e}vy and P. Andrich and A.
1764   Morli\`{e}re and J. M. Verstraete},
1765  title = {The near surface tropical Atlantic in 1982-1984 : results from a
1766   numerical simulation and a data analysis},
1767  journal = PO,
1768  year = {1991},
1769  volume = {27},
1770  pages = {273-340},
1771  owner = {gm},
1772  timestamp = {2007.08.04}
1773}
1774
1775@BOOK{Richtmyer1967,
1776  title = {Difference methods for initial-value problems},
1777  publisher = {Interscience Publisher, Second Edition, 405pp},
1778  year = {1967},
1779  author = {R. D. Richtmyer and K. W. Morton},
1780  owner = {gm},
1781  timestamp = {2007.08.04}
1782}
1783
1784@ARTICLE{Robert1966,
1785  author = {A. J. Robert},
1786  title = {The integration of a Low order spectral form of the primitive meteorological
1787   equations},
1788  journal = {J. Meteo. Soc. Japan},
1789  year = {1966},
1790  volume = {44, 2},
1791  owner = {gm},
1792  timestamp = {2007.08.04}
1793}
1794
1795@INCOLLECTION{Roed1986,
1796  author = {L.P. Roed and C.K. Cooper},
1797  title = {Open boundary conditions in numerical ocean models},
1798  booktitle = {Advanced Physical Oceanography Numerical Modelling},
1799  publisher = { NATO ASI Series, vol. 186.},
1800  year = {1986},
1801  editor = {J.J. O'Brien}
1802}
1803
1804@ARTICLE{Roullet2000,
1805  author = {G. Roullet and G. Madec},
1806  title = {salt conservation, free surface, and varying levels: a new formulation
1807   for ocean general circulation models},
1808  journal = JGR,
1809  year = {2000},
1810  volume = {105},
1811  pages = {23,927-23,942},
1812  owner = {sandra},
1813  pdf = {Roullet_Madec_JGR00.pdf},
1814  timestamp = {2007.03.22}
1815}
1816
1817@ARTICLE{Sadourny1975,
1818  author = {R. Sadourny},
1819  title = {The Dynamics of Finite-Difference Models of the Shallow-Water Equations},
1820  journal = JAS,
1821  year = {1975},
1822  volume = {32},
1823  pages = {680-689},
1824  number = {4},
1825  abstract = {Two simple numerical models of the shallow-water equations identical
1826   in all respects but for their con-servation properties have been
1827   tested regarding their internal mixing processes. The experiments
1828   show that violation of enstrophy conservation results in a spurious
1829   accumulation of rotational energy in the smaller scales, reflected
1830   by an unrealistic increase of enstrophy, which ultimately produces
1831   a finite rate of energy dissipation in the zero viscosity limit,
1832   thus violating the well-known dynamics of two-dimensional flow. Further,
1833   the experiments show a tendency to equipartition of the kinetic energy
1834   of the divergent part of the flow in the inviscid limit, suggesting
1835   the possibility of a divergent energy cascade in the physical system,
1836   as well as a possible influence of the energy mixing on the process
1837   of adjustment toward balanced flow.},
1838  date = {April 01, 1975},
1839  owner = {gm},
1840  timestamp = {2007.08.05}
1841}
1842
1843@ARTICLE{Sarmiento1982,
1844  author = {J. L. Sarmiento and K. Bryan},
1845  title = {Ocean transport model for the North Atlantic},
1846  journal = JGR,
1847  year = {1982},
1848  volume = {87},
1849  pages = {394-409},
1850  owner = {gm},
1851  timestamp = {2007.08.04}
1852}
1853
1854@ARTICLE{Sacha2005,
1855  author = {A. F. Shchepetkin and J. C. McWilliams},
1856  title = {The regional oceanic modeling system (ROMS) - a split-explicit, free-surface,
1857   topography-following-coordinate oceanic modelr},
1858  journal = {Ocean Modelling},
1859  year = {2005},
1860  volume = {9, 4},
1861  pages = {347-404},
1862  owner = {gm},
1863  timestamp = {2007.08.04}
1864}
1865
1866@ARTICLE{Sacha2003,
1867  author = {A. F. Shchepetkin and J. C. McWilliams},
1868  title = {A method for computing horizontal pressure-gradient force in an oceanic
1869   model with a nonaligned
1870   
1871   vertical coordinate},
1872  journal = JGR,
1873  year = {2003},
1874  volume = {108(C3)},
1875  pages = {3090, doi:10.1029/2001JC001047},
1876  owner = {gm},
1877  timestamp = {2007.08.05}
1878}
1879
1880@ARTICLE{Shchepetkin1996,
1881  author = {A. F. Shchepetkin and J. J. O'Brien},
1882  title = {A Physically Consistent Formulation of Lateral Friction in Shallow-Water
1883   Equation Ocean Models},
1884  journal = MWR,
1885  year = {1996},
1886  volume = {124},
1887  pages = {1285-1300},
1888  number = {6},
1889  abstract = {Dissipation in numerical ocean models has two purposes: to simulate
1890   processes in which the friction is physically relevant and to prevent
1891   numerical instability by suppressing accumulation of energy in the
1892   smallest resolved scales. This study shows that even for the latter
1893   case the form of the friction term should be chosen in a physically
1894   consistent way. Violation of fundamental physical principles reduces
1895   the fidelity of the numerical solution, even if the friction is small.
1896   Several forms of the lateral friction, commonly used in numerical
1897   ocean models, are discussed in the context of shallow-water equations
1898   with nonuniform layer thickness. It is shown that in a numerical
1899   model tuned for the minimal dissipation, the improper form of the
1900   friction term creates finite artificial vorticity sources that do
1901   not vanish with increased resolution, even if the viscous coefficient
1902   is reduced consistently with resolution. An alternative numerical
1903   implementation of the no-slip boundary conditions for an arbitrary
1904   coast line is considered. It was found that the quality of the numerical
1905   solution may be considerably improved by discretization of the viscous
1906   stress tensor in such a way that the numerical boundary scheme approximates
1907   not only the stress tensor to a certain order of accuracy but also
1908   simulates the truncation error of the numerical scheme used in the
1909   interior of the domain. This ensures error cancellation during subsequent
1910   use of the elements of the tensor in the discrete version of the
1911   momentum equations, allowing for approximation of them without decrease
1912   in the order of accuracy near the boundary.},
1913  date = {June 01, 1996},
1914  owner = {gm},
1915  timestamp = {2007.08.14}
1916}
1917
1918@ARTICLE{Simmons2003,
1919  author = {H. L. Simmons and S. R. Jayne and L. C. St. Laurent and A. J. Weaver},
1920  title = {Tidally driven mixing in a numerical model of the
1921   
1922   ocean general circulation},
1923  journal = OM,
1924  year = {2003},
1925  pages = {1-19},
1926  abstract = {Astronomical data reveals that approximately 3.5 terawatts (TW) of
1927   tidal energy is dissipated in the
1928   
1929   ocean. Tidal models and satellite altimetry suggest that 1 TW of this
1930   energy is converted from the barotropic
1931   
1932   to internal tides in the deep ocean, predominantly around regions
1933   of rough topography such as midocean
1934   
1935   ridges. Aglobal tidal model is used to compute turbulent energy levels
1936   associated with the dissipation
1937   
1938   of internal tides, and the diapycnal mixing supported by this energy
1939   ?ux is computed using a simple parameterization.
1940   
1941   The mixing parameterization has been incorporated into a coarse resolution
1942   numerical model of the
1943   
1944   global ocean. This parameterization o?ers an energetically consistent
1945   and practical means of improving the
1946   
1947   representation of ocean mixing processes in climate models. Novel
1948   features of this implementation are that
1949   
1950   the model explicitly accounts for the tidal energy source for mixing,
1951   and that the mixing evolves both
1952   
1953   spatially and temporally with the model state. At equilibrium, the
1954   globally averaged di?usivity pro?le
1955   
1956   ranges from 0.3 cm2 s1 at thermocline depths to 7.7 cm2 s1 in the
1957   abyss with a depth average of 0.9
1958   
1959   cm2 s1, in close agreement with inferences from global balances.
1960   Water properties are strongly in?uenced
1961   
1962   by the combination of weak mixing in the main thermocline and enhanced
1963   mixing in the deep ocean.
1964   
1965   Climatological comparisons show that the parameterized mixing scheme
1966   results in a substantial reduction},
1967  owner = {sandra},
1968  pdf = {Simmons_mixing_OM2003.pdf},
1969  timestamp = {2007.03.22}
1970}
1971
1972@ARTICLE{Song1994,
1973  author = {Y. Song and D. Haidvogel},
1974  title = {A Semi-implicit Ocean Circulation Model Using a Generalized Topography-Following
1975   Coordinate System
1976   
1977   Authors:},
1978  journal = JCP,
1979  year = {1994},
1980  volume = {115, 1},
1981  owner = {gm},
1982  timestamp = {2007.08.04}
1983}
1984
1985@ARTICLE{Song1998,
1986  author = {Y. T. Song},
1987  title = {A General Pressure Gradient Formulation for Ocean Models. Part I:
1988   Scheme Design and Diagnostic Analysis},
1989  journal = MWR,
1990  year = {1998},
1991  volume = {126},
1992  pages = {3213-3230},
1993  number = {12},
1994  abstract = {A Jacobian formulation of the pressure gradient force for use in models
1995   with topography-following coordinates is proposed. It can be used
1996   in conjunction with any vertical coordinate system and is easily
1997   implemented. Vertical variations in the pressure gradient are expressed
1998   in terms of a vertical integral of the Jacobian of density and depth
1999   with respect to the vertical computational coordinate. Finite difference
2000   approximations are made on the density field, consistent with piecewise
2001   linear and continuous fields, and accurate pressure gradients are
2002   obtained by vertically integrating the discrete Jacobian from sea
2003   surface.Two discrete schemes are derived and examined in detail:
2004   the first using standard centered differencing in the generalized
2005   vertical coordinate and the second using a vertical weighting such
2006   that the finite differences are centered with respect to the Cartesian
2007   z coordinate. Both schemes achieve second-order accuracy for any
2008   vertical coordinate system and are significantly more accurate than
2009   conventional schemes based on estimating the pressure gradients by
2010   finite differencing a previously determined pressure field.The standard
2011   Jacobian formulation is constructed to give exact pressure gradient
2012   results, independent of the bottom topography, if the buoyancy field
2013   varies bilinearly with horizontal position, x, and the generalized
2014   vertical coordinate, s, over each grid cell. Similarly, the weighted
2015   Jacobian scheme is designed to achieve exact results, when the buoyancy
2016   field varies linearly with z and arbitrarily with x, that is, b(x,z)
2017   = b0(x) + b1(x)z.When horizontal resolution cannot be made
2018   fine enough to avoid hydrostatic inconsistency, errors can be substantially
2019   reduced by the choice of an appropriate vertical coordinate. Tests
2020   with horizontally uniform, vertically varying, and with horizontally
2021   and vertically varying buoyancy fields show that the standard Jacobian
2022   formulation achieves superior results when the condition for hydrostatic
2023   consistency is satisfied, but when coarse horizontal resolution causes
2024   this condition to be strongly violated, the weighted Jacobian may
2025   give superior results.},
2026  date = {December 01, 1998},
2027  owner = {gm},
2028  timestamp = {2007.08.05}
2029}
2030
2031@ARTICLE{SongWright1998,
2032  author = {Y. T. Song and D. G. Wright},
2033  title = {A General Pressure Gradient Formulation for Ocean Models. Part II
2034   - Energy, Momentum, and Bottom Torque Consistency},
2035  journal = MWR,
2036  year = {1998},
2037  volume = {126},
2038  pages = {3231-3247},
2039  number = {12},
2040  abstract = {A new formulation of the pressure gradient force for use in models
2041   with topography-following coordinates is proposed and diagnostically
2042   analyzed in Part I. Here, it is shown that important properties of
2043   the continuous equations are retained by the resulting numerical
2044   schemes, and their performance in prognostic simulations is examined.
2045   Numerical consistency is investigated with respect to global energy
2046   conservation, depth-integrated momentum changes, and the representation
2047   of the bottom pressure torque. The performances of the numerical
2048   schemes are tested in prognostic integrations of an ocean model to
2049   demonstrate numerical accuracy and long-term integral stability.
2050   Two typical geometries, an isolated tall seamount and an unforced
2051   basin with sloping boundaries, are considered for the special case
2052   of no external forcing and horizontal isopycnals to test numerical
2053   accuracy. These test problems confirm that the proposed schemes yield
2054   accurate approximations to the pressure gradient force. Integral
2055   consistency conditions are verified and the energetics of the “advective
2056   elimination” of the pressure gradient error (Mellor et al)
2057   is considered.A large-scale wind-driven basin with and without topography
2058   is used to test the model’s long-term integral performance
2059   and the effects of bottom pressure torque on the transport in western
2060   boundary currents. Integrations are carried out for 10 years in each
2061   case and results show that the schemes are stable, and the steep
2062   topography causes no obvious numerical problems. A realistic meandering
2063   western boundary current is well developed with detached cold cyclonic
2064   and warm anticyclonic eddies as it extends across the basin. In addition,
2065   the results with topography show earlier separation and enhanced
2066   transport in the western boundary currents due to the bottom pressure
2067   torque.},
2068  date = {December 01, 1998},
2069  owner = {gm},
2070  timestamp = {2007.08.05}
2071}
2072
2073@PHDTHESIS{Speich1992,
2074  author = {S. Speich},
2075  title = {Etude du for\c{c}age de la circulation g\'{e}n\'{e}rale oc\'{e}anique
2076   par les d\'{e}troits - cas de la mer d'Alboran},
2077  school = {Universit\'{e} Pierre et Marie Curie, Paris, France},
2078  year = {1992},
2079  owner = {gm},
2080  timestamp = {2007.08.06}
2081}
2082
2083@ARTICLE{Speich1996,
2084  author = {S. Speich and G. Madec and M. Cr\'{e}pon},
2085  title = {The circulation in the Alboran Sea - a sensitivity study},
2086  journal = JPO,
2087  year = {1996},
2088  volume = {26},
2089  owner = {gm},
2090  timestamp = {2007.08.06}
2091}
2092
2093@ARTICLE{Steele2001,
2094  author = {M. Steele and R. Morley and W. Ermold},
2095  title = {PHC- A Global Ocean Hydrography with a High-Quality Arctic Ocean},
2096  journal = {Journal of Climate},
2097  year = {2001},
2098  volume = {14},
2099  pages = {2079--2087
2100   
2101   },
2102  number = {9},
2103  abstract = {A new gridded ocean climatology, the Polar Science Center Hydrographic
2104   Climatology (PHC), has been created that merges the 1998 version
2105   of the World Ocean Atlas with the new regional Arctic Ocean Atlas.
2106   The result is a global climatology for temperature and salinity that
2107   contains a good description of the Arctic Ocean and its environs.
2108   Monthly, seasonal, and annual average products have been generated.
2109   How the original datasets were prepared for merging, how the optimal
2110   interpolation procedure was performed, and characteristics of the
2111   resulting dataset are discussed, followed by a summary and discussion
2112   of future plans.},
2113  date = {May 01, 2001},
2114  owner = {gm},
2115  timestamp = {2007.08.06}
2116}
2117
2118@ARTICLE{Stein1992,
2119  author = {C. A. Stein and S. Stein},
2120  title = {A model for the global variation in oceanic depth and heat flow with
2121   lithospheric age},
2122  journal = {Nature},
2123  year = {1992},
2124  volume = {359},
2125  pages = {123-129},
2126  owner = {gm},
2127  timestamp = {2007.08.04}
2128}
2129
2130@ARTICLE{Thiem2006,
2131  author = {O. Thiem and J. Berntsen},
2132  title = {Internal pressure errors in sigma-coordinate ocean models due to
2133   anisotropy},
2134  journal = {Ocean Modelling},
2135  year = {2006},
2136  volume = {12, 1-2},
2137  owner = {gm},
2138  timestamp = {2007.08.05}
2139}
2140
2141@ARTICLE{Timmermann_al_OM05,
2142  author = {R. Timmermann and H. Goosse and G. Madec and T. Fichefet, and C.
2143   Ethe and V. Duli\`{e}re},
2144  title = {On the representation of high latitude processes in the ORCA-LIM
2145   global coupled
2146   
2147   sea ice-ocean model.},
2148  journal = {Ocean Modelling},
2149  year = {2005},
2150  volume = {8},
2151  pages = {175–201},
2152  owner = {gm},
2153  timestamp = {2008.07.05}
2154}
2155
2156@ARTICLE{Treguier1992,
2157  author = {A.M. Tr\'{e}guier},
2158  title = {Kinetic energy analysis of an eddy resolving, primitive equation
2159   North Atlantic model},
2160  journal = JGR,
2161  year = {1992},
2162  volume = {97},
2163  pages = {687-701}
2164}
2165
2166@ARTICLE{Treguier2001,
2167  author = {A.M Tr\'{e}guier and B. Barnier and A.P. de Miranda and J.M. Molines
2168   and N. Grima and M. Imbard and G. Madec and C. Messager and T. Reynaud
2169   and S. Michel},
2170  title = {An Eddy Permitting model of the Atlantic circulation: evaluating
2171   open boundary conditions},
2172  journal = JGR,
2173  year = {2001},
2174  volume = {106},
2175  pages = {22115-22129}
2176}
2177
2178@ARTICLE{Treguier1996,
2179  author = {A.-M. Tr\'{e}guier and J. Dukowicz and K. Bryan},
2180  title = {Properties of nonuniform grids used in ocean general circulation
2181   models},
2182  journal = JGR,
2183  year = {1996},
2184  volume = {101},
2185  pages = {20877-20881},
2186  owner = {gm},
2187  timestamp = {2007.08.03}
2188}
2189
2190@ARTICLE{Treguier1997,
2191  author = {A. M. Tr\'{e}guier and I. M. Held and V. D. Larichev},
2192  title = {Parameterization of Quasigeostrophic Eddies in Primitive Equation
2193   Ocean Models},
2194  journal = JPO,
2195  year = {1997},
2196  volume = {27},
2197  pages = {567-580},
2198  number = {4},
2199  abstract = {A parameterization of mesoscale eddy fluxes in the ocean should be
2200   consistent with the fact that the ocean interior is nearly adiabatic.
2201   Gent and McWilliams have described a framework in which this can
2202   be approximated in z-coordinate primitive equation models by incorporating
2203   the effects of eddies on the buoyancy field through an eddy-induced
2204   velocity. It is also natural to base a parameterization on the simple
2205   picture of the mixing of potential vorticity in the interior and
2206   the mixing of buoyancy at the surface. The authors discuss the various
2207   constraints imposed by these two requirements and attempt to clarify
2208   the appropriate boundary conditions on the eddy-induced velocities
2209   at the surface. Quasigeostrophic theory is used as a guide to the
2210   simplest way of satisfying these constraints.},
2211  date = {April 01, 1997},
2212  owner = {gm},
2213  timestamp = {2007.08.03}
2214}
2215
2216@BOOK{UNESCO1983,
2217  title = {Algorithms for computation of fundamental property of sea water},
2218  publisher = {Techn. Paper in Mar. Sci, 44, UNESCO},
2219  year = {1983},
2220  author = {UNESCO},
2221  owner = {gm},
2222  timestamp = {2007.08.04}
2223}
2224
2225@TECHREPORT{OASIS2006,
2226  author = {S. Valcke},
2227  title = {OASIS3 User Guide (prism\_2-5)},
2228  institution = {PRISM Support Initiative Report No 3, CERFACS, Toulouse, France,
2229   64 pp},
2230  year = {2006},
2231  owner = {gm},
2232  timestamp = {2007.08.05}
2233}
2234
2235@TECHREPORT{valal00,
2236  author = {S. Valcke and L. Terray and A. Piacentini },
2237  title = {The OASIS Coupled User Guide Version 2.4},
2238  institution = {CERFACS},
2239  year = {2000},
2240  number = {TR/CMGC/00-10}
2241}
2242
2243@ARTICLE{Vancoppenolle_al_OM08,
2244  author = {M. Vancoppenolle and T. Fichefet and H. Goosse and S. Bouillon and
2245   G. Madec and M. A. Morales Maqueda},
2246  title = {Simulating the mass balance and salinity of Arctic and Antarctic
2247   sea ice. 1. Model description and validation},
2248  journal = {Ocean Modelling},
2249  year = {2008},
2250  volume = {in press},
2251  owner = {gm},
2252  timestamp = {2008.07.05}
2253}
2254
2255@ARTICLE{Weatherly1984,
2256  author = {G. L. Weatherly},
2257  title = {An estimate of bottom frictional dissipation by Gulf Stream fluctuations},
2258  journal = JMR,
2259  year = {1984},
2260  volume = {42, 2},
2261  pages = {289-301},
2262  owner = {gm},
2263  timestamp = {2007.08.06}
2264}
2265
2266@ARTICLE{Weaver1997,
2267  author = {A. J. Weaver and M. Eby},
2268  title = {On the numerical implementation of advection schemes for use in conjuction
2269   with various mixing
2270   
2271   parameterizations in the GFDL ocean model},
2272  journal = JPO,
2273  year = {1997},
2274  volume = {27},
2275  owner = {gm},
2276  timestamp = {2007.08.06}
2277}
2278
2279@ARTICLE{Webb1998,
2280  author = {D. J. Webb and B. A. de Cuevas and C. S. Richmond},
2281  title = {Improved Advection Schemes for Ocean Models},
2282  journal = JAOT,
2283  year = {1998},
2284  volume = {15},
2285  pages = {1171-1187},
2286  number = {5},
2287  abstract = {Leonard’s widely used QUICK advection scheme is, like the Bryan–Cox–Semtner
2288   ocean model, based on a control volume form of the advection equation.
2289   Unfortunately, in its normal form it cannot be used with the leapfrog–Euler
2290   forward time-stepping schemes used by the ocean model. Farrow and
2291   Stevens overcame the problem by implementing a predictor–corrector
2292   time-stepping scheme, but this is computationally expensive to run.
2293   The present paper shows that the problem can be overcome by splitting
2294   the QUICK operator into an O(δx2) advective term and a velocity
2295   dependent biharmonic diffusion term. These can then be time-stepped
2296   using the combined leapfrog and Euler forward schemes of the Bryan–Cox–Semtner
2297   ocean model, leading to a significant increase in model efficiency.
2298   A small change in the advection operator coefficients may also be
2299   made leading to O(δx4) accuracy. Tests of the improved schemes
2300   are carried out making use of a global eddy-permitting ocean model.
2301   Results are presented from cases where the schemes were applied to
2302   only the tracer fields and also from cases where they were applied
2303   to both the tracer and velocity fields. It is found that the new
2304   schemes have the most effect in the western boundary current regions,
2305   where, for example, the warm core of the Agulhas Current is no longer
2306   broken up by numerical noise.},
2307  date = {October 01, 1998},
2308  owner = {gm},
2309  timestamp = {2007.08.04}
2310}
2311
2312@ARTICLE{Willebrand2001,
2313  author = {J. Willebrand and B. Barnier and C. Boning and C. Dieterich and P.
2314   D. Killworth and C. Le Provost and Y. Jia and J.-M. Molines and A.
2315   L. New},
2316  title = {Circulation characteristics in three eddy-permitting models of the
2317   North Atlantic},
2318  journal = {Progress in Oceanography},
2319  year = {2001},
2320  volume = {48, 2},
2321  pages = {123-161},
2322  owner = {gm},
2323  timestamp = {2007.08.04}
2324}
2325
2326@ARTICLE{Zalesak1979,
2327  author = {S. T. Zalesak},
2328  title = {Fully multidimensional flux corrected transport algorithms for fluids},
2329  journal = JCP,
2330  year = {1979},
2331  volume = {31},
2332  owner = {gm},
2333  timestamp = {2007.08.04}
2334}
2335
2336@ARTICLE{Zhang1992,
2337  author = {Zhang, R.-H. and Endoh, M.},
2338  title = {A free surface general circulation model for the tropical Pacific
2339   Ocean},
2340  journal = JGR,
2341  year = {1992},
2342  volume = {97},
2343  pages = {11237-11255},
2344  month = jul,
2345  owner = {gm}
2346}
2347
2348@comment{jabref-meta: groupsversion:3;}
2349
2350@comment{jabref-meta: groupstree:
23510 AllEntriesGroup:;
23521 ExplicitGroup:El Nino\;2\;blanketal97\;;
23532 ExplicitGroup:97/98 event\;0\;;
23542 ExplicitGroup:Forecast\;0\;;
23552 ExplicitGroup:GHG change\;0\;;
23562 ExplicitGroup:in GCMs\;0\;;
23572 ExplicitGroup:in MIPs\;0\;;
23582 ExplicitGroup:momentum balance\;0\;;
23592 ExplicitGroup:Obs analysis\;0\;;
23602 ExplicitGroup:Paleo\;0\;;
23612 ExplicitGroup:Previous events\;0\;;
23622 ExplicitGroup:Reviews\;0\;;
23632 ExplicitGroup:Simple models\;0\;Zhang1992\;;
23642 ExplicitGroup:SPL, SC, mean\;0\;;
23652 ExplicitGroup:Teleconnections\;0\;;
23662 ExplicitGroup:Low freq\;0\;;
23672 ExplicitGroup:Theory\;0\;;
23682 ExplicitGroup:Energetics\;0\;;
23691 ExplicitGroup:Diurnal in tropics\;0\;;
23701 ExplicitGroup:Indian\;0\;;
23711 ExplicitGroup:Atlantic\;0\;;
23721 ExplicitGroup:MJO, IO, TIW\;2\;;
23732 ExplicitGroup:Obs\;0\;;
23742 ExplicitGroup:GCM\;0\;;
23752 ExplicitGroup:Mechanims\;0\;;
23762 ExplicitGroup:TIW\;0\;;
23771 ExplicitGroup:Observations\;2\;;
23782 ExplicitGroup:ERBE\;0\;;
23792 ExplicitGroup:Tropical\;0\;;
23802 ExplicitGroup:Global\;0\;;
23812 ExplicitGroup:Clouds\;0\;;
23822 ExplicitGroup:Scale interactions\;0\;;
23831 ExplicitGroup:Mechanisms\;2\;;
23842 ExplicitGroup:CRF\;0\;;
23852 ExplicitGroup:Water vapor\;0\;;
23862 ExplicitGroup:Atmos mechanisms\;0\;;
23871 ExplicitGroup:GCMs\;2\;;
23882 ExplicitGroup:Uncertainty\;0\;;
23892 ExplicitGroup:Momentum balance\;0\;;
23901 ExplicitGroup:Climate change\;0\;;
23912 ExplicitGroup:IPCC AR4\;0\;;
23921 ExplicitGroup:Analysis tools\;0\;;
23931 KeywordGroup:EG publis\;0\;author\;guilyardi\;0\;0\;;
2394}
2395
Note: See TracBrowser for help on using the repository browser.